簡易檢索 / 詳目顯示

研究生: 王怡茜
Wang, Yi-Cian
論文名稱: 缺氧誘導因子-1α驅動A群鏈球菌感染後之BNIP3/NIX介導的粒線體自噬
HIF-1α drives BNIP3/NIX-mediated mitophagy upon group A streptococcal infection
指導教授: 蔡佩珍
Tsai, Pei-Jane
學位類別: 碩士
Master
系所名稱: 醫學院 - 醫學檢驗生物技術學系
Department of Medical Laboratory Science and Biotechnology
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 53
中文關鍵詞: A群鏈球菌壞死性筋膜炎肌肉缺氧誘導因子-1α粒線體自噬細菌存活BNIP3NIX
外文關鍵詞: Group A Streptococcus, Necrotizing fasciitis, Muscle, Hypoxia-inducible factor-1α, BNIP3, NIX, Mitophagy, Bacterial survival
相關次數: 點閱:69下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • A群鏈球菌是一種革蘭氏陽性的病原菌,可以引起多種感染症狀,從輕微的不適到更嚴重的疾病,其中,侵襲性A群鏈球菌感染造成的嚴重疾病之一便是壞死性筋膜炎(亦稱噬肉菌感染),會導致快速的肌肉損傷。肌肉細胞被認為是高能量的消耗者,因此需要大量的粒線體來提供足夠的能量以維持其正常的功能,此外,最近的研究指出,粒線體參與宿主的抗菌防禦機制,反過來說,粒線體有可能也會成為病原菌入侵的攻擊目標。在我們的初步結果中發現,A群鏈球菌感染會誘導 BNIP3/NIX所介導的粒線體自噬,從而提高肌肉細胞中A群鏈球菌的存活率。本篇我們旨在探討可能參與A群鏈球菌感染觸發的BNIP3/NIX介導粒線體自噬的上游因子。根據先前的研究,缺氧誘導因子-1α(亦稱HIF-1α)在許多不同的細胞系中都扮演著上調BNIP3及NIX表達的角色,除此之外,其他先前的研究表明,A群鏈球菌感染促進了HIF-1α在小鼠巨噬細胞中的表達,因此,我們假設HIF-1α在A群鏈球菌感染的肌肉細胞中引起BNIP3/NIX所介導的粒線體自噬。首先,我們證明了A群鏈球菌感染觸發了肌肉中HIF-1α的表達量增加和HIF-1α轉移入細胞核的現象發生,隨後,利用藥理抑制或敲低HIF-1α,阻礙了A群鏈球菌感染的肌肉細胞中BNIP3及NIX的表達和粒線體自噬的發生,表示 BNIP3/NIX所介導的粒線體自噬是需要仰賴HIF-1α的調節,此外,A群鏈球菌感染透過HIF-1α的調控減少了粒線體的量和ATP製造,我們進一步揭示了HIF-1α會促進A群鏈球菌在肌肉細胞內存活。總結,本篇研究我們證明HIF-1α在A群鏈球菌感染的情況下,會驅動BNIP3/NIX所介導的粒線體自噬,並降低粒線體的功能,從而增加肌肉細胞內A群鏈球菌的存活率。

    Group A Streptococcus (GAS) is a gram-positive pathogen and causes a variety of infections, from mild illness to more serious diseases, and even death. Among them, necrotizing fasciitis (also known as flesh-eating disease) is the most severe form, causing a rapid progression of muscular damage. Muscle cells are high-energy consumers and thus a large number of mitochondria are required to provide sufficient energy to maintain their functions. In addition, recent studies have shown that mitochondria are involved in antibacterial defense. In other words, mitochondria may be a target for pathogen invasion. Our preliminary results revealed that GAS infection induces BNIP3/NIX-mediated mitophagy, thereby enhancing intracellular bacterial survival in muscle cells. In this study, we aim to investigate which upstream molecule triggers BNIP3/NIX-dependent mitophagy upon GAS infection. According to previous studies, hypoxia-inducible factor-1α (HIF-1α) upregulates the expression of BNIP3 and NIX in many different cell lines. Furthermore, the previous study has demonstrated that GAS infection promotes the expression of HIF-1α in murine macrophages. Taken together, we hypothesized that HIF-1α mediates the BNIP3/NIX-induced mitophagy in GAS-infected muscle cells. Here, we first demonstrated that GAS infection triggered the expression and nuclear translocation of HIF-1α in muscle. Following, pharmacological inhibition or knocking down of HIF-1α impeded BNIP3/NIX expression and mitophagy in GAS-infected muscle cells, suggesting that BNIP3/NIX-induced mitophagy is in a HIF-1α-dependent manner. Moreover, GAS infection reduced the mitochondrial mass and ATP production through HIF-1α. We further revealed that HIF-1α promoted the intracellular survival of GAS in muscle cells. In summary, we demonstrated that HIF-1α drives BNIP3/NIX-mediated mitophagy upon GAS infection and lowers the mitochondrial functions, thereby increasing the survival of bacteria in muscle cells.

    摘要 ........................................................................................................................................I ABSTRACT ........................................................................................................................ II 致謝 .................................................................................................................................... III CONTENTS .......................................................................................................................IV INDEX OF FIGURES.......................................................................................................VI ABBREVIATION............................................................................................................ VII Chapter 1. INTRODUCTION............................................................................................ 1 1.1 Group A streptococcal infection ............................................................................ 1 1.2 The role of mitochondria in host defense and pathogen invasion ......................... 1 1.3 Mitochondrial homeostasis.................................................................................... 3 1.4 Mitophagy.............................................................................................................. 4 1.5 Hypoxia-inducible factor-1 and bacterial infections ............................................. 6 1.6 HIF-1α and BNIP3/NIX-mediated mitophagy ...................................................... 7 1.7 Our previous results............................................................................................... 7 1.8 The rationale in this study ..................................................................................... 8 Chapter 2. MATERIALS AND METHODS ..................................................................... 9 2.1 Bacterial strain....................................................................................................... 9 2.2 Bacterial culture..................................................................................................... 9 2.3 Bacterial culture for infection assay ...................................................................... 9 2.4 Mice..................................................................................................................... 10 2.5 In vivo model of muscular infection.................................................................... 10 2.6 Immunofluorescence staining of tissue sections ................................................. 10 2.7 Cell culture .......................................................................................................... 11 2.8 In vitro infection .................................................................................................. 12 2.9 Immunofluorescence staining for cultured cells.................................................. 12 2.10 Protein samples preparation ................................................................................ 13 2.11 Western blot analysis ........................................................................................... 13 2.12 RNA extraction and reverse transcription-PCR................................................... 14 2.13 DNA extraction.................................................................................................... 14 2.14 Real-time quantitative PCR................................................................................. 15 2.15 siRNA transfection .............................................................................................. 15 2.16 ATP assay............................................................................................................. 15 2.17 Seahorse XF cell mitochondrial stress test.......................................................... 16 2.18 Intracellular bacterial number.............................................................................. 16 2.19 Statistical analysis ............................................................................................... 17 Chapter 3. RESULTS ........................................................................................................ 18 3.1 GAS infection triggered expression of HIF-1α in muscle................................... 18 3.2 HIF-1α mediated the expressions of BNIP3 and NIX upon GAS infection........ 19 3.3 HIF-1α regulated mitochondrial loss and ATP production in muscle cells upon GAS infection.................................................................................................................. 20 3.4 HIF-1α suppressed mitochondrial respiration in GAS-infected muscle cells ..... 21 3.5 HIF-1α enhanced the survival of GAS in muscle cells ....................................... 22 Chapter 4. DISCUSSION.................................................................................................. 24 REFERENCES .................................................................................................................. 29 FIGURES ........................................................................................................................... 39 TABLES.............................................................................................................................. 48 APPENDIXES.................................................................................................................... 50

    1. Cunningham MW. Pathogenesis of group A streptococcal infections. Clin Microbiol Rev. 2000;13(3):470-511. Epub 2000/07/25. doi: 10.1128/CMR.13.3.470. PubMed PMID: 10885988; PubMed Central PMCID: PMCPMC88944.
    2. Carapetis JR, Steer AC, Mulholland EK, Weber M. The global burden of group A streptococcal diseases. The Lancet Infectious Diseases. 2005;5(11):685-94. doi: 10.1016/s1473-3099(05)70267-x.
    3. Nelson GE, Pondo T, Toews KA, Farley MM, Lindegren ML, Lynfield R, et al. Epidemiology of invasive group A streptococcal infections in the United States, 2005-2012. Clin Infect Dis. 2016;63(4):478-86. Epub 2016/04/24. doi: 10.1093/cid/ciw248. PubMed PMID: 27105747; PubMed Central PMCID: PMCPMC5776658.
    4. Wong CH, Chang HC, Pasupathy S, Khin LW, Tan JL, Low CO. Necrotizing fasciitis: clinical presentation, microbiology, and determinants of mortality. J Bone Joint Surg Am. 2003;85(8):1454-60. Epub 2003/08/20. PubMed PMID: 12925624.
    5. Green RJ, Dafoe DC, Raffin TA. Necrotizing fasciitis. Chest. 1996;110(1):219-29. Epub 1996/07/01. doi: 10.1378/chest.110.1.219. PubMed PMID: 8681631.
    6. Bisno AL, Stevens DL. Streptococcal infections of skin and soft tissues. N Engl J Med. 1996;334(4):240-5. Epub 1996/01/25. doi: 10.1056/NEJM199601253340407. PubMed PMID: 8532002.
    7. Lin JN, Chang LL, Lai CH, Lin HH, Chen YH. Group A streptococcal necrotizing fasciitis in the emergency department. J Emerg Med. 2013;45(5):781-8. Epub 2013/08/14. doi: 10.1016/j.jemermed.2013.05.046. PubMed PMID: 23937806.
    8. West AP, Shadel GS, Ghosh S. Mitochondria in innate immune responses. Nat Rev Immunol. 2011;11(6):389-402. Epub 2011/05/21. doi: 10.1038/nri2975. PubMed PMID: 21597473; PubMed Central PMCID: PMCPMC4281487.
    9. Weinberg SE, Sena LA, Chandel NS. Mitochondria in the regulation of innate and adaptive immunity. Immunity. 2015;42(3):406-17. Epub 2015/03/19. doi: 10.1016/j.immuni.2015.02.002. PubMed PMID: 25786173; PubMed Central PMCID: PMCPMC4365295.
    10. Arulkumaran N, Deutschman CS, Pinsky MR, Zuckerbraun B, Schumacker PT, Gomez H, et al. Mitochondrial Function in Sepsis. Shock. 2016;45(3):271-81. Epub 2016/02/13. doi: 10.1097/SHK.0000000000000463. PubMed PMID: 26871665; PubMed Central PMCID: PMCPMC4755359.
    11. West AP, Brodsky IE, Rahner C, Woo DK, Erdjument-Bromage H, Tempst P, et al. TLR signalling augments macrophage bactericidal activity through mitochondrial ROS. Nature. 2011;472(7344):476-80. Epub 2011/04/29. doi: 10.1038/nature09973. PubMed PMID: 21525932; PubMed Central PMCID: PMCPMC3460538.
    12. Shimada K, Crother TR, Karlin J, Dagvadorj J, Chiba N, Chen S, et al. Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity. 2012;36(3):401-14. Epub 2012/02/22. doi: 10.1016/j.immuni.2012.01.009. PubMed PMID: 22342844; PubMed Central PMCID: PMCPMC3312986.
    13. Mills E, O'Neill LA. Succinate: a metabolic signal in inflammation. Trends Cell Biol. 2014;24(5):313-20. Epub 2013/12/24. doi: 10.1016/j.tcb.2013.11.008. PubMed PMID: 24361092.
    14. Garaude J, Acin-Perez R, Martinez-Cano S, Enamorado M, Ugolini M, Nistal-Villan E, et al. Mitochondrial respiratory-chain adaptations in macrophages contribute to antibacterial host defense. Nat Immunol. 2016;17(9):1037-45. Epub 2016/06/28. doi: 10.1038/ni.3509. PubMed PMID: 27348412; PubMed Central PMCID: PMCPMC4994870.
    15. Patoli D, Mignotte F, Deckert V, Dusuel A, Dumont A, Rieu A, et al. Inhibition of mitophagy drives macrophage activation and antibacterial defense during sepsis. J Clin Invest. 2020;130(11):5858-74. Epub 2020/08/08. doi: 10.1172/JCI130996. PubMed PMID: 32759503; PubMed Central PMCID: PMCPMC7598049.
    16. Zhou R, Yazdi AS, Menu P, Tschopp J. A role for mitochondria in NLRP3 inflammasome activation. Nature. 2011;469(7329):221-5. Epub 2010/12/03. doi: 10.1038/nature09663. PubMed PMID: 21124315.
    17. Fielden LF, Kang Y, Newton HJ, Stojanovski D. Targeting mitochondria: how intravacuolar bacterial pathogens manipulate mitochondria. Cell Tissue Res. 2017;367(1):141-54. Epub 2016/08/16. doi: 10.1007/s00441-016-2475-x. PubMed PMID: 27515462.
    18. Suzuki M, Danilchanka O, Mekalanos JJ. Vibrio cholerae T3SS effector VopE modulates mitochondrial dynamics and innate immune signaling by targeting Miro GTPases. Cell Host Microbe. 2014;16(5):581-91. Epub 2014/12/03. doi: 10.1016/j.chom.2014.09.015. PubMed PMID: 25450857; PubMed Central PMCID: PMCPMC4391628.
    19. Stavru F, Bouillaud F, Sartori A, Ricquier D, Cossart P. Listeria monocytogenes transiently alters mitochondrial dynamics during infection. Proc Natl Acad Sci U S A. 2011;108(9):3612-7. Epub 2011/02/16. doi: 10.1073/pnas.1100126108. PubMed PMID: 21321208; PubMed Central PMCID: PMCPMC3048117.
    20. Zhu J, Wang KZ, Chu CT. After the banquet: mitochondrial biogenesis, mitophagy, and cell survival. Autophagy. 2013;9(11):1663-76. Epub 2013/06/22. doi: 10.4161/auto.24135. PubMed PMID: 23787782; PubMed Central PMCID: PMCPMC4028332.
    21. Herrmann JM, Longen S, Weckbecker D, Depuydt M. Biogenesis of mitochondrial proteins. Adv Exp Med Biol. 2012;748:41-64. Epub 2012/06/26. doi: 10.1007/978-1-4614-3573-0_3. PubMed PMID: 22729854.
    22. Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, et al. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell. 1999;98(1):115-24. doi: 10.1016/s0092-8674(00)80611-x.
    23. Leone TC, Lehman JJ, Finck BN, Schaeffer PJ, Wende AR, Boudina S, et al. PGC-1alpha deficiency causes multi-system energy metabolic derangements: muscle dysfunction, abnormal weight control and hepatic steatosis. PLoS Biol. 2005;3(4):e101. Epub 2005/03/12. doi: 10.1371/journal.pbio.0030101. PubMed PMID: 15760270; PubMed Central PMCID: PMCPMC1064854.
    24. Puigserver P, Spiegelman BM. Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1 alpha): transcriptional coactivator and metabolic regulator. Endocr Rev. 2003;24(1):78-90. Epub 2003/02/18. doi: 10.1210/er.2002-0012. PubMed PMID: 12588810.
    25. Lin J, Handschin C, Spiegelman BM. Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab. 2005;1(6):361-70. Epub 2005/08/02. doi: 10.1016/j.cmet.2005.05.004. PubMed PMID: 16054085.
    26. Bereiter-Hahn J, Voth M. Dynamics of mitochondria in living cells: shape changes, dislocations, fusion, and fission of mitochondria. Microsc Res Tech. 1994;27(3):198-219. Epub 1994/02/15. doi: 10.1002/jemt.1070270303. PubMed PMID: 8204911.
    27. Hamacher-Brady A, Brady NR. Mitophagy programs: mechanisms and physiological implications of mitochondrial targeting by autophagy. Cell Mol Life Sci. 2016;73(4):775-95. Epub 2015/11/28. doi: 10.1007/s00018-015-2087-8. PubMed PMID: 26611876; PubMed Central PMCID: PMCPMC4735260.
    28. Mattenberger Y, James DI, Martinou J-C. Fusion of mitochondria in mammalian cells is dependent on the mitochondrial inner membrane potential and independent of microtubules or actin. FEBS Letters. 2003;538(1-3):53-9. doi: 10.1016/s0014-5793(03)00124-8.
    29. Twig G, Shirihai OS. The interplay between mitochondrial dynamics and mitophagy. Antioxid Redox Signal. 2011;14(10):1939-51. Epub 2010/12/07. doi: 10.1089/ars.2010.3779. PubMed PMID: 21128700; PubMed Central PMCID: PMCPMC3078508.
    30. Santel A, Fuller MT. Control of mitochondrial morphology by a human mitofusin. J Cell Sci. 2001;114(Pt 5):867-74. Epub 2001/02/22. PubMed PMID: 11181170.
    31. Chen H, Detmer SA, Ewald AJ, Griffin EE, Fraser SE, Chan DC. Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J Cell Biol. 2003;160(2):189-200. Epub 2003/01/16. doi: 10.1083/jcb.200211046. PubMed PMID: 12527753; PubMed Central PMCID: PMCPMC2172648.
    32. Misaka T, Miyashita T, Kubo Y. Primary structure of a dynamin-related mouse mitochondrial GTPase and its distribution in brain, subcellular localization, and effect on mitochondrial morphology. J Biol Chem. 2002;277(18):15834-42. Epub 2002/02/16. doi: 10.1074/jbc.M109260200. PubMed PMID: 11847212.
    33. Cipolat S, Martins de Brito O, Dal Zilio B, Scorrano L. OPA1 requires mitofusin 1 to promote mitochondrial fusion. Proc Natl Acad Sci U S A. 2004;101(45):15927-32. Epub 2004/10/29. doi: 10.1073/pnas.0407043101. PubMed PMID: 15509649; PubMed Central PMCID: PMCPMC528769.
    34. Smirnova E, Shurland DL, Ryazantsev SN, van der Bliek AM. A human dynamin-related protein controls the distribution of mitochondria. J Cell Biol. 1998;143(2):351-8. Epub 1998/10/24. doi: 10.1083/jcb.143.2.351. PubMed PMID: 9786947; PubMed Central PMCID: PMCPMC2132828.
    35. Otera H, Wang C, Cleland MM, Setoguchi K, Yokota S, Youle RJ, et al. Mff is an essential factor for mitochondrial recruitment of Drp1 during mitochondrial fission in mammalian cells. J Cell Biol. 2010;191(6):1141-58. Epub 2010/12/15. doi: 10.1083/jcb.201007152. PubMed PMID: 21149567; PubMed Central PMCID: PMCPMC3002033.
    36. Palmer CS, Osellame LD, Laine D, Koutsopoulos OS, Frazier AE, Ryan MT. MiD49 and MiD51, new components of the mitochondrial fission machinery. EMBO Rep. 2011;12(6):565-73. Epub 2011/04/22. doi: 10.1038/embor.2011.54. PubMed PMID: 21508961; PubMed Central PMCID: PMCPMC3128275.
    37. Frank S, Gaume B, Bergmann-Leitner ES, Leitner WW, Robert EG, Catez F, et al. The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev Cell. 2001;1(4):515-25. Epub 2001/11/13. doi: 10.1016/s1534-5807(01)00055-7. PubMed PMID: 11703942.
    38. Hansen M, Rubinsztein DC, Walker DW. Autophagy as a promoter of longevity: insights from model organisms. Nat Rev Mol Cell Biol. 2018;19(9):579-93. Epub 2018/07/15. doi: 10.1038/s41580-018-0033-y. PubMed PMID: 30006559; PubMed Central PMCID: PMCPMC6424591.
    39. Kabeya Y, Mizushima N, Uero T, Yamamoto A, Kirisako T, Noda T, et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. Embo J. 2000;19(21):5720-8. doi: DOI 10.1093/emboj/19.21.5720. PubMed PMID: WOS:000165235000013.
    40. Noda NN, Kumeta H, Nakatogawa H, Satoo K, Adachi W, Ishii J, et al. Structural basis of target recognition by Atg8/LC3 during selective autophagy. Genes Cells. 2008;13(12):1211-8. Epub 2008/11/22. doi: 10.1111/j.1365-2443.2008.01238.x. PubMed PMID: 19021777.
    41. Jin SM, Lazarou M, Wang C, Kane LA, Narendra DP, Youle RJ. Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL. J Cell Biol. 2010;191(5):933-42. Epub 2010/12/01. doi: 10.1083/jcb.201008084. PubMed PMID: 21115803; PubMed Central PMCID: PMCPMC2995166.
    42. Matsuda N, Sato S, Shiba K, Okatsu K, Saisho K, Gautier CA, et al. PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J Cell Biol. 2010;189(2):211-21. Epub 2010/04/21. doi: 10.1083/jcb.200910140. PubMed PMID: 20404107; PubMed Central PMCID: PMCPMC2856912.
    43. Pickles S, Vigie P, Youle RJ. Mitophagy and quality control mechanisms in mitochondrial maintenance. Curr Biol. 2018;28(4):R170-R85. Epub 2018/02/21. doi: 10.1016/j.cub.2018.01.004. PubMed PMID: 29462587; PubMed Central PMCID: PMCPMC7255410.
    44. Hamacher-Brady A, Brady NR, Logue SE, Sayen MR, Jinno M, Kirshenbaum LA, et al. Response to myocardial ischemia/reperfusion injury involves Bnip3 and autophagy. Cell Death Differ. 2007;14(1):146-57. Epub 2006/04/29. doi: 10.1038/sj.cdd.4401936. PubMed PMID: 16645637.
    45. Bellot G, Garcia-Medina R, Gounon P, Chiche J, Roux D, Pouyssegur J, et al. Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Mol Cell Biol. 2009;29(10):2570-81. Epub 2009/03/11. doi: 10.1128/MCB.00166-09. PubMed PMID: 19273585; PubMed Central PMCID: PMCPMC2682037.
    46. Zhu Y, Massen S, Terenzio M, Lang V, Chen-Lindner S, Eils R, et al. Modulation of serines 17 and 24 in the LC3-interacting region of Bnip3 determines pro-survival mitophagy versus apoptosis. J Biol Chem. 2013;288(2):1099-113. Epub 2012/12/05. doi: 10.1074/jbc.M112.399345. PubMed PMID: 23209295; PubMed Central PMCID: PMCPMC3542995.
    47. Matsushima M, Fujiwara T, Takahashi E, Minaguchi T, Eguchi Y, Tsujimoto Y, et al. Isolation, mapping, and functional analysis of a novel human cDNA (BNIP3L) encoding a protein homologous to human NIP3. Genes Chromosomes Cancer. 1998;21(3):230-5. Epub 1998/04/02. PubMed PMID: 9523198.
    48. Liu L, Feng D, Chen G, Chen M, Zheng Q, Song P, et al. Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nat Cell Biol. 2012;14(2):177-85. Epub 2012/01/24. doi: 10.1038/ncb2422. PubMed PMID: 22267086.
    49. Wu W, Tian W, Hu Z, Chen G, Huang L, Li W, et al. ULK1 translocates to mitochondria and phosphorylates FUNDC1 to regulate mitophagy. EMBO Rep. 2014;15(5):566-75. Epub 2014/03/29. doi: 10.1002/embr.201438501. PubMed PMID: 24671035; PubMed Central PMCID: PMCPMC4210082.
    50. Murakawa T, Yamaguchi O, Hashimoto A, Hikoso S, Takeda T, Oka T, et al. Bcl-2-like protein 13 is a mammalian Atg32 homologue that mediates mitophagy and mitochondrial fragmentation. Nat Commun. 2015;6:7527. Epub 2015/07/07. doi: 10.1038/ncomms8527. PubMed PMID: 26146385; PubMed Central PMCID: PMCPMC4501433.
    51. Khan S, Raj D, Jaiswal K, Lahiri A. Modulation of host mitochondrial dynamics during bacterial infection. Mitochondrion. 2020;53:140-9. Epub 2020/05/30. doi: 10.1016/j.mito.2020.05.005. PubMed PMID: 32470613.
    52. Peyssonnaux C, Datta V, Cramer T, Doedens A, Theodorakis EA, Gallo RL, et al. HIF-1alpha expression regulates the bactericidal capacity of phagocytes. J Clin Invest. 2005;115(7):1806-15. Epub 2005/07/12. doi: 10.1172/JCI23865. PubMed PMID: 16007254; PubMed Central PMCID: PMCPMC1159132.
    53. Wang GL, Jiang BH, Rue EA, Semenza GL. Hypoxia-inducible factor-1 is a basic-helix-loop-helix-pas heterodimer regulated by cellular O2 tension. P Natl Acad Sci USA. 1995;92(12):5510-4. doi: DOI 10.1073/pnas.92.12.5510. PubMed PMID: WOS:A1995RB80400053.
    54. Kallio PJ, Okamoto K, O'Brien S, Carrero P, Makino Y, Tanaka H, et al. Signal transduction in hypoxic cells: inducible nuclear translocation and recruitment of the CBP/p300 coactivator by the hypoxia-inducible factor-1alpha. Embo J. 1998;17(22):6573-86. Epub 1998/11/21. doi: 10.1093/emboj/17.22.6573. PubMed PMID: 9822602; PubMed Central PMCID: PMCPMC1171004.
    55. Palazon A, Goldrath AW, Nizet V, Johnson RS. HIF transcription factors, inflammation, and immunity. Immunity. 2014;41(4):518-28. Epub 2014/11/05. doi: 10.1016/j.immuni.2014.09.008. PubMed PMID: 25367569; PubMed Central PMCID: PMCPMC4346319.
    56. Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, Gaskell SJ, et al. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science. 2001;292(5516):468-72. Epub 2001/04/09. doi: 10.1126/science.1059796. PubMed PMID: 11292861.
    57. Huang LE, Gu J, Schau M, Bunn HF. Regulation of hypoxia-inducible factor 1alpha is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. Proc Natl Acad Sci U S A. 1998;95(14):7987-92. Epub 1998/07/08. doi: 10.1073/pnas.95.14.7987. PubMed PMID: 9653127; PubMed Central PMCID: PMCPMC20916.
    58. Hartmann H, Eltzschig HK, Wurz H, Hantke K, Rakin A, Yazdi AS, et al. Hypoxia-independent activation of HIF-1 by Enterobacteriaceae and their siderophores. Gastroenterology. 2008;134(3):756-67. Epub 2008/03/08. doi: 10.1053/j.gastro.2007.12.008. PubMed PMID: 18325389.
    59. Holden VI, Breen P, Houle S, Dozois CM, Bachman MA. Klebsiella pneumoniae siderophores induce inflammation, bacterial dissemination, and HIF-1alpha stabilization during pneumonia. mBio. 2016;7(5). Epub 2016/09/15. doi: 10.1128/mBio.01397-16. PubMed PMID: 27624128; PubMed Central PMCID: PMCPMC5021805.
    60. Rius J, Guma M, Schachtrup C, Akassoglou K, Zinkernagel AS, Nizet V, et al. NF-kappaB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1alpha. Nature. 2008;453(7196):807-11. Epub 2008/04/25. doi: 10.1038/nature06905. PubMed PMID: 18432192; PubMed Central PMCID: PMCPMC2669289.
    61. Sowter HM, Ratcliffe PJ, Watson P, Greenberg AH, Harris AL. HIF-1-dependent regulation of hypoxic induction of the cell death factors BNIP3 and NIX in human tumors. Cancer Res. 2001;61(18):6669-73. Epub 2001/09/18. PubMed PMID: 11559532.
    62. Sowter HM, Raval RR, Moore JW, Ratcliffe PJ, Harris AL. Predominant role of hypoxia-inducible transcription factor (Hif)-1alpha versus Hif-2alpha in regulation of the transcriptional response to hypoxia. Cancer Res. 2003;63(19):6130-4. Epub 2003/10/16. PubMed PMID: 14559790.
    63. Greijer AE, van der Groep P, Kemming D, Shvarts A, Semenza GL, Meijer GA, et al. Up-regulation of gene expression by hypoxia is mediated predominantly by hypoxia-inducible factor 1 (HIF-1). J Pathol. 2005;206(3):291-304. Epub 2005/05/21. doi: 10.1002/path.1778. PubMed PMID: 15906272.
    64. Bruick RK. Expression of the gene encoding the proapoptotic Nip3 protein is induced by hypoxia. P Natl Acad Sci USA. 2000;97(16):9082-7. doi: DOI 10.1073/pnas.97.16.9082. PubMed PMID: WOS:000088608000059.
    65. Kothari S, Cizeau J, McMillan-Ward E, Israels SJ, Bailes M, Ens K, et al. BNIP3 plays a role in hypoxic cell death in human epithelial cells that is inhibited by growth factors EGF and IGF. Oncogene. 2003;22(30):4734-44. Epub 2003/07/25. doi: 10.1038/sj.onc.1206666. PubMed PMID: 12879018.
    66. Fei P, Wang W, Kim SH, Wang S, Burns TF, Sax JK, et al. Bnip3L is induced by p53 under hypoxia, and its knockdown promotes tumor growth. Cancer Cell. 2004;6(6):597-609. Epub 2004/12/21. doi: 10.1016/j.ccr.2004.10.012. PubMed PMID: 15607964.
    67. Zhang H, Bosch-Marce M, Shimoda LA, Tan YS, Baek JH, Wesley JB, et al. Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J Biol Chem. 2008;283(16):10892-903. Epub 2008/02/19. doi: 10.1074/jbc.M800102200. PubMed PMID: 18281291; PubMed Central PMCID: PMCPMC2447655.
    68. Thomas LW, Ashcroft M. Exploring the molecular interface between hypoxia-inducible factor signalling and mitochondria. Cell Mol Life Sci. 2019;76(9):1759-77. Epub 2019/02/16. doi: 10.1007/s00018-019-03039-y. PubMed PMID: 30767037; PubMed Central PMCID: PMCPMC6453877.
    69. Semenza GL, Roth PH, Fang HM, Wang GL. Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. Journal of Biological Chemistry. 1994;269(38):23757-63. doi: 10.1016/s0021-9258(17)31580-6.
    70. Hudson CC, Liu M, Chiang GG, Otterness DM, Loomis DC, Kaper F, et al. Regulation of hypoxia-inducible factor 1alpha expression and function by the mammalian target of rapamycin. Mol Cell Biol. 2002;22(20):7004-14. Epub 2002/09/21. doi: 10.1128/MCB.22.20.7004-7014.2002. PubMed PMID: 12242281; PubMed Central PMCID: PMCPMC139825.
    71. Lee K, Lee JH, Boovanahalli SK, Jin YL, Lee MJ, Jin XJ, et al. (Aryloxyacetylamino)benzoic acid analogues: A new class of hypoxia-inducible factor-1 inhibitors. J Med Chem. 2007;50(7):1675-84. doi: 10.1021/jm0610292. PubMed PMID: WOS:000245259000027.
    72. Hu N, Jiang D, Huang E, Liu X, Li R, Liang X, et al. BMP9-regulated angiogenic signaling plays an important role in the osteogenic differentiation of mesenchymal progenitor cells. J Cell Sci. 2013;126(Pt 2):532-41. Epub 2012/12/04. doi: 10.1242/jcs.114231. PubMed PMID: 23203800; PubMed Central PMCID: PMCPMC3613181.
    73. Hanson ES, Rawlins ML, Leibold EA. Oxygen and iron regulation of iron regulatory protein 2. J Biol Chem. 2003;278(41):40337-42. Epub 2003/07/31. doi: 10.1074/jbc.M302798200. PubMed PMID: 12888568.
    74. Madhu V, Boneski PK, Silagi E, Qiu Y, Kurland I, Guntur AR, et al. Hypoxic regulation of mitochondrial metabolism and mitophagy in nucleus pulposus cells is dependent on HIF-1alpha-BNIP3 axis. J Bone Miner Res. 2020;35(8):1504-24. Epub 2020/04/07. doi: 10.1002/jbmr.4019. PubMed PMID: 32251541; PubMed Central PMCID: PMCPMC7778522.
    75. Vincent G, Novak EA, Siow VS, Cunningham KE, Griffith BD, Comerford TE, et al. Nix-mediated mitophagy modulates mitochondrial damage during intestinal inflammation. Antioxid Redox Signal. 2020;33(1):1-19. Epub 2020/02/28. doi: 10.1089/ars.2018.7702. PubMed PMID: 32103677; PubMed Central PMCID: PMCPMC7262642.
    76. Chourasia AH, Tracy K, Frankenberger C, Boland ML, Sharifi MN, Drake LE, et al. Mitophagy defects arising from BNip3 loss promote mammary tumor progression to metastasis. EMBO Rep. 2015;16(9):1145-63. Epub 2015/08/02. doi: 10.15252/embr.201540759. PubMed PMID: 26232272; PubMed Central PMCID: PMCPMC4576983.
    77. Dayan F, Roux D, Brahimi-Horn MC, Pouyssegur J, Mazure NM. The oxygen sensor factor-inhibiting hypoxia-inducible factor-1 controls expression of distinct genes through the bifunctional transcriptional character of hypoxia-inducible factor-1alpha. Cancer Res. 2006;66(7):3688-98. Epub 2006/04/06. doi: 10.1158/0008-5472.CAN-05-4564. PubMed PMID: 16585195.
    78. Chourasia AH, Boland ML, Macleod KF. Mitophagy and cancer. Cancer Metab. 2015;3:4. Epub 2015/03/27. doi: 10.1186/s40170-015-0130-8. PubMed PMID: 25810907; PubMed Central PMCID: PMCPMC4373087.
    79. Hayek I, Fischer F, Schulze-Luehrmann J, Dettmer K, Sobotta K, Schatz V, et al. Limitation of TCA cycle intermediates represents an oxygen-independent nutritional antibacterial effector mechanism of macrophages. Cell Rep. 2019;26(13):3502-10 e6. Epub 2019/03/28. doi: 10.1016/j.celrep.2019.02.103. PubMed PMID: 30917307.
    80. Lin AE, Beasley FC, Olson J, Keller N, Shalwitz RA, Hannan TJ, et al. Role of hypoxia inducible factor-1alpha (HIF-1alpha) in innate defense against uropathogenic Escherichia coli infection. PLoS Pathog. 2015;11(4):e1004818. Epub 2015/05/01. doi: 10.1371/journal.ppat.1004818. PubMed PMID: 25927232; PubMed Central PMCID: PMCPMC4415805.
    81. Zhang Y, Yao Y, Qiu X, Wang G, Hu Z, Chen S, et al. Listeria hijacks host mitophagy through a novel mitophagy receptor to evade killing. Nat Immunol. 2019;20(4):433-46. Epub 2019/02/26. doi: 10.1038/s41590-019-0324-2. PubMed PMID: 30804553.
    82. Datta V, Myskowski SM, Kwinn LA, Chiem DN, Varki N, Kansal RG, et al. Mutational analysis of the group A streptococcal operon encoding streptolysin S and its virulence role in invasive infection. Mol Microbiol. 2005;56(3):681-95. Epub 2005/04/12. doi: 10.1111/j.1365-2958.2005.04583.x. PubMed PMID: 15819624.
    83. Vajjala A, Biswas D, Tay WH, Hanski E, Kline KA. Streptolysin-induced endoplasmic reticulum stress promotes group A streptococcal host-associated biofilm formation and necrotising fasciitis. Cell Microbiol. 2019;21(1):e12956. Epub 2018/09/22. doi: 10.1111/cmi.12956. PubMed PMID: 30239106.
    84. Walker MJ, Barnett TC, McArthur JD, Cole JN, Gillen CM, Henningham A, et al. Disease manifestations and pathogenic mechanisms of group A Streptococcus. Clin Microbiol Rev. 2014;27(2):264-301. Epub 2014/04/04. doi: 10.1128/CMR.00101-13. PubMed PMID: 24696436; PubMed Central PMCID: PMCPMC3993104.
    85. Jantsch J, Schodel J. Hypoxia and hypoxia-inducible factors in myeloid cell-driven host defense and tissue homeostasis. Immunobiology. 2015;220(2):305-14. Epub 2014/12/03. doi: 10.1016/j.imbio.2014.09.009. PubMed PMID: 25439732.
    86. Peyssonnaux C, Boutin AT, Zinkernagel AS, Datta V, Nizet V, Johnson RS. Critical role of HIF-1alpha in keratinocyte defense against bacterial infection. J Invest Dermatol. 2008;128(8):1964-8. Epub 2008/03/08. doi: 10.1038/jid.2008.27. PubMed PMID: 18323789.
    87. Anaya DA, Dellinger EP. Necrotizing soft-tissue infection: diagnosis and management. Clin Infect Dis. 2007;44(5):705-10. Epub 2007/02/06. doi: 10.1086/511638. PubMed PMID: 17278065.
    88. Ono Y, Sensui H, Sakamoto Y, Nagatomi R. Knockdown of hypoxia-inducible factor-1alpha by siRNA inhibits C2C12 myoblast differentiation. J Cell Biochem. 2006;98(3):642-9. Epub 2006/01/28. doi: 10.1002/jcb.20804. PubMed PMID: 16440321.

    下載圖示 校內:2023-08-31公開
    校外:2023-08-31公開
    QR CODE