簡易檢索 / 詳目顯示

研究生: 謝凱昱
Hsieh, Kai-Yu
論文名稱: 溶膠凝膠法製備二氧化鈦薄膜之特性、光催化與親水性應用研究
A study on characterization, photocatalytic activity and hydrophilicity of TiO2 films by sol-gel process
指導教授: 鍾震桂
Chung, Chen-Kuei
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 112
中文關鍵詞: 二氧化鈦溶膠凝膠法光催化親水性Degussa P25
外文關鍵詞: titanium dioxide thim film, sol-gel, laser annealing, photocatalytic, hydrophilicity
相關次數: 點閱:92下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用溶膠凝膠法製備二氧化鈦薄膜並以自旋塗佈法沉積在矽基板後進行雷射退火與改質。藉由改變凝膠溶液中前驅物比例、改變雷射退火功率控制相比例、先經由爐退火再進行雷射改質兩階段退火等方法,嘗試製備出具成本優勢、光催化及親水性表現佳的薄膜。
    薄膜性質分析分別使用低掠角X光繞射儀 (GIXRD)、場發射式掃描式電子顯微鏡(FESEM)、傅立葉轉換紅外線分光光譜儀( FTIR)和光激發光譜儀(PL)對雷射退火及改質後TiO 2薄膜的顯微結構、表面形貌、鍵結含量和發光行為進行研究分析,並與商用Degussa P25二氧化鈦薄膜進行光催化與親水性能力比較。
    比較進行0.625 W雷射退火及先進行450°C爐退火後再進行3.0 W雷射改質之薄膜與商用Degussa P25之光催化及親水性表現,經7.5小時紫外光照射後,0.625 W雷射退火後薄膜光催化降解率為84.5 %,先進行450°C高溫爐退火後再進行3.0 W雷射改質之薄膜則為89.5 %,皆略低於商用Degussa P25薄膜。其中,先進行高溫爐退火後再進行3.0 W雷射改質之薄膜經1小時紫外光射照後接觸角下降至5.8°,親水性表現與商用P25 Degussa薄膜相當。

    TiO2 thin films were coated on the Si (100) with sol-gel process then obtained crystallization after laser annealing. Photoctalytic and hydrophlicity properties of films were improved by increasing precursor proportion, cotrolling phase A/R ratio and two step annealing (laser modified after 450°C annealing in air by furnace).
    The thin films properties like microstructure, surface morphology, element atom ratios, bonding form and luminescence behaviors were analyzed by grazing incidence X-ray diffraction (GIXRD), field emission scanning electron microscopy (FESEM), energy dispersive spectroscopy (EDS), fourier transform infrared spectroscopy (FTIR) and photoluminescence spectroscopy (PL), respectively. The commercial TiO2 (Degussa P25) film its photocatalytic degradation and hydrophilicity properties in comparison with laser-annealed films at power of 0.625 W and two step annealed-films.
    In applications, the laser-annealed film at power of 0.625 W and the laser-modified films at power of 3.0 W after 450°C annealing in air by furnance after 7.5 hours UV-light irradiation, the MB degradation is 84.5 % and 89.5 %, respectively. They are just a little below the MB degradation of Degussa P25. In addition, laser-modified films at power of 3.0 W after 450 °C annealing in air by furnace appeared super-hydrophilicity properties after 1 hour UV-light irradiation.

    摘要 I Abstract II 誌謝 III 表目錄 XVI 第一章 緒論 1 1-1 前言 1 1-2 研究目的與動機 2 第二章 文獻回顧與理論基礎 5 2-1 二氧化鈦材料簡介與研究發展 5 2-1-1 二氧化鈦的基本性質 5 2-1-2 二氧化鈦光催化機制研究發展 8 2-1-3 二氧化鈦光催化速率之影響因素 11 2-1-4 光催化活性改善之方法 13 2-1-5 二氧化鈦研究發展–光生超親水性 15 2-2 二氧化鈦薄膜製備製程文獻回顧 19 2-2-1 物理氣相沉積(Physical Vapor Deposition) 19 2-2-2 化學氣相沉積(Chemical Vapor Deposition) 20 2-2-3 液相沉積(Liquid Phase Deposition) 20 2-2-4 溶膠凝膠法(Sol-gel process) 21 2-3 雷射退火文獻回顧與二氧化碳雷射退火特性 24 2-3-1 雷射退火之應用 24 2-3-2 二氧化碳雷射特性 25 第三章 實驗方法與步驟 28 3-1 反應基本原理 28 3-1-1 二氧化鈦溶液 (TiO2 solution) 28 3-1-2 亞甲基藍降解實驗原理 29 3-2 實驗流程 31 3-2-1 基板準備與清潔 31 3-2-2 TiO2溶膠溶液與Degussa P25溶液配製 31 3-2-3 薄膜塗佈 32 3-2-4 雷射退火與高溫爐退火後雷射改質 32 3-2-5 薄膜性質分析 33 3-2-6 光催化實驗 33 3-2-7 接觸角量測 34 3-3 實驗材料 37 3-4 實驗儀器與參數 38 3-4-1 二氧化碳雷射光刻機(CO2 laser system) 38 3-4-2 旋轉塗佈機(Spin Coater) 40 3-4-3 低掠角X光繞射儀 (Glancing Incident Angle X-Ray Diffraction, GIXRD) 41 3-4-4 場發射式掃描式電子顯微鏡(Field Emission Scanning Electron Microscopy, FESEM) 43 3-4-5 能量散佈光譜儀(Energy Dispersive Spectroscopy, EDS) 45 3-4-6 傅立葉轉換紅外線分光光譜儀(Fourier Transform Infrared Spectroscopy, FTIR) 46 3-4-7 光激發光譜儀(Photoluminescence Spectroscopy, PL) 48 3-4-8 微型光譜分析系統(Micro Spectrometer System) 49 3-4-9 接觸角量測儀 (Contact Angle Meter) 51 3-4-10光催化紫外光光源 (UV-light source) 52 3-4-11程式控制高溫爐 (Furnace) 53 第四章 結果與討論 55 4-1 不同前驅物濃度經雷射退火後之影響 55 4-1-1 晶體結構分析 55 4-1-2 表面形貌 57 4-1-3 化學成分分析 59 4-1-4 鍵結分析 61 4-1-5 光激發螢光性質分析 64 4-1-6 光催化應用 67 4-1-7 光生親水性 68 4-2 二氧化鈦薄膜經不同功率雷射退火與相變態影響 71 4-2-1 晶體結構分析 71 4-2-2 表面形貌 74 4-2-3 鍵結分析 75 4-2-4 光激發螢光性質分析 76 4-2-5 光催化應用 77 4-2-6 光生親水性 78 4-3 高溫爐退火後二氧化鈦薄膜經雷射退火改質 81 4-3-1 晶體結構分析 81 4-3-2 表面形貌 83 4-3-3 鍵結分析 85 4-3-4 光激發螢光性質 86 4-3-5 光催化應用 87 4-3-6 光生親水性 89 4-4 商用Degussa P25二氧化鈦薄膜之比較 91 4-4-1 晶體結構分析 91 4-4-2 表面形貌分析 92 4-4-3 光激發螢光性質 93 4-4-4 光催化應用與親水性之比較 94 第五章 結論與未來展望 97 參考文獻 104

    1. Fujishima and K. Honda, “Electrochemical Photolysis of Water at a Semiconductor”, Nature 238, pp.37-38, 1972.
    2. R. Wang, K. Hashimoto and A. Fujoshima, “Light-induced amphiphilic surfaces”, Nature 388, pp. 431-432, 1997.
    3. 高濂等人, 奈米光觸媒, 2004.
    4. K. Terabe, K. Kato, H. Miyazaki, S. Yamaghchi, A. Imai and Y. Iguchi, “Microstructure and crystallization behaviour of Ti02 precursor prepared by the sol-gel method using metal alkoxide, Journal of materials science, 29, pp.1617-1622, 1994.
    5. H. Kishimoto and K. Takahama, “Photocatalytic activity of titanium oxide prepared by liquid phase deposition (LPD)”, Journal of Materials Chemistry 8, pp. 2019–2024, 1998.
    6. P. Zeman and S. Takabayashi, “Nano-scaled photocatalytic TiO2 thin films prepared by magnetron Sputtering”, Thin Solid Films 433, pp. 57–62, 2003.
    7. D. Byun and Y. Jin, “Photocatalytic TiO2 deposition by chemical vapor deposition”, Journal of Hazardous Materials B 73, pp. 199–206, 2000.
    8. L. Sun and P. Hou, “Spectroscopic ellipsometry study on e-beam deposited titanium dioxide films”, Thin Solid Films 455-456, pp. 525-529, 2004.
    9. U. Diebold, “The surface science of titanium dioxide”, Surface Science Reports 48, pp. 53-229, 2003.
    10. P. Kofstad, “Nanostoichiometry, diffusion, and electrical conductivity in binary metal oxides”, John Wiley & Sons New York, 1972.
    11. 呂宗昕, 圖解奈米科技與光觸媒, 2001.
    12. M. Grätzel, “Heterogenous photochemical electron transfer”, CRC Press, 1989.
    13. O. Legrini, E. Oliveros and A.M. Braun, “Photochemical processes for water treatment”, Chemical Reviews 93, pp. 671-698, 1993.
    14. I. Parkin and R. G. Palgrave, “Self-cleaning coatings”, J. Mater. Chem, 15, pp.1689-1695, 2005.
    15. A.Fujishima, X. Zhang and D. A. Tryk, “TiO2 photocatalysis and related surface phenomena”, Surface Science Reports, 63, pp.515-582, 2008.
    16. M. L. Sauer and D. F. Ollis, "acetone oxidation in a photocatalytic monolith reactor," Journal of Catalysis, vol. 149, pp. 81-91, 1994.
    17. A. Houas, H. Lachheb, M. Ksibi, E. Elaloui, C. Guillard, and J. M. Herrmann, "Photocatalytic degradation pathway of methylene blue in water," Applied Catalysis B-Environmental, vol. 31, pp. 145-157, 2001.
    18. A. K. Benabbou, Z. Derriche, C. Felix, P. Lejeune, and C. Guillard, "Photocatalytic inactivation of Escherischia coli," Applied Catalysis B: Environmental, vol. 76, pp. 257-263, 2007.
    19. N. P. Xu, Z. F. Shi, Y. Q. Fan, J. H. Dong, J. Shi, and M. Z. C. Hu, "Effects of particle size of TiO2 on photocatalytic degradation of methylene blue in aqueous suspensions," Industrial & Engineering Chemistry Research, vol. 38, pp. 373-379, 1999.
    20. D. C. Hurum, A. G. Agrios, K. A. Gray, T. Rajh, and M. C. Thurnauer, "Explaining the enhanced photocatalytic activity of Degussa P25 mixed-phase TiO2 using EPR," Journal of Physical Chemistry B, vol. 107, pp. 4545-4549, 2003.
    21. A. Bojinova, R. Kralchevska, I. Poulios, and C. Dushkin, "Anatase/rutile TiO2 composites: Influence of the mixing ratio on the photocatalytic degradation of Malachite Green and Orange II in slurry," Materials Chemistry and Physics, vol. 106, pp. 187-192 , 2007.
    22. N. R. Mathews, E. R. Morales, M. A. Cortes-Jacome, and J. A. T. Antonio, "TiO2 thin films - Influence of annealing temperature on structural, optical and photocatalytic properties," Solar Energy, vol. 83, pp. 1499-1508, 2009.
    23. F.U. Xianzhi, A.C. Louis, Y. Qing and A.A. Marc, “Enhanced photocatalytic performance of titanium-based binary metal oxide:TiO2/SiO2 and TiO2/ZrO2”, Environmental Science & Technology 30, pp. 647-653, 1996.
    24. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki and Y. Taga, “Visible-light photocatalysis in nitrogen-doped titanium oxides”, Science 293, pp. 269 , 2001.
    25. C. L. Luu, Q. T. Nguyen and S. T. Ho, “Synthesis and characterization of Fe-doped TiO2 photocatalyst by the sol–gel method”, Adv. Nat. Sci.: advances in natural sciences: nanoscience and nanotechnology, pp.1, 2010.
    26. T. Yuming, Z. Yuanyuan, G. Changwei, C. Yuesheng, “Effect of Doping Transition Metal Ions ON Photocatalysis of TiO2 nanowires”, Applied Mechanics and Materials , 217-219, pp.203-206, 2012.
    27. R. Wang, K. Hashimoto and A. Fujoshima, “Light-induced amphiphilic surfaces”, Nature 388, pp. 431-432, 1997.
    28. T. Watanabe, A. Nakajima, R. Wang, M. Minabe, S. Koizumi, A. Fujishima and K. Hashimoto, “Photocatalytic activity and photoinduced hydrophilicity of titanium dioxide coated glass”, Thin Solid Films 351, pp. 260-263, 1999.
    29. J. G. Yu, J. C. Yu, W. K. Ho, and Z. T. Jiang, "Effects of calcination temperature on the photocatalytic activity and photo-induced super-hydrophilicity of mesoporous TiO2 thin films," New Journal of Chemistry, vol. 26, pp. 607-613, 2002.
    30. K. H. Guan, "Relationship between photocatalytic activity, hydrophilicity and self-cleaning effect of TiO2/SiO2 films," Surface & Coatings Technology, vol. 191, pp. 155-160, 2005.
    31. J. G. Yu, M. H. Zhou, H. G. Yu, Q. J. Zhang, and Y. Yu, "Enhanced photoinduced super-hydrophilicity of the sol-gel-derived TiO2 thin films by Fe-doping," Materials Chemistry and Physics, vol. 95, pp. 193-196, 2006.
    32. G.S. Vicente, A. Morales and M.T. Gutierrez, “Preparation and characterization of sol-gel TiO2 antireflective coatings for silicon”, Thin Solid Films 391, pp. 133-137, 2001.
    33. Z.M. Qi, K. Itoh, M. Murabayash and C.R. Lavers, “Characterization and application of a channel-planar composite waveguide”, Optical Letters 25, pp. 1427-1429, 2000.
    34. K. Zakrzewska, “Gas sensing mechanism of TiO2-based thin films”, Vacuum 74, pp. 335-338, 2004.
    35. P. Lobl, M. Huppertz, and D. Mergel, "nucleation and growth in TiO2 films prepared by sputtering and evaporation," Thin Solid Films, vol. 251, pp. 72-79, 1994.
    36. H. Nagayama, H. Honda and H. Kawahara, “A new process for silica coating”, Journal of Electrochemical Society:Solid-State Science and Technology 135, pp. 2013-2016, 1988.
    37. J.J. Ebelmen, Ann. 57, pp.331, 1846.
    38. W. Geffcken and E. Berger, German Patent 736, pp. 411, 1939.
    39. K. Terabe, K. Kato, H. Miyazaki, S. Yamaguchi, A. Imai and Y. Iguchi, “Microstructure and crystallization behaviour of TiO2 Precursor by the sol-gel method using metal alkoxide”, Journal of Materials Science 29, pp. 1617-1622, 1984.
    40. B.E. Yoldas, “Hydrolysis of Titanium Alkoxide and Effects of Hydrolytic Polycondensation Parameters”, Journal of Materials Science 21, pp. 1087-1092, 1986.
    41. F. Cot, A. Larbot, G. Nabias and L. Cot, “Preparation and Characterization of Colloidal Solution Derived Crystallized Titania Powder’’, Journal of the European Ceramic Society 18, pp. 2175-2181, 1998.
    42. Y. Matsui, M. Okuyama, N. Fujita and Y. Hamakawa, “Laser annealing to produce ferroelectric-phase PbTiO3 thin films”, Journal of Applied Physics 52, pp. 5107-5111, 1981.
    43. N. Asakuma, T. Fukui, M. Aizawa, M. Toki, H. Imai, and H. Hirashima, "Ultraviolet-laser-induced crystallization of sol-gel derived inorganic oxide films," Journal of Sol-Gel Science and Technology, vol. 19, pp. 333-336, 2000.
    44. H. Kim, R. C. Y. Auyeung, M. Ollinger, G. P. Kushto, Z. H. Kafafi, and A. Pique, "Laser-sintered mesoporous TiO2 electrodes for dye-sensitized solar cells," Applied Physics a-Materials Science & Processing, vol. 83, pp. 73-76, 2006.
    45. M. Sawczak, M. Gorski, H. Rachubinski and A. Cenian, “Influence of laser modification of TiO2 films for its photocatalytic properties”, Polish of Sciences, 8703, pp.87030M1-87030M6, 2013.
    46. 丁勝懋, “雷射工程導論”, 中央圖書出版社 民國82年
    47. 林三寶, “雷射原理與應用”, 全華科技圖書 民國80年
    48. 高堅志, “實用雷射技術”, 文笙書局 民國81年
    49. 馬英俊, “雷射基本原理及應用”, 徐氏基金會 民國80年
    50. G. Chryssolouris, “Laser Machining Theory and Practice”, pp. 20-31, 1990.
    51. O. Harizanov1 and A. Harizanova, “Development and investigation of sol-gelsolutions for the formation of TiO2 coatings”, Solar Energy Materials & Solar Cellsm, 63, pp.185-195, 2000.
    52. J. D. Liao, H. J. Chen, C. W. Chang, S. M. Chiu, and Z. S. Chen, "Thin-film photo-catalytic TiO2 phase prepared by magnetron sputtering deposition, plasma ion implantation and metal vapor vacuum arc source," Thin Solid Films, vol. 515, pp. 176-185, 2006.
    53. J. Y. Zhang, I. W. Boyd, B. J. O'Sullivan, P. K. Hurley, P. V. Kelly, and J. P. Senateur, "Nanocrystalline TiO2 films studied by optical, XRD and FTIR spectroscopy," Journal of Non-Crystalline Solids, vol. 303, pp. 134-138, 2002.
    54. L. Sun, T. C. An, S. G. Wan, G. Y. Li, N. Z. Bao, X. H. Hu, et al., "Effect of synthesis conditions on photocatalytic activities of nanoparticulate TiO2 thin films," Separation and Purification Technology, vol. 68, pp. 83-89, 2009.
    55. E. Haro-Poniatowski, R. Rodrguez-Talavera, M. de la Cruz Heredia, O. Cano-Corona and R. Arroyo-Murillo, “Crystallization of nanosized titania particle prepared by the sol- gel process”, Journal of Materials Reasearch 9, pp. 2101-2108, 1994.
    56. X. L. Wang, Z. C. Feng, J. Y. Shi, G. Q. Jia, S. A. Shen, J. Zhou, et al., "Trap states and carrier dynamics of TiO2 studied by photoluminescence spectroscopy under weak excitation condition," Physical Chemistry Chemical Physics, vol. 12, pp.7083-7090, 2010.
    57. F. J. Knorr, D. Zhang, and J. L. McHale, "Influence of TiCl4 treatment on surface defect photoluminescence in pure and mixed-phase nanocrystalline TiO2," Langmuir, vol. 23, pp. 8686-90, 2007.
    58. B. Choudhury, M. Dey, and A. Choudhury, "Shallow and deep trap emission and luminescence quenching of TiO2 nanoparticles on Cu doping," Applied Nanoscience, 2013.
    59. S. Livraghi, M.C. Paganini, E. Giamello, A. Selloni, C. DiValentin and G. Pacchioni, “Origin of photoactivity of nitrogen-doped titanium dioxide under visible light”, Journal of American Chemical Society 128, pp. 15666–15671, 2006.
    60. M.A. Henderson, W.S. Epling, C.H.F. Peden and C.L. Perkins, “Insights into photoexcited electron scavenging processes on TiO2 obtained from studies of the reaction of O2 with OH groups adsorbed at electronic defects on TiO2(1 1 0)”, Journal of Physical Chemistry B 107, pp. 534–545, 2003.
    61. J. G. Yu, H. G. Yu, B. Cheng, X. J. Zhao, J. C. Yu, and W. K. Ho, "The effect of calcination temperature on the surface microstructure and photocatalytic activity of TiO2 thin films prepared by liquid phase deposition," Journal of Physical Chemistry B, vol. 107, pp. 13871-13879, 2003.

    下載圖示 校內:2023-01-01公開
    校外:2023-12-31公開
    QR CODE