簡易檢索 / 詳目顯示

研究生: 鐘逸凡
Chung, Yi-Fan
論文名稱: 偏振掃描式橢偏儀量測等效橢偏參數並應用於光學薄膜及液晶之參數量測
Polarization Scanning Ellipsometry for Determining the Properties of Optical Thin Film and Liquid Crystal by Measuring the Effective Ellipsometric Parameters
指導教授: 羅裕龍
Lo, Yu-Lung
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 110
中文關鍵詞: 史托克參數橢偏儀橢偏參數光學薄膜向列型液晶
外文關鍵詞: Mueller Matrix, Stokes Parameters, Isotropic Thin Film, Anisotropic Thin Film, Ellipsometry, Liquid Crystal Cell
相關次數: 點閱:135下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究發展以史托克參數解出橢偏參數,並以此基礎發展新式的偏振掃描式橢偏儀。我們提出新的參數名為「等效橢偏參數」,不同於傳統式的橢偏參數僅能表示P-S波的關係,它可以表示任意方向的兩個正交波,在經過材料後其相互的振幅及相位關係。模擬結果顯示等效橢偏參數的敏感度在某些特定方向會優於傳統橢偏參數。此橢偏儀由掃描線性偏振光及一道右旋圓偏振光,即可解出所有方向的等效橢偏參數,並以此參數作為基因演算法的目標函數,最後由基因演算法可以解出等向及非等向性光學薄膜的厚度與折射率。此橢偏儀也可應用於TN,VA及ITN的向列型液晶量測,可以解出液晶的厚度,配向與預傾角,另外還可解出TN型液晶的扭轉角。此橢偏儀僅需旋轉偏振片來掃描線性偏振光,量測過程中不需移動量測材料,可以大幅降低機械擾動,並且可應用於生產線上。

    A linear-polarized scanning method is proposed for extracting the effective ellipsometric parameters expressed by Stokes parameters explicitly in order to obtain the physical properties of the isotropic thin film, anisotropic thin film, and liquid crystal cell (TN, VA, ITN types). The proposed effective ellipsometric parameters are used to describe the amplitude ratio and phase difference regarding to any two orthogonal waves in arbitrary coordinate instead of the ordinary coordinate for p- and s- waves. Thus, this effective ellipsometric parameter displays the reflectance ratio of two polarizations in arbitrary coordinate. The simulation has shown that some of the effective ellipsometric parameters in some coordinate are more sensitive than the traditional one. The main idea of the proposed scanning ellipsometry is to measure the effective ellipsometric parameters corresponding to all coordinates by scanning the polarization of input light from 0o to 180o plus a right-hand circular light. Following, the Genetic Algorithm (GA) in curve fitting is used to extract the physical properties of the isotropic thin film, anisotropic thin film, and liquid crystal cell from the experimental results. Finally, the experimental values of the effective ellipsometric parameters and the simulated values are compared.
    It is shown that for an isotropic thin film, the refractive index and thickness of the isotropic SiO2 film are determined. Also, for an anisotropic thin film, the extraordinary refractive index, ordinary refractive index and thickness of the anisotropic SiO2 film are determined. Meanwhile, for the liquid crystals, the cell gap, pretilt angle, twist angle and rubbing direction of TNLC and the cell gap, pretilt angle and rubbing direction of both VALC and ITNLC can be extracted.
    The polarization scanning ellipsometry just simply rotates a polarizer to scan the linear polarization states of incident light without scanning the incident angle and the yaw angle of sample stage. That reduces the mechanical vibration and can be easily applied to the production line.

    Abstract I 中文摘要 III 誌謝 IV Table of Contents V List of Figures VIII List of Tables XIII Chapter 1 Introduction 1 1.1 Preface 1 1.2 Review of the General Ellipsometry 2 1.3 Review of the Mueller Matrix Method in Ellipsometer 5 1.4 Review of the Liquid Crystal Measurements 8 1.5 Overview of Chapters 9 Chapter 2 The General Ellipsometry 10 2.1 General Ellipsometric Parameters 10 2.2 Stokes Method to Extract the Ellipsometric Parameters 15 2.3 Robustness analysis of the Stokes Method 19 2.3.1 Robustness of Proposed Method toward Errors in Stokes Parameters 19 2.3.2Robustness of Proposed Method toward Errors in non-ideal input polarized lights 20 2.4 Genetic Algorithm Model 22 Chapter 3 The Polarization Scanning Ellipsometry 25 3.1 Basic Theory of Effective Ellipsometric Parameters 25 3.2 The Polarization Scanning Ellipsometry 29 3.2.1 The Simulation on Sensitivity of the Ellipsometry 30 3.2.2 The Simulation on Error of the Ellipsometry 36 3.3 An Interpretation of Effective Ellipsometric Parameters by Optical Birefringent and Diattenuation 38 Chapter 4 Analysis and Experiment for Isotropic Thin Film 45 4.1 The Model of Isotropic Thin Film by Fresnel Equations 45 4.2 Sensitivity Analysis in System with Various Physical Property for an Isotropic Thin Film 47 4.3 Deviation of GA Extraction for an Isotropic Thin Film 51 4.4 Experimental Setup and Results for an Isotropic Thin Film 52 4.4.1 Experimental Setup and Calibration 52 4.4.2 Experimental Result for an Isotropic Thin Film 54 Chapter 5 Analysis and Experiment for Anisotropic Thin Film 57 5.1 The model of Anisotropic Thin Film by Berreman 4x4 Method 57 5.1.1 General Transfer Matrix 59 5.1.2 Partial Transfer Matrix 61 5.1.3 Incident Matrix 64 5.1.4 Exit Matrix 65 5.1.5 Reflection index for an Anisotropic Thin Film 65 5.2 Sensitivity Analysis in System with Various Physical Property for an Anisotropic Thin Film 67 5.3 Deviation of GA Extraction GA Extraction for an Anisotropic Thin Film 71 5.4 Experimental Setup and Results for an Anisotropic Thin Film 72 5.4.1 Experimental Setup and Calibration 72 5.4.2 Experimental Result for an Anisotropic Thin Film 74 Chapter 6 Analysis and Experiment for Liquid Crystal Cell 77 6.1 The Model of General Liquid Crystal Cell 77 6.2 Sensitivity Analysis 81 6.2.1 Sensitivity Analysis in Various Physical Property of TNLC 81 6.2.2 Sensitivity Analysis in Various Physical Property of VALC 82 6.2.3 Sensitivity Analysis in Various Physical Property of ITNLC 83 6.3 Deviation of GA Extraction for Liquid Crystal Cell 90 6.3.1 Deviation of GA Extraction for an TNLC 90 6.3.2 Deviation of GA Extraction for an VALC 91 6.3.3 Deviation of GA Extraction for an ITNLC 92 6.4 Experimental Setup and Results for Liquid Crystal Cell 93 6.4.1 Experimental Setup and Calibration 93 6.4.2 Experimental Results for TNLC 94 6.4.3 Experimental Results for VALC 96 Chapter 7 Conclusions and Future Works 98 7.1 Conclusions 98 7.1.1 Conclusions of Measurement in an Isotropic Thin Film 99 7.1.2 Conclusions of Measurement in an Anisotropic Thin Film 100 7.1.3 Conclusions of Measurement in a LC Cell 101 7.2 Future Works 103 Bibliography 104 Autobiography 111

    Adamson, P., “Optical diagnostics of anisotropic nanoscale films on transparent isotropic materials by integrating reflectivivty and ellipsometry,” Appl. Opt., Vol. 48, pp.5906-5916, (2009).

    Azzam, R.M.A. and Bashara, N.M., Ellipsometry and Polarized Light, North Holland, Amsterdam (1977).

    Aspenes, D. E. and Studna, A. A., “High precision scanning ellipsometer,” Appl. Opt., Vol. 14, pp. 220-228, (1975).

    Azzam, R.M.A., “Photopolarimetric measurement of the Mueller matrix by Fourier analysis of a single detected signal,” Opt. Lett. Vol. 2, pp. 148-150, (1978).

    Azzam, R.M.A., “A simple Fourier photopolarimeter with rotating polarizer and analyzer for measuring Jones and Mueller matrices,” Optics Communications , Vol. 25, pp. 137-140, (1978).

    Azzam, R.M.A., Giardina, K.A., and Lopez, A.G., “Conventional and generalized ellipsometry using the four-detector photopolarimeter,” Opt. Eng. Vol. 30, pp. 1583-1589, (1991).

    Beardsley, G. F., “Mueller scattering matrix of sea water,” J. Opt. Soc. Am. Vol. 58, pp. 52-57, (1968).

    Berreman, D. W., “Optics in Stratified and Anisotropic Media 4 × 4-Matrix Formulation,” J. Opt. Soc. Am., Vol. 62, pp. 502, (1972).

    Chen, P. C., Lo, Y. L., Yu, T. C., Lin, J. F. and Yang, T. T., “Mueller-matrix-based Polarimeter for the Determination of the Properties of Optically Anisotropic Materials,” Optics Express, Vol. 17, pp.15860-15884, (2009).

    Chipman, R.A., “Polarization analysis of optical systems,” Optical Engineering, Vol. 28, pp. 90-99, (1989).

    Compain, E., Drevillon, B., Huc, J., Parey, J. Y. and Bouree, J. E., “Complete Mueller matrix measurement with a single high frequency modulation,” Thin Solid Films, Vol. 47, pp. 313–314, (1998).

    Collins, R. W. and Koh, J., “Dual rotating-compensator multichannel ellipsometer: instrument design for real-time Mueller matrix spectroscopy of surfaces and films,” J. Opt. Soc. Am. A, Vol. 16, pp. 1997–2006, (1999).

    Drevillon, B., Perrin, J., Marbot, R., Violet, A. and Dalby, J. L. “Fast polarization modulated ellipsometer using a microprocessor system for digital Fourier analysis,” Review of Scientific Instruments, vol. 53, pp. 969-977, (1982).

    Drude, P., Ann. Phys., vol. 32, pp.584, (1987).

    Hecht, E., Handbook of Optics, Addison Wesley, (2002).

    Hauge, P. S. and Dill, F. H., “A rotating-compensator Fourier ellipsometer,” Opt. Commun., Vol.14, pp. 431-43, (1975).

    Hauge, P. S., Muller, R.H. and Smith, C.G., “Conventions and formulas for using the Mueller-Stokes calculus in ellipsometry,” Surf. Sci., Vol. 96, pp. 81–107, (1980).

    Fujiwara, H., Spectroscopic Ellipsometry – principles and applications, John Wiley & Sons Ltd, The Atrium, (2007).

    Hong, Q., Wu, T.X., Zhu, X., Lu, R., and Wu, S. T., “Extraordinarily high-contrast and wide-view liquid-crystal displays,” Appl. Phys. Lett., Vol. 86, pp. 121107, Mar, (2005).

    Hong, S. H., Jeong, Y. H., Kim, H. Y., Cho, H. M., Lee, W. G. and Lee, S. H., "Electro-optic characteristics of 4-domain vertical alignment nematic liquid crystal display with interdigital electrode," J. Appl. Phys., Vol. 87, pp. 8259 - 8263, (2000).

    Jasperson, S. N. and Schnatterly, S. E., “An improved method for high reflectivity ellipsometry based on a new polarization modulation technique,” Rev. Sci. Instrum., Vol. 40, pp. 761-767, (1969).

    Jellison, G. E. Jr. and Modine, F. A., “Two-modulator generalized ellipsometry: theory,” Appl. Opt., Vol. 36, pp. 8190–8198, (1997).

    Jellison, G. E. Jr., “Spectroscopic ellipsometry data analysis: measured versus calculated quantities,” Thin Solid Films, Vol. 313–314, pp.33–39, (1998).

    Khoo, I.C. and Simoni, F., Physics of Liquid Crystalline Materials, Gorden and Breach Science Publishers, (1991).

    Laskarakis, A., Logothetidis, S., Pavlopoulou, E. and Gioti, M., "Mueller matrix spectroscopic ellipsometry: formulation and application,” Thin Solid Films, Vol. 455-456, pp. 43-49, (2003).

    Lee, J., Rovira, P. I., An, I., and Collins, R. W., “Rotating-compensator multichannel ellipsometry: applications for real time Stokes vector spectroscopy of thin film growth,” Rev. Sci. Instrum., Vol. 69, pp. 1800–1810, (1998).

    Lo, Y. L, Pham, T. and Chen, P. C, “Characterization on five effective parameters of anisotropic optical material using Stokes parameters- demonstration by a fiber-type polarimeter,” Optics Express, Vol. 9, pp. 9133–9150, (2010).

    Naciri, A. En, Johann, L., Kleim, R., Sieskind, M. and Amann, M., ”Spectroscopic ellipsometry of anisotropic materials: application to the optical constants of HgI2,” Appl. Opt., Vol. 38, pp. 647, (1999).

    Paik, W. and Bockris, J. O’M, “Exact ellipsometric measurement of thickness and optical properties of a thin light-absorbing film without auxiliary measurements,” Surf. Sci., Vol. 28, pp.61-68, (1971).

    Rothen, A.,“The Ellipsometer, an Apparatus to Measure Thicknesses of Thin Surface Films,” Rev. Sci. Instrum., Vol. 16, pp. 26-30, (1945).

    Schubert, M., Rheinlander, B., Cramer, C., Schmiedel, H., Johs, B., Herzinger, C. M., and Woollam, J. A., “Generalized transmission ellipsometry for twisted
    biaxial dielectric media: application to chiral liquid crystals,” J. Opt. Soc. Am. A, Vol.13, pp.1930, (1996).

    Schubert, M., Rheinländer, B., Woollam, J. A., Johs, B., and Herzinger, C., “Extension of rotating-analyzer ellipsometry to generalized ellipsometry: determination of the dielectric function tensor from uniaxial TiO2,” J. Opt. Soc. Am. A, Vol. 13, pp. 875–883, (1996).

    Schubert, M., Tiwald, T. E., and Woollam, J. A., “Explicit solutions for the optical properties of arbitrary magneto-optic materials in generalized ellipsometry,” Appl. Opt., Vol. 38, pp. 177–187, (1999).

    Schubert, M., “Polarization-dependent optical parameters of arbitrarily anisotropic homogenous layered systems,” Phys. Rev. B, Vol. 53, pp. 4265, (1996).

    Tronstad, L., “The investigation of thin surface films on metals by means of reflected polarized light,” Trans. Faraday Soc., Vol. 29, pp. 502-514, (1933).

    Uribe-Patarroyo, N. and Alvarez-Herrero, A. J., “Determination of the molecular tilt profile of a liquid crystal under applied electric field by generalized transmission ellipsometry,“ Opt. Soc. Am. B, Vol. 26, pp.1188, (2009).

    Wohler, H., Fritsch, M., Haas, G. and Mlynski, D. A., “Faster 4 × 4 matrix method for uniaxial inhomogeneous media,” J. Opt. Soc. Am. A, Vol. 5, pp. 1554, (1988).

    Yeh, Pochi, Optical of liquid crystal displays, John Wiley & Sons Ltd, (1948).

    Zhou, Y., He, Z., and Sato, S., “A novel method for determining the cell thickness and twist angle of a twisted nematic cell by Stokes parameter measurement,” Jpn. J. Appl. Phys. Vol.36, pp. 2760-2764, (1997).

    Zhou, Y., He, Z., and Sato, S., “An improved Stokes parameter method for determination of cell thickness and twist angle distributions in twisted nematic liquid crystal devices,” Jpn. J. Appl. Phys. Vol. 37, pp. 2567-2571, (1998).

    Zhou, Y., He, Z., and Sato, S., “A Two-Dimensional Stokes Parameter Method for Determination of Cell Thickness and Twist Angle Distributions in Twisted Nematic Liquid Crystal Devices,” Jpn. J. Appl. Phys., Vol. 37, pp. 1982-1988 (1998).

    無法下載圖示 校內:2017-07-30公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE