簡易檢索 / 詳目顯示

研究生: 張玄
Huyen, Truong Thi
論文名稱: 以反應曲面法對烷基糖苷界面活性劑於茶樹葉提取精油的質傳促進作用之研究
Study on Mass-transfer Enhancement of Essential Oil Released from Tea Tree (Melaleuca alternifolia) Leaves with Alkyl Polyglucosides using Response Surface Methodology
指導教授: 陳炳宏
Chen, Bing-Hung
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 107
中文關鍵詞: 澳洲茶樹反應曲面法封裝程序Triton CG 110聚己內酯.
外文關鍵詞: Melaleuca alternifolia, Response Surface Methodology, Encapsulation process, Triton CG 110, Poly-ε-caprolactone.
相關次數: 點閱:52下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本次實驗從澳洲茶樹葉中水蒸餾萃取茶樹精油,利用烷基聚葡萄糖苷界面活性劑 – Trition CG110提升萃取效率,並以實驗設計反應曲面法最佳化萃取條件。依據包含三個獨立變數之中心複合設計,當Trtion CG110濃度為645.5 ppm、液固比為24.5及萃取時間為128分鐘的條件下,有最佳萃取產率6.68%,而經DPPH測試之抗氧化活性則為50.6%。
    以氣相層析儀與火焰離子化偵測器 (GC-FID)檢測此次實驗水蒸餾萃取茶樹精油及商用茶樹精油之組成,並加入正癸烷作為內標物。而評估這些成分的抗氧化活性後可得到:terpinolene > γ-terpinene > α-terpinene之順序。
    本實驗進一步將茶樹精油填入聚己內酯之奈米微粒中,在茶樹精油/聚己內酯重量比為1/3情況下,裝填效率可達到96.31%。最後所得到之奈米膠囊分別透過掃描式電子顯微鏡 (SEM)、傅立葉紅外線光譜分析儀 (FT-IR) 、熱重分析儀 (TGA),鑑定外觀、粒徑大小、成份與熱穩定性。此外,生物體外之藥物釋放及對於大腸桿菌 (Escherichia coli) 與金黃色葡萄球菌 (Staphylococcus aureus) 的抗菌性,在本實驗中也有所探討。結果顯示,實驗合成之奈米膠囊外觀近乎球體,粒徑在162 nm至340 nm之間,且具有良好熱穩定性。而透過生物體外釋放測試,此奈米膠囊具有可調控釋放茶樹精油之行為,藉由溫度的提高能提升釋放情況。

    In this study, the in-house hydrodistilled tea tree oil (TTO) was extracted from Melaleuca alternifolia leaves with modification of Triton CG110 - one tradename of Alkyl polyglucosides surfactant. Design-of-experiment (DoE) with Response Surface methodology (RSM), was applied to optimize the extraction process. Central Composite Design (CCD) with three independent variables showed that the optimal extraction yield and antioxidant activity by DPPH assay were 6.68% and 50.6% respectively under the conditions with 645.5 ppm of Triton CG110, at a liquid/solid ratio of 24.5, and for 128 mins as the extraction time. Composition of the in-house hydrodistilled TTO and commercial TTO were determined by GC-FID chromatogram using n-decane as the internal standard. The antioxidant activities of these components were also evaluated and shown in the decreasing order: terpinolene > γ-terpinene > α-terpinene. Subsequently, TTO has been successfully loaded in PCL nanoparticles with a high encapsulation efficiency (e.g. 96.31% from the recipe with an initial TTO/PCL mass ratio of 1/3). The resultant nanocapsules (NCs) were characterized in terms of morphology, size, components, and thermal stability using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA), respectively. In addition, both the release of the drug in vitro and antibacterial properties against Escherichia coli and Staphylococcus aureus were investigated. The results demonstrated that TTO NCs had an almost spherical shape with particle sizes between 162 and 340 nm and excellent thermal stability. Moreover, the in vitro release tests illustrated that the TTO NCs exhibited a controlled release behavior of TTO, which can be further improved with a higher temperature of release conditions.

    Abstract i 摘要 ii Acknowledgement iii Contents iii List of tables vi List of figures vii List of abbreviations vi Chapter 1 General Introduction 1 1-1 Preface 1 1-2 Research Motivations 2 Chapter 2 Review and Theoretical Background 4 2.1. Tea tree oil and extraction methods 4 2.1.1. Tea tree oil 4 2.1.2. Market 9 2.1.3. Antibacterial activity in vitro of TTO 14 2.1.4. Essential oils extraction methods 24 2.2. Design of Experiment (DoE) 29 2.3. Alkyl Polyglucosides Surfactant - Triton CG 110 34 2.4. Poly-ε-caprolactone 35 2.5. Encapsulation 36 Optimization of solvents elimination 39 Chapter 3 Experimental Section 40 3.1. Framework 40 3.2. Materials 41 3.3. Experimental Instrument 42 3.4. Experimental Procedures 43 3.4.1. Preliminary Experiments of TTO Extraction 43 3.4.2. Analysis of composition of TTO 44 3.4.3. Free Radical-Scavenging Activity of TTO Using DPPH - Scavenging Activity (% DPPH-SA) 44 3.4.4. Experimental Design and Statistical Analysis Using CCD Matrix Level 45 3.4.5. Preparation of TTO - loaded PCL NCs 47 3.4.6. The encapsulation efficiency of TTO NCs 48 3.4.7. In vitro TTO release study 49 3.4.8. Morphology and particle size distribution of TTO NCs 49 3.4.9. ATR-FTIR determination of TTO NCs 50 3.4.10. Thermogravimetric analysis (TGA) 50 3.4.11. The antibacterial activities of TTO and NCs 50 Chapter 4 Results and Discussion 54 4.1. Affection of different factors on the % extraction yield 54 4.1.1. Triton CG 110 treatment 55 4.1.2. Liquid/solid ratio 55 4.1.3. Time extraction 56 4.2. Experimental Design Models Fitting 56 Optimal extraction conditions and scale-up 60 4.3. Effect of water content in Melaleuca alternifolia leaves to extraction yield 62 4.4. Kinetic study 63 4.5. GC-MS 66 4.6. Free radical scavenging activity of TTO 68 Free radical scavenging activity of the components in TTO 70 4.7. Effect of harvesting time to yield and components in TTO 72 4.8. Calibration curve of tea tree oil 73 4.9. The encapsulation efficiency of TTO NCs 75 4.10. In vitro TTO release study 77 4.11. Morphology and particle size distribution of TTO NCs 78 Effect of ratio of oil to polymer to PS 80 Surfactant concentration 80 Volume of solvent 80 4.12. ATR-FTIR determination of TTO NCs 80 4.13. Thermogravimetric analysis (TGA) 84 4.14. The antibacterial activities of TTO NCs 85 The inhibition zones 85 Minimum inhibitory concentration (MIC) 87 CONCLUSION 90 Appendix 1: GC Calibration curve 92 Appendix 2: ATR - FTIR 98 Appendix 3: Taiwan Temperature and Rainfall 100 REFERENCES 101

    1. Li, Y.; Fabiano-Tixier, A.-S.; Chemat, F., Essential oils as reagents in green chemistry. Springer: 2014; Vol. 1.
    2. Chen, M.; Hu, Y.; Zhou, J.; Xie, Y.; Wu, H.; Yuan, T.; Yang, Z. J. R. A., Facile fabrication of tea tree oil-loaded antibacterial microcapsules by complex coacervation of sodium alginate/quaternary ammonium salt of chitosan. 2016, 6 (16), 13032-13039.
    3. Carson, C.; Hammer, K.; Riley, T., Melaleuca alternifolia (tea tree) oil: a review of antimicrobial and other medicinal properties. Clinical microbiology reviews 2006, 19 (1), 50-62.
    4. Kim, H.-J.; Chen, F.; Wu, C.; Wang, X.; Chung, H. Y.; Jin, Z., Evaluation of antioxidant activity of Australian tea tree (Melaleuca alternifolia) oil and its components. Journal of Agricultural and Food chemistry 2004, 52 (10), 2849-2854.
    5. Homer, L. E.; Leach, D. N.; Lea, D.; Lee, L. S.; Henry, R. J.; Baverstock, P. R., Natural variation in the essential oil content of Melaleuca alternifolia Cheel (Myrtaceae). Biochemical Systematics and Ecology 2000, 28 (4), 367-382.
    6. Del, M. B., Melaleuca oil poisoning in a 17-month-old. Veterinary and human toxicology 1995, 37 (6), 557-558.
    7. Williams, L.; Home, V., Plantation production of oil of melaleuca (tea tree oil)-a revitalized Australian essential oil industry. Search 1988, 19 (5-6), 294-297.
    8. Brophy, J. J.; Davies, N. W.; Southwell, I. A.; Stiff, I. A.; Williams, L. R., Gas chromatographic quality control for oil of Melaleuca terpinen-4-ol type (Australian tea tree). Journal of Agricultural and Food Chemistry 1989, 37 (5), 1330-1335.
    9. Carson, C.; Riley, T., Antimicrobial activity of the major components of the essential oil of Melaleuca alternifolia. Journal of applied bacteriology 1995, 78 (3), 264-269.
    10. Bejar, E., Tea Tree Oil.
    11. Jacobs, L. E.; Richardson, D. M.; Lepschi, B. J.; Wilson, J. R., Quantifying errors and omissions in alien species lists: The introduction status of Melaleuca species in South Africa as a case study. 2017.
    12. Davies, N. W.; Larkman, T.; Marriott, P. J.; Khan, I. A., Determination of enantiomeric distribution of terpenes for quality assessment of Australian tea tree oil. Journal of agricultural and food chemistry 2016, 64 (23), 4817-4819.
    13. Shemesh, A.; Mayo, W., Australian tea tree oil: a natural antiseptic and fungicidal agent. Aust. J. Pharm 1991, 72, 802-803.
    14. Altman, P. M., Australian tea tree oil. AJP: 1988.
    15. Banes-Marshall, L.; Cawley, P.; Phillips, C. A., In vitro activity of Melaleuca alternifolia (tea tree) oil against bacterial and Candida spp. isolates from clinical specimens. British Journal of Biomedical Science 2001, 58 (3), 139.
    16. Griffin, S. G.; Markham, J. L.; Leach, D. N., An agar dilution method for the determination of the minimum inhibitory concentration of essential oils. Journal of essential oil research 2000, 12 (2), 249-255.
    17. Carson, C.; Hammer, K.; Riley, T., Broth micro-dilution method for determining the susceptibility of Escherichia coli and Staphylococcus aureus to the essential oil of Melaleuca alternifolia (tea tree oil). Microbios 1995, 82 (332), 181-185.
    18. Carson, C.; Riley, T., Antimicrobial activity of the essential oil of Melaleuca alternifolia. Letters in Applied Microbiology 1993, 16 (2), 49-55.
    19. Starmans, D. A.; Nijhuis, H. H., Extraction of secondary metabolites from plant material: a review. Trends in Food Science & Technology 1996, 7 (6), 191-197.
    20. Wang, L.; Weller, C. L., Recent advances in extraction of nutraceuticals from plants. Trends in Food Science & Technology 2006, 17 (6), 300-312.
    21. Meyer-Warnod, B., Natural essential oils: extraction processes and application to some major oils. Perfumer & flavorist 1984, 9 (2), 93-104.
    22. Masango, P., Cleaner production of essential oils by steam distillation. Journal of Cleaner Production 2005, 13 (8), 833-839.
    23. Faborode, M.; Favier, J., Identification and significance of the oil-point in seed-oil expression. Journal of agricultural engineering research 1996, 65 (4), 335-345.
    24. Li, X.-M.; Tian, S.-L.; Pang, Z.-C.; Shi, J.-Y.; Feng, Z.-S.; Zhang, Y.-M., Extraction of Cuminum cyminum essential oil by combination technology of organic solvent with low boiling point and steam distillation. Food chemistry 2009, 115 (3), 1114-1119.
    25. Herrero, M.; Cifuentes, A.; Ibañez, E., Sub-and supercritical fluid extraction of functional ingredients from different natural sources: Plants, food-by-products, algae and microalgae: A review. Food chemistry 2006, 98 (1), 136-148.
    26. Pourmortazavi, S. M.; Hajimirsadeghi, S. S., Supercritical fluid extraction in plant essential and volatile oil analysis. Journal of chromatography A 2007, 1163 (1-2), 2-24.
    27. Jiang, L. C.; Basri, M.; Omar, D.; Rahman, M. B. A.; Salleh, A. B.; Rahman, R. N. Z. R. A., Self-assembly behaviour of alkylpolyglucosides (APG) in mixed surfactant-stabilized emulsions system. Journal of Molecular Liquids 2011, 158 (3), 175-181.
    28. Jiang, L. C.; Basri, M.; Omar, D.; Rahman, M. B. A.; Salleh, A. B.; Rahman, R. N. Z. R. A.; Selamat, A., Green nano-emulsion intervention for water-soluble glyphosate isopropylamine (IPA) formulations in controlling Eleusine indica (E. indica). Pesticide biochemistry and physiology 2012, 102 (1), 19-29.
    29. von Rybinski, W., Alkyl glycosides and polyglycosides. Current Opinion in Colloid & Interface Science 1996, 1 (5), 587-597.
    30. Iglauer, S.; Wu, Y.; Shuler, P.; Tang, Y.; Goddard III, W. A. J. T. S. D., Analysis of the influence of alkyl polyglycoside surfactant and cosolvent structure on interfacial tension in aqueous formulations versus n-octane. 2010, 47 (2), 87-97.
    31. Ghosh, S. K. J. F. c., Functional coatings and microencapsulation: a general perspective. 2006, 1-28.
    32. Bikiaris, D. N.; Papageorgiou, G. Z.; Achilias, D. S.; Pavlidou, E.; Stergiou, A., Miscibility and enzymatic degradation studies of poly (ε-caprolactone)/poly (propylene succinate) blends. European polymer journal 2007, 43 (6), 2491-2503.
    33. Zambrano-Zaragoza, M.; Mercado-Silva, E.; Gutiérrez-Cortez, E.; Castaño-Tostado, E.; Quintanar-Guerrero, D., Optimization of nanocapsules preparation by the emulsion–diffusion method for food applications. LWT-Food Science and Technology 2011, 44 (6), 1362-1368.
    34. Marchal-Heussler, L.; Fessi, H.; Devissaguet, J. P.; Hoffman, M.; Maincent, P., Colloidal drug delivery systems for the eye. A comparison of the efficacy of three different polymers: polyisobutylcyanoacrylate, polylactic-co-glycolic acid, poly-epsilon-caprolacton. STP Pharma sciences 1992, 2 (1), 98-104.
    35. Hutmacher, D. W.; Schantz, T.; Zein, I.; Ng, K. W.; Teoh, S. H.; Tan, K. C., Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling. Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials 2001, 55 (2), 203-216.
    36. Nair, L. S.; Laurencin, C. T., Biodegradable polymers as biomaterials. Progress in polymer science 2007, 32 (8-9), 762-798.
    37. Marcu, I.; Daniels, E. S.; Dimonie, V. L.; Hagiopol, C.; Roberts, J. E.; El-Aasser, M. S., Incorporation of alkoxysilanes into model latex systems: vinyl copolymerization of vinyltriethoxysilane and n-butyl acrylate. Macromolecules 2003, 36 (2), 328-332.
    38. Qian, Z.; Li, S.; He, Y.; Zhang, H.; Liu, X., Hydrolytic degradation study of biodegradable polyesteramide copolymers based on ε-caprolactone and 11-aminoundecanoic acid. Biomaterials 2004, 25 (11), 1975-1981.
    39. Engineer, C.; Parikh, J.; Raval, A., Review on Hydrolytic Degradation Behavior of Biodegradable Polymers from Controlled Drug Delivery System. Trends in Biomaterials & Artificial Organs 2011, 25 (2).
    40. Göpferich, A., Mechanisms of polymer degradation and erosion. Biomaterials 1996, 17 (2), 103-114.
    41. Grossen, P.; Witzigmann, D.; Sieber, S.; Huwyler, J., PEG-PCL-based nanomedicines: A biodegradable drug delivery system and its application. Journal of Controlled Release 2017, 260, 46-60.
    42. González-Reza, R.; Quintanar-Guerrero, D.; Del Real-Lopez, A.; Pinon-Segundo, E.; Zambrano-Zaragoza, M., Effect of sucrose concentration and pH onto the physical stability of β-carotene nanocapsules. LWT 2018, 90, 354-361.
    43. Sosa, M.; Rodríguez-Rojo, S.; Mattea, F.; Cismondi, M.; Cocero, M. J., Green tea encapsulation by means of high pressure antisolvent coprecipitation. The Journal of Supercritical Fluids 2011, 56 (3), 304-311.
    44. Zanetti, M.; Carniel, T. K.; Valério, A.; Oliveira, J. V. d.; Oliveira, D. d.; Araújo, P. H. d.; Riella, H. G.; Fiori, M. A., Synthesis of geranyl cinnamate by lipase‐catalyzed reaction and its evaluation as an antimicrobial agent. Journal of Chemical Technology & Biotechnology 2017, 92 (1), 115-121.
    45. Zuidam, N. J.; Nedović, V., Encapsulation technologies for active food ingredients and food processing. 2010.
    46. Lumsdon, S.; Friedmann, T.; Green, J. J. W., Encapsulation of oils by coacervation. 2005, 105290, A1.
    47. Bakry, A. M.; Abbas, S.; Ali, B.; Majeed, H.; Abouelwafa, M. Y.; Mousa, A.; Liang, L., Microencapsulation of oils: A comprehensive review of benefits, techniques, and applications. Comprehensive Reviews in Food Science and Food Safety 2016, 15 (1), 143-182.
    48. Sánchez-Navarro, M. M.; Cuesta-Garrote, N.; Arán-Aís, F.; Orgilés-Barceló, C., Microencapsulation of Melaleuca alternifolia (tea tree) oil as biocide for footwear applications. Journal of Dispersion Science and Technology 2011, 32 (12), 1722-1727.
    49. Ephrem, E.; Greige-Gerges, H.; Fessi, H.; Charcosset, C., Optimisation of rosemary oil encapsulation in polycaprolactone and scale-up of the process. Journal of microencapsulation 2014, 31 (8), 746-753.
    50. Huynh, Q.; Phan, T. D.; Thieu, V. Q. Q., Research on distillation technology to extract essential oil from Melaleuca alterfornia (TTO). Int. Proc. Chem., Biol. Environ. Eng 2012, 43.
    51. Kawakami, M.; Sachs, R. M.; Shibamoto, T., Volatile constituents of essential oils obtained from newly developed tea tree (Melaleuca alternifolia) clones. Journal of agricultural and food chemistry 1990, 38 (8), 1657-1661.
    52. Larson, D.; Jacob, S. E., Tea tree oil. Dermatitis 2012, 23 (1), 48-49.
    53. Standardization, I. O. f., ISO 4730: 2004, Oil of Melaleuca, Terpinen‐4‐ol Type (Tea Tree Oil). International Organisation for Standardisation Geneva: 2004.
    54. Rashed, M. M.; Ghaleb, A. D.; Li, J.; Nagi, A.; Hua-wei, Y.; Wen-you, Z.; Tong, Q., Enhancement of Mass Transfer Intensification for Essential Oil Release from Lavandula pubescence Using Integrated Ultrasonic-Microwave Technique and Enzymatic Pretreatment. ACS Sustainable Chemistry & Engineering 2018, 6 (2), 1639-1649.
    55. Kim, S.; Ng, W. K.; Shen, S.; Dong, Y.; Tan, R. B., Phase behavior, microstructure transition, and antiradical activity of sucrose laurate/propylene glycol/the essential oil of Melaleuca alternifolia/water microemulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2009, 348 (1-3), 289-297.
    56. Choi, H.-S.; Song, H. S.; Ukeda, H.; Sawamura, M., Radical-scavenging activities of citrus essential oils and their components: detection using 1, 1-diphenyl-2-picrylhydrazyl. Journal of agricultural and food chemistry 2000, 48 (9), 4156-4161.
    57. Wang, M.; Li, J.; Rangarajan, M.; Shao, Y.; LaVoie, E. J.; Huang, T.-C.; Ho, C.-T., Antioxidative phenolic compounds from sage (Salvia officinalis). Journal of Agricultural and Food Chemistry 1998, 46 (12), 4869-4873.
    58. Gallart-Mateu, D.; Largo-Arango, C.; Larkman, T.; Garrigues, S.; de la Guardia, M., Fast authentication of tea tree oil through spectroscopy. Talanta 2018, 189, 404-410.
    59. Maidment, C.; Dyson, A.; Beard, J., A study into measuring the antibacterial activity of lysozyme-containing foods. Nutrition & Food Science 2009, 39 (1), 29-35.
    60. Bachir, R. G.; Benali, M., Antibacterial activity of the essential oils from the leaves of Eucalyptus globulus against Escherichia coli and Staphylococcus aureus. Asian Pacific journal of tropical biomedicine 2012, 2 (9), 739-742.
    61. Chouhan, S.; Sharma, K.; Guleria, S., Antimicrobial activity of some essential oils—present status and future perspectives. Medicines 2017, 4 (3), 58.
    62. Hammer, K.; Carson, C.; Riley, T., Antifungal activity of the components of Melaleuca alternifolia (tea tree) oil. Journal of applied microbiology 2003, 95 (4), 853-860.
    63. Tepe, B.; Donmez, E.; Unlu, M.; Candan, F.; Daferera, D.; Vardar-Unlu, G.; Polissiou, M.; Sokmen, A., Antimicrobial and antioxidative activities of the essential oils and methanol extracts of Salvia cryptantha (Montbret et Aucher ex Benth.) and Salvia multicaulis (Vahl). Food chemistry 2004, 84 (4), 519-525.
    64. Li, X.-L.; Tu, X.-F.; Thakur, K.; Zhang, Y.-S.; Zhu, D.-Y.; Zhang, J.-G.; Wei, Z.-J., Effects of different chemical modifications on the antioxidant activities of polysaccharides sequentially extracted from peony seed dreg. International journal of biological macromolecules 2018, 112, 675-685.
    65. Baker, G. R.; Lowe, R. F.; Southwell, I. A., Comparison of oil recovered from tea tree leaf by ethanol extraction and steam distillation. Journal of agricultural and food chemistry 2000, 48 (9), 4041-4043.
    66. Huynh, Q.; Phan, T.; Thieu, V.; Tran, S.; Do, S. In Extraction and refining of essential oil from Australian tea tree, Melaleuca alterfornia, and the antimicrobial activity in cosmetic products, Journal of Physics: Conference Series, IOP Publishing: 2012; p 012053.
    67. Ernst, E.; Huntley, A., Tea tree oil: a systematic review of randomized clinical trials. Complementary Medicine Research 2000, 7 (1), 17-20.
    68. Hart, P.; Brand, C.; Carson, C.; Riley, T.; Prager, R.; Finlay-Jones, J., Terpinen-4-ol, the main component of the essential oil of Melaleuca alternifolia (tea tree oil), suppresses inflammatory mediator production by activated human monocytes. Inflammation Research 2000, 49 (11), 619-626.
    69. Guenther, E., Australian tea tree oils. Report of a field survey. Perfum. Essent. Oil Rec 1968, 59, 642-644.
    70. Swords, G.; Hunter, G., Composition of Australian tea tree oil (Melaleuca alternifolia). Journal of Agricultural and Food Chemistry 1978, 26 (3), 734-737.
    71. Cox, S.; Mann, C.; Markham, J., Interactions between components of the essential oil of Melaleuca alternifolia. Journal of Applied Microbiology 2001, 91 (3), 492-497.
    72. Hogg, J.; Lohmann, D.; Russell, K., The kinetics of reaction of 2, 2-diphenyl-1-picrylhydrazyl with phenols. Canadian Journal of Chemistry 1961, 39 (8), 1588-1594.
    73. Foti, M. C.; Daquino, C.; Mackie, I. D.; DiLabio, G. A.; Ingold, K., Reaction of phenols with the 2, 2-diphenyl-1-picrylhydrazyl radical. Kinetics and DFT calculations applied to determine ArO-H bond dissociation enthalpies and reaction mechanism. The Journal of organic chemistry 2008, 73 (23), 9270-9282.
    74. Barclay, L. R. C.; Edwards, C.; Vinqvist, M. R., Media effects on antioxidant activities of phenols and catechols. Journal of the American Chemical society 1999, 121 (26), 6226-6231.
    75. Foti, M.; Ruberto, G., Kinetic solvent effects on phenolic antioxidants determined by spectrophotometric measurements. Journal of agricultural and food chemistry 2001, 49 (1), 342-348.
    76. MacFaul, P. A.; Ingold, K.; Lusztyk, J., Kinetic Solvent Effects on Hydrogen Atom Abstraction from Phenol, Aniline, and Diphenylamine. The Importance of Hydrogen Bonding on Their Radical-Trapping (Antioxidant) Activities1. The Journal of Organic Chemistry 1996, 61 (4), 1316-1321.
    77. Litwinienko, G.; Ingold, K., Abnormal solvent effects on hydrogen atom abstractions. 1. The reactions of phenols with 2, 2-diphenyl-1-picrylhydrazyl (dpph•) in alcohols. The Journal of organic chemistry 2003, 68 (9), 3433-3438.
    78. Litwinienko, G.; Ingold, K., Abnormal solvent effects on hydrogen atom abstraction. 3. Novel kinetics in sequential proton loss electron transfer chemistry. The Journal of organic chemistry 2005, 70 (22), 8982-8990.
    79. Litwinienko, G.; Ingold, K., Solvent effects on the rates and mechanisms of reaction of phenols with free radicals. Accounts of Chemical Research 2007, 40 (3), 222-230.
    80. Hammer, K. A.; Carson, C. F.; Riley, T. V., Effects of Melaleuca alternifolia (tea tree) essential oil and the major monoterpene component terpinen-4-ol on the development of single-and multistep antibiotic resistance and antimicrobial susceptibility. Antimicrobial agents and chemotherapy 2012, 56 (2), 909-915.
    81. Tankeu, S.; Vermaak, I.; Kamatou, G.; Viljoen, A., Vibrational spectroscopy as a rapid quality control method for Melaleuca alternifolia Cheel (tea tree oil). Phytochemical Analysis 2014, 25 (1), 81-88.
    82. Sinelli, N.; Cerretani, L.; Di Egidio, V.; Bendini, A.; Casiraghi, E., Application of near (NIR) infrared and mid (MIR) infrared spectroscopy as a rapid tool to classify extra virgin olive oil on the basis of fruity attribute intensity. Food research international 2010, 43 (1), 369-375.
    83. Naumann, D.; Meyers, R., Encyclopedia of analytical chemistry. John Wiley & Sons, Chichester, UK 2000, 102-131.
    84. Ávila, D.; Holz, J.; Carone, C.; Morisso, F.; Ligabue, R., Microcapsules PCL with essential oil citronella. Adv Tissue Eng Regen Med Open Access 2017, 2 (2), 159-162.
    85. El‐Sukkary, M.; Syed, N. A.; Aiad, I.; El‐Azab, W., Synthesis and characterization of some alkyl polyglycosides surfactants. Journal of Surfactants and Detergents 2008, 11 (2), 129-137.

    下載圖示 校內:2025-01-15公開
    校外:2025-01-15公開
    QR CODE