研究生: |
馮啟皓 Feng, Chi-Hao |
---|---|
論文名稱: |
交聯結構之聚醚擬固態高分子電解質合成鑑定與其於鋰電池之應用 Synthesis and Characterization of Cross-Linked Network Polyether-Based Quasi-Solid-State Polymer Electrolytes for Lithium Batteries |
指導教授: |
郭炳林
Kuo, Ping-Lin |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 116 |
中文關鍵詞: | 高分子電解質 、聚醚高分子 、無機添加物 、複合性高分子電解質 、鋰電池 |
外文關鍵詞: | polymer electrolytes, polyether, non-organic fillers, composite polymer electrolytes, lithium battery |
相關次數: | 點閱:40 下載:1 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用自由基聚合法製備交聯結構之聚醚高分子,以直接塗佈於磷酸鋰鐵電極表面的方式進行聚合反應,製備擬固態高分子電解質應用於鋰金屬電池中。在TGA與DSC分析中發現,交聯高分子主體具有良好的熱穩定性,藉由改變主結構的高分子混合比例,能夠降低系統的結晶性,有助於鋰離子的傳遞;其離子傳導度在60℃可達1.31×10-3 S cm-1、電化學穩定視窗可達5.2 V且具有良好的電化學可逆性,而鋰離子遷移率更高達約0.6。於鋰金屬電池充放電效能測試中亦有優良的表現,在3C放電速率下可保有91.3 %的電容維持率(相對於0.1C ),在長效循環充放電120圈後仍有91.9%的電容維持率,庫倫效率維持於98% 以上,但由於塑化劑與鋰金屬所具有的反應性,使得電池於循環充放電200圈後電容維持率降至76.1%。後續進一步導入無機材料製備複合性高分子電解質,於離子傳導度測試中發現混摻無機材料後傳導度值確有增加,但混摻比例不宜過高,會造成界面阻抗增加與極化現象的加劇。導入SiO2材料後雖然造成快速充放電效能有所下降,但能夠提高電解質系統的穩定性,將長效循環充放電200圈的電容維持率提升至85.8%。經由SEM影像觀察充放電後鋰金屬表面與截面,相較於一般液態電解質生成明顯鋰支晶層,使用本研究之固態高分子電解質則無明顯鋰支晶生成,於鋰金屬表面產生平整之SEI層。由以上所述可歸納本研究所製備固態高分子電解質具備優異的電化學特性,亦能夠抑制鋰支晶的生成,可應用於鋰金屬電池系統。
We synthesized the cross-linked network polyether-based polymer electrolytes through the free-radical polymerization. By direct coating the polymer electrolytes on the cathode surface, we obtain quasi-solid-state polymer electrolytes for lithium metal batteries. The TGA and DSC analysis show that the cross-linked polymer backbone have good thermal stability. We can decrease the crystallinity by changing the ratio of the cross-linker and mono-functional polyether, which can enhance the mobility of lithium ions. The polymer electrolytes exhibit high ion conductivity (1.31×10-3 S cm-1, at 60oC), good electrochemical stability (onset potential ~ 5.2V ) and the highest lithium transference number can reach about 0.6 . Of particular important is that the excellent capacity retention at the high discharge current (3C) can achieved 91.3% ( compare to 0.1C ). It also can endure long charge/discharge cycling. After 120 cycling, the capacity retention is 90.9% compare the initial one and keep the coulombic efficiency above 98%. Unfortunately, the capacity retention decay to 76.1% after 200 cycling because the poor compatibility of plasticizer and lithium metal.
In order to improve the cyclic performance, we introduced the non-organic fillers to obtain the composite polymer electrolytes. The ionic conductivity enhances by adding small amount of fillers. However, the polymer electrolytes would increase the interfacial resistance and the polarization when the dosage of fillers is more than 1%. The most significant improvement is that the retention can keep 85.8% after 200 cycling by adding SiO2 nanofillers. In addition, compared to the commercial liquid electrolytes, lithium dendrites formed ununiformed and roughness on the lithium metal surface after charge/discharge. The cross-linked polymer electrolytes show good ability to suppress the growth of lithium dendrites and stabilize the passivation layer. All the above-mentioned properties indicate that the cross-linked polymer electrolytes can be a good candidate of lithium metal batteries.
1 J-M Tarascon, and Michel Armand, 'Issues and Challenges Facing Rechargeable Lithium Batteries', in Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group (World Scientific, 2011), pp. 171-79.
2 Dominique Guyomard, and Jean‐Marie Tarascon, 'Rocking‐Chair or Lithium‐Ion Rechargeable Lithium Batteries', Advanced materials, 6 (1994), 408-12.
3 K Mizushima, PC Jones, PJ Wiseman, and John B Goodenough, 'Lixcoo2 (0< X<-1): A New Cathode Material for Batteries of High Energy Density', Materials Research Bulletin, 15 (1980), 783-89.
4 Sid Megahed, and Bruno Scrosati, 'Lithium-Ion Rechargeable Batteries', Journal of Power Sources, 51 (1994), 79-104.
5 Rob Matheson, 'Doubling Battery Power of Consumer Electronics', MIT News Office, (2016) <http://news.mit.edu/2016/lithium-metal-batteries-double-power-consumer-electronics-0817>.
6 Dingchang Lin, Yayuan Liu, and Yi Cui, 'Reviving the Lithium Metal Anode for High-Energy Batteries', Nature nanotechnology, 12 (2017), 194.
7 Pallavi Verma, Pascal Maire, and Petr Novák, 'A Review of the Features and Analyses of the Solid Electrolyte Interphase in Li-Ion Batteries', Electrochimica Acta, 55 (2010), 6332-41.
8 Hun Lee, Meltem Yanilmaz, Ozan Toprakci, Kun Fu, and Xiangwu Zhang, 'A Review of Recent Developments in Membrane Separators for Rechargeable Lithium-Ion Batteries', Energy & Environmental Science, 7 (2014), 3857-86.
9 Qingsong Wang, Ping Ping, Xuejuan Zhao, Guanquan Chu, Jinhua Sun, and Chunhua Chen, 'Thermal Runaway Caused Fire and Explosion of Lithium Ion Battery', Journal of power sources, 208 (2012), 210-24.
10 KM Abraham, 'Prospects and Limits of Energy Storage in Batteries', J. Phys. Chem. Lett, 6 (2015), 830-44.
11 Bruno Scrosati, Applications of Electroactive Polymers. Vol. 75 (Springer, 1993).
12 Martin M Hiller, Ann-Christin Gentschev, Marius Amereller, Heiner Gores, Martin Winter, and Hans D Wiemhöfer, 'Salt-in-Polymer Electrolytes Based on Polysiloxanes for Lithium-Ion Cells: Ionic Transport and Electrochemical Stability', ECS Transactions, 33 (2011), 3-15.
13 Long Chen, Yutao Li, Shuai-Peng Li, Li-Zhen Fan, Ce-Wen Nan, and John B Goodenough, 'Peo/Garnet Composite Electrolytes for Solid-State Lithium Batteries: From “Ceramic-in-Polymer” to “Polymer-in-Ceramic”', Nano Energy (2017).
14 Chaofeng Liu, Zachary G Neale, and Guozhong Cao, 'Understanding Electrochemical Potentials of Cathode Materials in Rechargeable Batteries', Materials Today, 19 (2016), 109-23.
15 Zhigang Xue, Dan He, and Xiaolin Xie, 'Poly (Ethylene Oxide)-Based Electrolytes for Lithium-Ion Batteries', Journal of Materials Chemistry A, 3 (2015), 19218-53.
16 DE Fenton, JM Parker, and PV Wright, 'Complexes of Alkali Metal Ions with Poly (Ethylene Oxide)', polymer, 14 (1973), 589.
17 Zlatka Gadjourova, Yuri G Andreev, David P Tunstall, and Peter G Bruce, 'Ionic Conductivity in Crystalline Polymer Electrolytes', Nature, 412 (2001), 520.
18 Ana Maria Rocco, Carla Polo da Fonseca, and Robson Pacheco Pereira, 'A Polymeric Solid Electrolyte Based on a Binary Blend of Poly (Ethylene Oxide), Poly (Methyl Vinyl Ether-Maleic Acid) and Liclo4', Polymer, 43 (2002), 3601-09.
19 Katherine P Barteau, Martin Wolffs, Nathaniel A Lynd, Glenn H Fredrickson, Edward J Kramer, and Craig J Hawker, 'Allyl Glycidyl Ether-Based Polymer Electrolytes for Room Temperature Lithium Batteries', Macromolecules, 46 (2013), 8988-94.
20 Kuk Young Cho, Kyoung-Hee Lee, and Jung-Ki Park, 'Preparation, Characterization, and Ion Conductivities of the Polymer Electrolytes Based on Poly (Ethylene Oxide)-G-Poly (Ethylene Glycol)', Polymer journal, 32 (2000), 537.
21 HS Choe, J Giaccai, M Alamgir, and KM Abraham, 'Preparation and Characterization of Poly (Vinyl Sulfone)-and Poly (Vinylidene Fluoride)-Based Electrolytes', Electrochimica Acta, 40 (1995), 2289-93.
22 JY Song, YY Wang, and C Cv Wan, 'Review of Gel-Type Polymer Electrolytes for Lithium-Ion Batteries', Journal of Power Sources, 77 (1999), 183-97.
23 A Manuel Stephan, 'Review on Gel Polymer Electrolytes for Lithium Batteries', European polymer journal, 42 (2006), 21-42.
24 Zhaoxiang Wang, Biying Huang, Sumin Wang, Rongjian Xue, Xuejie Huang, and Liquan Chen, 'Competition between the Plasticizer and Polymer on Associating with Li+ Ions in Polyacrylonitrile‐Based Electrolytes', Journal of The Electrochemical Society, 144 (1997), 778-86.
25 F Groce, F Gerace, G Dautzemberg, S Passerini, GB Appetecchi, and B Scrosati, 'Synthesis and Characterization of Highly Conducting Gel Electrolytes', Electrochimica Acta, 39 (1994), 2187-94.
26 F Croce, and B Scrosati, 'Interfacial Phenomena in Polymer-Electrolyte Cells: Lithium Passivation and Cycleability', Journal of power sources, 43 (1993), 9-19.
27 GB Appetecchi, and B Scrosati, 'A Lithium Ion Polymer Battery', Electrochimica acta, 43 (1998), 1105-07.
28 T Iijima, Y Toyoguchi, and N Eda, 'Quasi-Solid Organic Electrolytes Gelatinized with Polymethyl-Methacrylate and Their Applications for Lithium Batteries', Denki Kagaku, 53 (1985), 619-23.
29 PE Stallworth, SG Greenbaum, F Croce, S Slane, and M Salomon, 'Lithium-7 Nmr and Ionic Conductivity Studies of Gel Electrolytes Based on Poly (Methylmethacrylate)', Electrochimica acta, 40 (1995), 2137-41.
30 Shan Cheng, Derrick M Smith, Qiwei Pan, Shijun Wang, and Christopher Y Li, 'Anisotropic Ion Transport in Nanostructured Solid Polymer Electrolytes', RSC Advances, 5 (2015), 48793-810.
31 Li-Zhen Fan, Xiao-Liang Wang, and Fei Long, 'All-Solid-State Polymer Electrolyte with Plastic Crystal Materials for Rechargeable Lithium-Ion Battery', Journal of Power Sources, 189 (2009), 775-78.
32 Pierre-Jean Alarco, Yaser Abu-Lebdeh, Ali Abouimrane, and Michel Armand, 'The Plastic-Crystalline Phase of Succinonitrile as a Universal Matrix for Solid-State Ionic Conductors', Nature Materials, 3 (2004), 476.
33 Guopeng Fu, and Thein Kyu, 'Effect of Side-Chain Branching on Enhancement of Ionic Conductivity and Capacity Retention of a Solid Copolymer Electrolyte Membrane', Langmuir, 33 (2017), 13973-81.
34 Ali Abouimrane, Yaser Abu-Lebdeh, Pierre-Jean Alarco, and Michel Armand, 'Plastic Crystal-Lithium Batteries: An Effective Ambient Temperature All-Solid-State Power Source', Journal of The Electrochemical Society, 151 (2004), A1028-A31.
35 Ruixuan He, Fang Peng, William E Dunn, and Thein Kyu, 'Chemical and Electrochemical Stability Enhancement of Lithium Bis (Oxalato) Borate (Libob)-Modified Solid Polymer Electrolyte Membrane in Lithium Ion Half-Cells', Electrochimica Acta, 246 (2017), 123-34.
36 Hongyun Yue, Jingxian Li, Qiuxian Wang, Chengbin Li, Jian Zhang, Qianhui Li, Xiangnan Li, Huishuang Zhang, and Shuting Yang, 'Sandwich-Like Poly (Propylene Carbonate)-Based Electrolyte for Ambient-Temperature Solid-State Lithium Ion Batteries', ACS Sustainable Chemistry & Engineering, 6 (2017), 268-74.
37 Yun-Sheng Ye, John Rick, and Bing-Joe Hwang, 'Ionic Liquid Polymer Electrolytes', Journal of Materials Chemistry A, 1 (2013), 2719-43.
38 Joon-Ho Shin, Wesley A Henderson, and Stefano Passerini, 'An Elegant Fix for Polymer Electrolytes', Electrochemical and solid-state letters, 8 (2005), A125-A27.
39 Hikari Sakaebe, Hajime Matsumoto, and Kuniaki Tatsumi, 'Application of Room Temperature Ionic Liquids to Li Batteries', Electrochimica Acta, 53 (2007), 1048-54.
40 Ketack Kim, Young-Hyun Cho, and Heon-Cheol Shin, '1-Ethyl-1-Methyl Piperidinium Bis (Trifluoromethanesulfonyl) Imide as a Co-Solvent in Li-Ion Batteries', Journal of Power Sources, 225 (2013), 113-18.
41 R-S Kühnel, N Böckenfeld, S Passerini, M Winter, and A Balducci, 'Mixtures of Ionic Liquid and Organic Carbonate as Electrolyte with Improved Safety and Performance for Rechargeable Lithium Batteries', Electrochimica Acta, 56 (2011), 4092-99.
42 Jakub Reiter, Martina Nádherná, and Robert Dominko, 'Graphite and Lico1/3mn1/3ni1/3o2 Electrodes with Piperidinium Ionic Liquid and Lithium Bis (Fluorosulfonyl) Imide for Li-Ion Batteries', Journal of power sources, 205 (2012), 402-07.
43 KM Abraham, Z Jiang, and B Carroll, 'Highly Conductive Peo-Like Polymer Electrolytes', Chemistry of materials, 9 (1997), 1978-88.
44 Hui Wang, Masaki Matsui, Yasuo Takeda, Osamu Yamamoto, Dongmin Im, Dongjoon Lee, and Nobuyuki Imanishi, 'Interface Properties between Lithium Metal and a Composite Polymer Electrolyte of Peo18li (Cf3so2) 2n-Tetraethylene Glycol Dimethyl Ether', Membranes, 3 (2013), 298-310.
45 Luca Porcarelli, Claudio Gerbaldi, Federico Bella, and Jijeesh Ravi Nair, 'Super Soft All-Ethylene Oxide Polymer Electrolyte for Safe All-Solid Lithium Batteries', Scientific reports, 6 (2016), 19892.
46 H Wang, D Im, DJ Lee, M Matsui, Y Takeda, O Yamamoto, and N Imanishi, 'A Composite Polymer Electrolyte Protect Layer between Lithium and Water Stable Ceramics for Aqueous Lithium-Air Batteries', Journal of The Electrochemical Society, 160 (2013), A728-A33.
47 J Kříž, S Abbrent, J Dybal, D Kurková, J Lindgren, J Tegenfeldt, and Å Wendsjö, 'Nature and Dynamics of Lithium Ion Coordination in Oligo (Ethylene Glycol) Dimethacrylate-Solvent Systems: Nmr, Raman, and Quantum Mechanical Study', The Journal of Physical Chemistry A, 103 (1999), 8505-15.
48 F Croce, L Persi, B Scrosati, F Serraino-Fiory, E Plichta, and MA Hendrickson, 'Role of the Ceramic Fillers in Enhancing the Transport Properties of Composite Polymer Electrolytes', Electrochimica Acta, 46 (2001), 2457-61.
49 PARD Jayathilaka, MAKL Dissanayake, I Albinsson, and B-E Mellander, 'Effect of Nano-Porous Al2o3 on Thermal, Dielectric and Transport Properties of the (Peo) 9litfsi Polymer Electrolyte System', Electrochimica acta, 47 (2002), 3257-68.
50 J-M Tarascon, AS Gozdz, C Schmutz, F Shokoohi, and PC Warren, 'Performance of Bellcore's Plastic Rechargeable Li-Ion Batteries', Solid State Ionics, 86 (1996), 49-54.
51 K Vignarooban, MAKL Dissanayake, I Albinsson, and B-E Mellander, 'Effect of Tio 2 Nano-Filler and Ec Plasticizer on Electrical and Thermal Properties of Poly (Ethylene Oxide)(Peo) Based Solid Polymer Electrolytes', Solid State Ionics, 266 (2014), 25-28.
52 Wei Wang, and Paschalis Alexandridis, 'Composite Polymer Electrolytes: Nanoparticles Affect Structure and Properties', Polymers, 8 (2016), 387.
53 Erqing Zhao, Furui Ma, Yongcheng Jin, and Kiyoshi Kanamura, 'Pechini Synthesis of High Ionic Conductivity Li1. 3al0. 3ti1. 7 (Po4) 3 Solid Electrolytes: The Effect of Dispersant', Journal of Alloys and Compounds, 680 (2016), 646-53.
54 Kai Chen, Mian Huang, Yang Shen, Yuanhua Lin, and CW Nan, 'Enhancing Ionic Conductivity of Li0. 35la0. 55tio3 Ceramics by Introducing Li7la3zr2o12', Electrochimica Acta, 80 (2012), 133-39.
55 Alexandre Dumon, Mian Huang, Yang Shen, and Ce-Wen Nan, 'High Li Ion Conductivity in Strontium Doped Li7la3zr2o12 Garnet', Solid State Ionics, 243 (2013), 36-41.
56 Chih-Long Tsai, Vladimir Roddatis, C Vinod Chandran, Qianli Ma, Sven Uhlenbruck, Martin Bram, Paul Heitjans, and Olivier Guillon, 'Li7la3zr2o12 Interface Modification for Li Dendrite Prevention', ACS applied materials & interfaces, 8 (2016), 10617-26.
57 Qingpeng Guo, Yu Han, Hui Wang, Shizhao Xiong, Yujie Li, Shuangke Liu, and Kai Xie, 'New Class of Lagp-Based Solid Polymer Composite Electrolyte for Efficient and Safe Solid-State Lithium Batteries', ACS applied materials & interfaces, 9 (2017), 41837-44.
58 Stefan Breuer, Denise Prutsch, Qianli Ma, Viktor Epp, Florian Preishuber-Pflügl, Frank Tietz, and Martin Wilkening, 'Separating Bulk from Grain Boundary Li Ion Conductivity in the Sol–Gel Prepared Solid Electrolyte Li 1.5 Al 0.5 Ti 1.5 (Po 4) 3', Journal of Materials Chemistry A, 3 (2015), 21343-50.
59 K. Takada, 'Secondary Batteries – Lithium Rechargeable Systems – Lithium-Ion | Electrolytes: Solid Oxide', Encyclopedia of Electrochemical Power Sources (2009), 328-36.
60 Xiayin Yao, Bingxin Huang, Jingyun Yin, Gang Peng, Zhen Huang, Chao Gao, Deng Liu, and Xiaoxiong Xu, 'All-Solid-State Lithium Batteries with Inorganic Solid Electrolytes: Review of Fundamental Science', Chinese Physics B, 25 (2015), 018802.
61 Goran Nikolic, Sasa Zlatkovic, Milorad Cakic, Suzana Cakic, Caslav Lacnjevac, and Zoran Rajic, 'Fast Fourier Transform Ir Characterization of Epoxy Gy Systems Crosslinked with Aliphatic and Cycloaliphatic Eh Polyamine Adducts', Sensors, 10 (2010), 684-96.
62 辜佩儀, and 張豐志, '合成雙親性團聯共聚合物並製備蜂窩狀多孔性薄膜' (2006).
63 HS Eleuterio, 'Us 3074918 (1957) Du Pont De Neumous & Co', in Chem Abstr (1961), p. 16005.
64 Larry L Hench, and Jon K West, 'The Sol-Gel Process', Chemical reviews, 90 (1990), 33-72.
65 Jianye Wen, and Garth L Wilkes, 'Organic/Inorganic Hybrid Network Materials by the Sol− Gel Approach', Chemistry of Materials, 8 (1996), 1667-81.
66 C Jeffrey Brinker, 'Hydrolysis and Condensation of Silicates: Effects on Structure', Journal of Non-Crystalline Solids, 100 (1988), 31-50.
67 Roger A Assink, and Bruce D Kay, 'Sol-Gel Kinetics I. Functional Group Kinetics', Journal of Non-Crystalline Solids, 99 (1988), 359-70.
68 Ralph K Iler, The Chemistry of Silica: Solubility, Polimerization, Colloid and Surface Properties, and Biochemistry (Wiley Interscience, 1979).
69 Donald A Dornbusch, Ramsey Hilton, Michael J Gordon, and Galen J Suppes, 'Effects of Sonication on Eis Results for Zinc Alkaline Batteries', ECS Electrochemistry Letters, 2 (2013), A89-A92.
70 James Evans, Colin A Vincent, and Peter G Bruce, 'Electrochemical Measurement of Transference Numbers in Polymer Electrolytes', Polymer, 28 (1987), 2324-28.
71 Yoichi Tominaga, Kenta Yamazaki, and Vannasa Nanthana, 'Effect of Anions on Lithium Ion Conduction in Poly (Ethylene Carbonate)-Based Polymer Electrolytes', Journal of The Electrochemical Society, 162 (2015), A3133-A36.
72 Yong-Tae Kim, and Eugene S Smotkin, 'The Effect of Plasticizers on Transport and Electrochemical Properties of Peo-Based Electrolytes for Lithium Rechargeable Batteries', Solid State Ionics, 149 (2002), 29-37.
73 Jonas Mindemark, Bing Sun, Erik Törmä, and Daniel Brandell, 'High-Performance Solid Polymer Electrolytes for Lithium Batteries Operational at Ambient Temperature', Journal of Power Sources, 298 (2015), 166-70.
74 Shi Wang, Ailian Wang, Xu Liu, Hao Xu, Jie Chen, and Liaoyun Zhang, 'Ordered Mesogenic Units-Containing Hyperbranched Star Liquid Crystal All-Solid-State Polymer Electrolyte for High-Safety Lithium-Ion Batteries', Electrochimica Acta, 259 (2018), 213-24.
75 Anthony J D’Angelo, and Matthew J Panzer, 'Enhanced Lithium Ion Transport in Poly (Ethylene Glycol) Diacrylate-Supported Solvate Ionogel Electrolytes Via Chemically Cross-Linked Ethylene Oxide Pathways', The Journal of Physical Chemistry B, 121 (2017), 890-95.
76 Qingwen Lu, Yan‐Bing He, Qipeng Yu, Baohua Li, Yusuf Valentino Kaneti, Youwei Yao, Feiyu Kang, and Quan‐Hong Yang, 'Dendrite‐Free, High‐Rate, Long‐Life Lithium Metal Batteries with a 3d Cross‐Linked Network Polymer Electrolyte', Advanced Materials, 29 (2017).
77 Sanjuna Stalin, Snehashis Choudhury, Kaihang Zhang, and Lynden A Archer, 'Multifunctional Cross-Linked Polymeric Membranes for Safe, High-Performance Lithium Batteries', Chemistry of Materials, 30 (2018), 2058-66.
78 Wei Liu, Ryan Milcarek, Kang Wang, and Jeongmin Ahn, 'Novel Structured Electrolyte for All-Solid-State Lithium Ion Batteries', in ASME 2015 13th International Conference on Fuel Cell Science, Engineering and Technology collocated with the ASME 2015 Power Conference, the ASME 2015 9th International Conference on Energy Sustainability, and the ASME 2015 Nuclear Forum (American Society of Mechanical Engineers, 2015), pp. V001T02A02-V01T02A02.
79 Jinfeng Sun, Zhiqiang Xu, Weifeng Li, and Xiaodong Shen, 'Effect of Nano-Sio2 on the Early Hydration of Alite-Sulphoaluminate Cement', Nanomaterials, 7 (2017), 102.
80 PC Soares, PAP Nascente, and ED Zanotto, 'Xps Study of Lithium Disilicate Glass Crystallisation', Physics and chemistry of glasses, 43 (2002), 143-46.
81 Etienne Radvanyi, Eric De Vito, Willy Porcher, and Séverine Jouanneau Si Larbi, 'An Xps/Aes Comparative Study of the Surface Behaviour of Nano-Silicon Anodes for Li-Ion Batteries', Journal of Analytical Atomic Spectrometry, 29 (2014), 1120-31.
82 Etienne Radvanyi, Willy Porcher, Eric De Vito, Alexandre Montani, Sylvain Franger, and Séverine Jouanneau Si Larbi, 'Failure Mechanisms of Nano-Silicon Anodes Upon Cycling: An Electrode Porosity Evolution Model', Physical Chemistry Chemical Physics, 16 (2014), 17142-53.
83 Le-Zhi Huang, Zhao-Yin Wen, Jun Jin, and Yu Liu, 'Preparation and Characterization of Peo-Latp/Lagp Ceramic Composite Electrolyte Membrane for Lithium Batteries', Wuji Cailiao Xuebao(Journal of Inorganic Materials), 27 (2012), 249-52.
84 Jianyu Liu, Tao Liu, Yujie Pu, Mingming Guan, Zhiyuan Tang, Fei Ding, Zhibin Xu, and Yang Li, 'Facile Synthesis of Nasicon-Type Li 1.3 Al 0.3 Ti 1.7 (Po 4) 3 Solid Electrolyte and Its Application for Enhanced Cyclic Performance in Lithium Ion Batteries through the Introduction of an Artificial Li 3 Po 4 Sei Layer', RSC Advances, 7 (2017), 46545-52.