| 研究生: |
陳佳吟 Chen, Chia-Ying |
|---|---|
| 論文名稱: |
氧化銦鋅薄膜感測含氯VOCs之研究 Sensing of Cl-containing VOCs with Indium-zinc-oxide Thin Films |
| 指導教授: |
王鴻博
Wang, Hong-Paul |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 英文 |
| 論文頁數: | 113 |
| 中文關鍵詞: | XANES 、含氯VOCs 、氣體感測器 、半導體薄膜 、氧化銦鋅 、濺鍍 、EXAFS |
| 外文關鍵詞: | semiconductor thin films, gas sensors, Cl-containing VOCs, XANES, EXAFS, sputtering, indium-zinc oxide |
| 相關次數: | 點閱:115 下載:24 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
含氯揮發性有機物(Cl-VOCs)大多具毒性及可能具致癌性,也是管制之溫室氣體,因此發展一套即時、連續而且利於攜帶之感測設備,可以預警環境中可能存在Cl-VOCs之危害性。雖然各類感測器已被廣泛研發及應用,但針對Cl-VOCs之感測器相對未被重視,而且感測材料與Cl-VOCs間複雜的感測機制仍未完全了解,因此,本研究之主要目的包括:(1)合成氧化銦鋅(IZO)薄膜;(2)IZO薄膜感測Cl-VOCs (CCl4、CHCl3、CH2Cl2)及ethanol之靈敏度及再現性;(3)感測CCl4時鋅之即時精細結構分析;(4)設計整合即時感測及礦化去除之個人化系統。
實驗結果顯示,濺鍍產生之IZO薄膜含銦量1~3%,厚度介於400~645 nm間,X射線繞射分析顯示薄膜呈現ZnO(002)之擇優取向趨勢。IZO薄膜之組成(In/Zn=0.028~0.062)及表面吸附面積影響CCl4感測度(sensitivity),感測時間(response time)皆低於2分鐘,而其中In/Zn = 0.056薄膜對350 ppm CCl4之感測度高達20。感測溫度低於623 K之感測度較低,而且感測時間較長。IZO於濺鍍合成中基版加熱處理,可增加其結晶性及導電度,但因接觸面積降低,反而不利於感測度。IZO薄膜對CHCl3及CH2Cl2之感測度類似CCl4,但感測度依含氯量之減少而減少。另外,IZO薄膜對250~1000 ppm乙醇之感測電阻之變化與Cl-VOCs相反,顯示IZO也可同時應用於Cl-VOCs (電阻增加)及C2H5OH (電阻降低)之感測。即時X射線吸收近邊緣結構(X-ray absorption near edge structural, XANES)光譜顯示IZO薄膜中鋅之主要物種為奈米ZnO(>80%)及ZnO原子簇(<11%),並於623 K通入350 ppm CCl4後發現少量ZnCO3(7%)。X射線吸收光譜之延伸區微細結構(Extended X-ray absorption fine structural, EXAFS)光譜顯示IZO薄膜中鋅之Zn-O鍵距為1.972 Å,提高溫度至623 K, Zn-O鍵距增加0.022Å,通入350 ppm CCl4後Zn-O鍵距微幅減少至1.978 Å,並於停止通入CCl4氣體後恢復至1.991 Å。依據上述實驗數據也初步設計一套整合Cl-VOCs感測及礦化方法,成為一種可以在可能具Cl-VOCs存在風險之場所之個人防護器具。
Cl-containing volatile organic compounds (Cl-VOCs) are toxic and carcinogenic. Real-time detecting of Cl-VOCs is of increasing importance. Thin films have been widely used in sensing of toxic gases. However, reaction mechanism on the thin films during sensing of Cl-VOCs is still lacking in the literature. Thus, the main objectives of this work were (1) Synthesis of novel IZO (indium-zinc-oxide) thin films, (2) Determination of sensitivity, response time, and reproducibility of the IZO thin films with Cl-VOCs (such as CCl4, CHCl3, and CH2Cl2) as well as ethanol, (3) Speciation studies of Zn in the IZO thin films, and (4) Conceptual design of an IZO thin film based sensor for sensing of Cl-VOCs.
The IZO (a promising transparent conducting oxide (TCO)) thin films synthesized in a RF magnetron sputtering system were used in sensing of toxic Cl-containing VOCs (such as chlorinated mathanes) in the present work. The IZO thin films having thickness of 400-645 nm (determined by α-step) contain 1-3% indium. X-ray diffraction patterns of the IZO films illustrate a preferred c-axis orientation of ZnO (002).
The sensing experiments were conducted with in-situ measurements of thin film resistance. At the sensing temperature of 623 K, the IZO thin films posses a high sensitivity, low response time and good reproducibility. An effective sensitivity (RCCl4/Rair > 20) and low response time (< 2 min) of the thin film with In/Zn = 0.056 was observed. The IZO thin films synthesized at the substrate temperature of 300 K during sputtering have a desired sensing characteristic for CCl4. The IZO thin films have a high sensitivity for Cl-rich chlorinated methanes. In addition, ethanol can also be detected with the IZO thin films during sensing of ethanol was observed, the IZO thin films can detect simultaneously both Cl-VOCs (RCCl4/Rair > 10) and ethanol (Rair/RC2H5OH > 10). To further understand speciation of zinc in the IZO thin films, in-situ XANES (X-ray absorption near edge structural) and EXAFS (Extended X-ray absorption fine structural) spectra of zinc were measured during sensing of 350 ppm CCl4. The main zinc species in the IZO thin films were nano (80-90%) and cluster (< 11%) ZnO. During sensing of CCl4, a small amount (7%) of ZnCO3 in the thin films was found. Zinc in the IZO thin films at 300 K possessed a Zn-O bond distance of 1.972 Å with a CN (coordination number) of 3.2. The bond distance was decreased slightly of 0.022 Å during sensing of 350 ppm CCl4 at 623 K, and restored as CCl4 was absent. Based on experimental data for sensing of Cl-VOCs, a simple, inexpensive, miniaturized and portable device has been designed.
Abraham, P., Wilfred, G., and Cathrine, S. P., Oxidative damage to the lipids and proteins of the lungs, testis and kidney of rats during carbon tetrachloride intoxication, Clinica Chimica Acta, 289 (1-2), 177-179, 1999.
Badeker, K., Annals of Physics, (Leipzig) 22, 749, 1907.
Bene, R., Kiss, G., Perczel, I. V., Meyer, F. A., and Reti, F., Application of quadrupole mass spectrometer for the analysis of near-surface gas composition during DC sensor-tests, Vacuum, 50(3-4), 331-337, 1998.
Brattain, W. H., and Bardeen, J., Surface properties of germanium, The Bell System Technical Journal, 32(1), 1-41, 1953.
Cao, Z., and Stetter, J. R., A selective solid-state gas sensor for halogenated hydrocarbons, Sensors and Actuators B, 5, 109-113, 1991.
Chapman, B. N., Glow discharge processes, John Wiley & Sons, Inc., New York, 1980.
Chaturvedi, A., Mishra, V. N., Dwivedi, R., and Srivastava, S. K., Response of oxygen plasma-treated thick film tin oxide sensor array for LPG, CCl4, CO and C3H7OH, Microelectronics Journal ,30(3), 259-264,1999.
Chien, Y. C., Wang, H. P., and Yang, Y. W., Mineralization of CCl4 with copper oxide, Environmental Science & Technology, 35(15), 3259-3262, 2001.
Choi, J. – J., Kim, H. P., Cheong, H. – W., Kim, J. –M., and Kim, J. – m., Responses of SnO2-based sensors for vapors with electron-accepting groups, Sensors and Actuators B, 13-14, 515-516, 1993.
Chung, W. Y., Shim, C. H., Choi, S. D., and Lee, D. D., Tin oxide microsensor for LPG monitoring, Sensors and Actuators B, 20, 139-143, 1994.
Cullyity, B. D., and Stock, S. R., Elements of X-ray Diffraction, 3rd ed., Prentice Hall, New Jersey, 2001.
Davis, S. R., Chadwick, A. V., and Wright, J. D., The effects of crystallite growth and dopant migration on the carbon monoxide sensing characteristics of nanocrystalline tin oxide based sensor materials, Journal of Materials Chemistry, 8 (9), 2065-2071, 1998.
Dawson, D. H., and Williams, D. E., Gas-sensitive resistors: Surface interaction of chlorine with semiconducting oxides, Journal of Materials Chemistry, 6(3), 409-414, 1996.
Fountoulakis, M., de Vera, M. C., Crameri, F., Boess, F., Gasser, R., Albertini, S., and Suter, L., Modulation of gene and protein expression by carbon tetrachloride in the rat liver, Toxicology and Applied Pharmacology, 183 (1), 71-80, 2002.
Gaidi, M., Labeau, M., Chenevier, B., and Hazemann, J. L., In-situ EXAFS analysis of the local environment of Pt particles incorporated in thin films of SnO2 semi-conductor oxide used as gas-sensors, Sensors and Actuators B, 48 (1-3): 277-284, 1998.
Ghosh, S., Sarkar, A., Bhattacharya, S., Chaudhuri, S., and Pal, A. K., Microstructure of ZnO films produced by reactive DC sputtering technique, Journal of Crystal Growth, 108, 534-540, 1991.
Hartnagel, H. L., Dawar, A. L., Jain, A. K., and Jagadish, C., Semiconducting transparent thin films, Institude of Physics Publishing, London, 1995.
Hellegouarc'h, F., Arefi-Khonsari, F., Planade, R., and Amouroux, J., PECVD prepared SnO2 thin films for ethanol sensors, Sensors and Actuators B, 73(1), 27-34, 2001.
Hu, J., and Gordon, R. G., Textured aluminum-doped zinc oxide thin films from atmospheric pressure chemical-vapor deposition, Journal of Applied Physics, 71(2), 880-890, 1992.
Jeon, T. I., Hwang, S. G.., Park, N. G.., Jung, Y. R., Shin, S. I., Choi, S. D., and Park, D. K., Antioxidative effect of chitosan on chronic carbon tetrachloride induced hepatic injury in rats, Toxicology, 187 (1), 67-73, 2003.
Julia, M., Phillips, R. J., Cava, G. A., Thomas, S. A., Carter, J. Kwo, T., Siegrist, J. J., Krajewski, J. H., Marshall, W. F., Peck, Jr., and Rapkine, D. H., Zinc-indium-oxide: A high conductivity transparent conducting oxide, Applied Physics Letters, 67(15), 2246-2248, 1995.
Kirk, R. E., Othmer, D. F., Kroschwitz, J. I., and Howe-Grant, M., Encyclopedia of chemical technology, John Wiley & Sons, Inc., New York, 1998.
Major, S., Banerjee, A., and Chopra, K. L., Optical and electronic properties of zinc oxide films prepared by spray pyrolysis, Thin Solid Films, 125, 179-185, 1985.
Minami, T., Oohashi, K., Takata, S., Mouri, T., and Ogawa, N., Preparations of ZnO:Al transparent conducting films by D. C. magnetron sputtering, Thin Solid Films, 193-194, 721-729, 1990.
Minami, T., Takata, S., Kakumu, T., and Sonohara, H., New transparent conducting MgIn2O4-Zn2In2O5 thin films prepared by magnetron sputtering, Thin Solid Films, 270, 22-26, 1995.
Minami, T., Kakumu, and T., Takata, S., Preparation of transparent and conductive In2O3-ZnO films by radio frequency magnetron sputtering, Journal of Vacuum Science & Technology a-vacuum Surfaces and Films, 14 (3), 1704-1708, 1996.
Miyata, T., Minami, T., Shimokawa, K., Kakumu, T., and Ishii, M., New materials consisting of multicomponent oxides for thin-film gas sensors, Journal of the Electrochemical Society, 144(7), 2432-2436, 1997.
Moseley, P. T., New trends and future prospects of thick and thin-film gas sensors, Sensors and Actuators B, 3, 167-174, 1991.
Olvera, M. D. L., and Maldonado, A., Asomoza, R., Melendez, -L. M., Chemical stability of doped ZnO thin films, Journal of Materials Science-Materials in Electronics, 11(1), 1-5, 2000.
Paraguay, D. F., Miki-Yoshida, M., Morales, J., Solis, J., and Estrada, L. W., Influence of Al, In, Cu, Fe and Sn dopants on the response of thin film ZnO gas sensor to ethanol vapour, Thin Solid Films, 373 (1-2), 137-140, 2000.
Park, S. H., Son, Y. C., Shaw, B. R., Creasy, K. E., and Suib, S. L., Detection of chlorinated methanes by tin oxide gas sensors, Analyst, 126(8), 1382-1386, 2001.
Patel, N. G., Makhija, K. K., Panchal, C. J., Dave, D. B., and Vaishnav, V. S., Fabrication of carbon tetrachloride gas sensors using indium tin oxide thin films, Sensors and Actuators B, 23, 49-53, 1995.
Reichelt, K., and Jiang, X., The preparation of thin films by physical vapour deposition methods, Thin Solid Films, 191, 91-126, 1990.
Russell, N. V., Chadwick, A. V., and Wilson, A., Nanocrystalline nickel doped zinc oxide gas sensors, Nuclear Instruments and Methods in Physics Research Section B, 97, 575-578, 1995.
Sarkar, A., Ghosh, S., Chaudhuri, S., and Pal, A. K., Studies of electron transport propertoes and the Burstein-moss shift in indium-doped ZnO films, Thin Solid Films, 204, 255-264, 1991.
Seiyama, T., A new detector for gaseous components using semiconductive thin films, Analytical Chemistry, 34(11), 1502-1503, 1962.
Serrini, P., Briois, V., Horrillo, M. C., Traverse, A., and Manes, L., Chemical composition and crystalline structure of SnO2 thin films used as gas sensors, Thin Solid Films, 304 (1-2), 113-122, 1997.
Shah, S. I., Handbook of thin film process technology, Institute of Physics Pub., Bristol, U. K., 1995.
Sheweita, S. A., Abd El-Gabar, M., and Bastawy, M., Carbon tetrachloride changes the activity of cytochrome P450 system in the liver of male rats: role of antioxidants, Toxicology, 169 (2), 83-92, 2001.
Shimizu, Y., and Egashira, M., Basic aspects and challenges of semiconductor gas sensors, MRS Bulletin, 24(6), 18-24, 1999.
Simmonds, P. G.., Cunnold, D. M., Weiss, R. F., Prinn, R. G., Fraser, P. J., McCulloch, A., Alyea, F. N. and O’Doherty, S., Global trends and emission estimates of CCl4 from in situ background observations from July 1978 to June 1996, Journal of Geophysical Research-atmospheres, 103 (D23), 31331-31331, 1998.
Simon, T., Barsan, N., Bauer, M., and Weimar, U., Micromachined metal oxide gas sensors: opportunities to improve sensor performance, Sensors and Actuators B, 73, 1-26, 2001.
Stern, E. A., Newville, M., Ravel, B., Haskel, D., and Yacoby, Y., The UWXAFS analysis package: philosophy and details, Physica B, 208/209, 117-120, 1995.
Sundari, P. N., G, W., and Ramakrishna, B., Does oxidative protein damage play a role in the pathogenesis of carbon tetrachloride-induced liver injury in the rat?, Biochimica et Biophysica Acta-Molecular Basis of Disease, 1362 (2-3), 169-176, 1997.
Sze, S. M., Semiconductor Sensors, John Wiley & Sons, Inc., Third Avenue, New York, 1994.
Taguchi, N., Japenese Patent 45-38200, 47-38840, US Patent 3 644 795.
Takatsuji, H., Tsuji, S., Kuroda, K., and Saka, H., Novel transparent conductive indium zinc oxide thin films with unique properties, Materials Transactions, 40 (9), 899-902, (1999).
Tamaki, J., Naruo, C., Yamamoto, Y., and Matsuoka, M., Sensing properties to dilute chlorine gas of indium oxide based thin film sensors prepared by electron beam evaporation, Sensors and Actuators B, 83, 190-194, 2002.
Torvela, H., Dual Response of Tin Dioxide Gas Sensors Characteristic of gaseous carbon tetrachloride, Sensors and Actuators B, 4, 445-450, 1991.
Toshihiro, M., Doreen, D. E., and Thomas, O. M., Phase relationships and physical properties of homologous compounds in the zinc oxide-indium oxide system, Journal of the American Ceramic Society, 81(5), 1310-1316, 1998.
Toshko, G. N., and Stefcho, P. Y., Ceramic sensors, Technomic Publishing Company, Inc. New Holland Avenue, 1996.
Wang, R. P., King, L. L. H., and Sleight, A. W., Highly conducting transparent thin films based on zinc oxide, Journal of Materials Research, 11 (7), 1659-1664, 1996.
Xu, C., Tamaki, J., Miura, N., and Yamazoe, N., Grain size effect on gas sensitivity of porous SnO2-based element, Sensors and Actuators B, 3, 147-155, 1991.
Yamazoe, N., New approaches for improving semiconductor gas sensors, Sensors and Actuators B, 5, 7-19, 1991.
Zabinsky, S. I., Rehr, J. J., Ankudinov, A., Albers, R. C., and Eller, M. J., Multiple-scattering calculations of X-ray absorption spectra. Physical review.B-Condensed matter, 52, 2995-3009, 1995.
Zhang, K. R., Zhu, F. R., Huan, C. H., A., Wee, A. T. S., and Osipowicz, T., Indium-doped zinc oxide films prepared by simultaneous r.f. and d.c. magnetron sputtering, Surface and Interface Analysis, 28 (1), 271-274, 1999.