| 研究生: |
林昇志 Lin, Sheng-Chih |
|---|---|
| 論文名稱: |
量子點的組裝及其在染料敏化太陽能電池的應用 The Assembly of Quantum Dots and It’s Application in Dye-sensitized Solar Cell |
| 指導教授: |
李玉郎
Lee, Yuh-Lang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 104 |
| 中文關鍵詞: | 量子點組裝 、硫化鎘量子點 、染料敏化太陽能電池 、自組裝單分子膜 、化學浴沈積法 |
| 外文關鍵詞: | Cadmium sulfide quantum dot, Dye-sensitized Solar Cells, Quantum dot assembly, Self-assembly monolayers, Chemical bath deposition |
| 相關次數: | 點閱:89 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文利用硫化鎘量子點(CdS quantum dots)作為染料敏化太陽能電池(Dye-sensitized Solar Cells, DSSCs)的光敏化劑,並研究CdS量子點的沈積製程對電池效率的影響。在CdS量子點的合成方面,在微乳化系統中成功合成出4-6nm大小且分散均一的粒子。而在CdS量子點的沈積方面,利用原子力顯微鏡觀察發現在TiO2薄膜上事先利用帶有硫醇官能基的矽氧烷分子作表面修飾後,能使CdS量子點有效且完整的覆蓋在TiO2薄膜表面,形成量子點的自組裝單分子層(self-assembly quantum dot monolayers),之後再利用化學浴沈積法(Chemical Bath Deposition, CBD)持續沈積CdS量子點,並研究CBD層數對電池的短路電流(short-circuit current)、開路電壓(open-circuit potential)以及效率的影響。實驗結果發現在5次的CBD製程後,可得到最高的短路電流(3.44mA/cm2)、開路電壓(657mV)以及1.35%的電池效率。此效率值已超越目前文獻中量子點敏化太陽能電池的最高紀錄。在不照光的環境下,經量測電流電壓曲線發現CdS量子點的自組裝單分子層薄膜具有一能障(energy barrier)能抑制激發電子回到量子點的基態能階與電解質中,降低電子電洞再結合的機率,故能得到最佳效率。另外也對TiO2薄膜厚度作關於吸收光譜、穿透度以及電性的分析,發現在此系統中,厚度為5.51μm的TiO2薄膜能得到最高短路電流與最高效率。
In this study, cadmium sulfide quantum dots (CdS QDs) were used as a sensitizer of dye-sensitized Solar Cells (DSSCs). The effect of assembly technique of CdS QDs on the cell efficiency was studied in this work.
We successfully synthesized uniform dispersed CdS QDs of 4-6nm in diameter by a microemulsion process. A self-assembly monolayer was first formed on TiO2 surface, which leaves a pending thiol group for anchoring the CdS QDs. The assembly of the QDs on the SAM-modified TiO2 surface was confirmed by the analysis of atomic force microscopy. After forming the “self-assembly QD monolayer”, CdS QDs were further deposited by chemical bath deposition (CBD) and the cell efficiency was studied as function of the CBD layers. The result showed that the highest short-circuit current(3.44mA/cm2), open-circuit potential(657mV), and highest cell efficiency(1.35%), appeared at 5 layers of CBD coating. According to the current-voltage characteristic measured in dark space, we found the existence of an energy barrier due to the self-assembly QD monolayers, which plays a role to inhibit the recombination effect of excited electrons to the holes in CdS QDs and to the electrolyte. Therefore we conclude that the high efficiency of the solar cell is attributed to the effect of self-assembly QD monolayers in reducing the probability of electron-hole pair recombination. In addition to the above studies, the optimum thickness of TiO2 film was also studied and a thickness of 5.51μm was found to perform best in the DSSCs.
1.M. Grätzel, “Powering the planet” Nature 403, 363, 2000
2.B. O’Regan, M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films” Nature 353, 737, 1991
3.高濂, 鄭珊, 張青紅, 奈米光觸媒, 五南圖書, 2004
4.W. W. Yu, X. Peng, “Formation of High-Quality CdS and Other II-VI Semiconductor Nanocrystals in Noncoordinating Solvents: Tunable Reactivity of Monomers” Angew. Chem. Int. Ed. 41(13), 2368, 2002
5.Y. Wang, N. Herron, “Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties” J. Phys. Chem. 95, 525, 1991
6.R. Rossetti, J. L. Ellison, J. M. Gibson, L. E. Brus, “Size effects in the excited electronic states of small colloidal CdS crystallites” J. Chem. Phys. 80, 4464, 1983
7.W. W. Yu, L. Qu, W. Guo, X. Peng, “Wxperimental Determination of the Extinction Coefficient of CdTe, CdSe, and CdS Nanocrystals” Chem. Mater. 15, 2854, 2003
8.A. J. Nozik, “Quantum dot solar cells” Physica E 14, 115, 2002
9.R. D. Schaller, V. I. Klimov, “High Efficiency Carrier Multiplication in PbSe Nanocrystals: Implications for Solar Energy Conversion” Phys. Rev. Lett. 92(18), 186601, 2004
10.I. Gur, N. A. Fromer, M. L. Geier, A. P. Alivisatos, “Air-Stable All-Inorganic Nanocrystal Solar Cells Processed from Solution” Science 310, 462, 2005
11.S. K. Haram, A. J. Bard, “Scanning Electrochemical Microscopy. 42. Studies of the Kinetics and Photoelectrochemistry of Thin Film CdS/Electrolyte Interface” J. Phys. Chem. B 105, 8192, 2001
12.M. L. Breen, J. T. Woodward, IV, D. K. Schwartz, “Direct Evidence for an Ion-by-Ion Deposition Mechanism in Solution Growth of CdS Thin Films” Chem. Mater. 10, 710, 1998
13.P. O’Brien, J. McAleese, “Developing an understanding of the processes controlling the chemical bath deposition of ZnS and CdS” J. Mater. Chem. 8(11), 2309, 1998
14.J. L. Blackburn, D. C. Selmarten, A. J. Nozik, “Electron Transfer Dynamics in Quantum Dot/Titanium Dioxide Composites Formed by in-situ Chemical Bath Deposition” J. Phys. Chem. B 107, 14154, 2003
15.C. P. Collier, R. J. Saykally, J. J. Shiang, S. E. Henrichs, J. R. Heath, “Reversible Tuning of Silver Quantum Dot Monolayers Trough the Metal-Insulator Transition” Science 277, 1978, 1997
16.Z. Y. Pan, X. J. Liu, S. Y. Zhang, G. J. Shen, L. G. Zhang, Z. H. Lu, J. Z. Liu, “Controlled Growth of the Ordered Cadmium Sulfide Particulate Films and the Photoacoustics Investigation” J. Phys. Chem. B 101, 9703, 1997
17.A. Samokhvalov, R. W. Gurney, M. Lahav, R. Naaman, “Electronic Properties of Hybrid Organic/Inorganic Langmuir-Blodgett Films Containing CdS Quantum Particles” J. Phys. Chem. B 106, 9070, 2002
18.A. Samokhvalov, R. W. Gurney, M. Lahav, S. Cohen, H. Cohen, R. Naaman, “Charge Transfer between a Gold Substrate and CdS Nanoparticles Assembled in Hybrid Organic-Inorganic Films” J. Phys. Chem. B 107, 4245, 2003
19.P. Jiang, Z. F. Liu, S. M. Cai, “Growing Monodispersed PbS Nanoparticles on Self-Assembled Monolayers of 11-Mercaptoundecanoic Acid on Au(111) Substrate” Langmuir 18, 4495, 2002
20.M. Sastry, M. Rao, K. N. Ganesh, “Electrostatic Assembly of Nanoparticles and Biomarcromolecules” Acc. Chem. Res. 35, 847, 2002
21.L. Sheeney-Haj-Ichia, S. Pogorelova, Y. Gofer, I. Willner, “Enhanced Photoelectrochemistry in CdS/Au Nanoparticle Bilayers” Adv. Funct. Mater. 14(5), 416, 2004
22.L. Sheeney-Haj-Ichia, J. Wasserman, I. Willner, “CdS-Nanoparticle Architectures on Electrodes for Enhanced Photocurrent Generation” Adv. Mater. 14(18), 1323, 2002
23.L. Sheeney-Haj-Ichia, B. Basnar, I. Willner, “Efficient Generation of Photocurrents by Using CdS/Carbon Nanotube Assemblies on Electrodes” Angew. Chem. Int. Ed. 44, 78, 2005
24.M. Lahav, V. H. Shabtai, J. Wasserman, E. Katz, I. Willner, H. Dürr, Y. Z. Hu, S. H. Bossmann, “Photoelectrochemistry with Integrated Photosensitizer-Electron Acceptor and Au-Nanoparticle Arrays” J. Am. Chem. Soc. 122, 11480, 2000
25.H. Haick, M. Ambrico, T. Ligonzo, D. Cahen, “Discontinuous Molecular Films Can Control Metal/Semiconductor Junctions” Adv. Mater. 16(23-24), 2145, 2004
26.A. Vilan, A. Shanzer, D. Cahen, “Molecular control over Au/GaAs diodes” Nature 404, 166, 2000
27.J. Zhu, M. Zhou, J. Xu, X. Liao, “Preparation of CdS and ZnS nanoparticles using microwave irradiation” Mater. Lett. 47, 25, 2001
28.R. He, X. Qian, J. Yin, H. Xi, L. Bian, Z. Zhu, “Formation of monodispersed PVP-capped ZnS and CdS nanocrystals under microwave irradiation” Colloids and Surface A: Physicochem. Eng. Aspects 220, 151, 2003
29.Y. C. Cao, J. Wang, “One-Pot Synthesis of High-Quality Zinc-Blende CdS Nanocrystals” J. Am. Chem. Soc. 126, 14336, 2004
30.L. Qu, Z. A. Peng, X. Peng, “Alternative Routes toward High Quality CdSe Nanacrystals” Nano Lett. 1(6), 333, 2001
31.Z. A. Peng, X. Peng, “Formation of High-Quality CdTe, CdSe, and CdS Nanocrystals Using CdO as Precursor” J. Am. Chem. Soc. 123, 183, 2001
32.M. Lazell, P. O’Brien, “A novel single source precursor route to self capping CdS quantum dots” ChemComm. 2041, 1999
33.N. Pradhan, S. Efrima, “Single-Precursor, One-Pot Versatile Synthesis under near Ambient Conditions of Tunable, Single and Dual Band Fluorescing Metal Sulfide Nanopaticles” J. Am. Chem. Soc. 125, 2050, 2003
34.J. Joo, H. B. Na, T. Yu, J. H. Yu, Y. W. Kim, F. Wu, J. Z. Zhang, T. Hyeon, “Generalized and Facile Synthesis of Semiconducting Metal Sulfide Nanocrystals” J. Am. Chem. Soc. 125, 11100, 2003
35.S. Besson, T. Gacoin, C. Ricolleau, C. Jacquiod, J. P. Boilot, “3D Quantum Dot Lattice Inside Mesoporous Silica Films” Nano Lett. 2(4), 409, 2002
36.Y. Nagasaki, T. Ishii, Y. Sunaga, Y. Watanabe, H. Otsuka, K. Kataoka, “Novel Molecular Recognition via Fluorescent Resonance Energy Transfer Using a Biotin – PEG/Polyamine Stabilized CdS Quantum Dot” Langmuir 20, 6396, 2004
37.S. C. Farmer, T. E. Patten, “Photoluminescence Polymer/Quantum Dot Composite Nanoparticles” Chem. Mater. 2001, vol.13, 3920
38.L. Bakueva, I. Gorelikov, S. Musikhin, X. S. Zhao, E. H. Sargent, “PbS Quantum Dots with Stable Efficient Luminescence in the Near-IR Spectral Range” Adv. Mater. 16(11), 926, 2004
39.X. S. Zhao, I. Gorelikov, S. Musikhin, S. Cauchi, V. Sukhovatkin, E. H. Sargent, E. Kumacheva, “Synthesis and Optical properties of Thiol-Stabilized PbS Nanocrystals” Langmuir 21, 1086. 2005
40.Q. Lu, F. Gao, D. Zhao, “The assembly of semiconductor sulfide nanocrystallites with organic reagents as templates” Nanotechnology 13, 741, 2002
41.A. Agostiano, M. Catalano, M. L. Curri, M. D. Monica, L. Manna, L. Vasanelli, “Synthesis and structural characterization of CdS nanoparticles prepared in a four-components water-in-oil microemulsion” Micron 31, 253, 2000
42.J. Zhang, L. Sun, C. Liao, C. Yan, “Size control and photoluminescence enhancement of CdS nanoparticles prepared via reverse micelle method” Solid State Comm. 124, 45, 2002
43.A. R. Loukanov, C. D. Dushkin, K. I. Papazova, A. V. Kirov, M. V. Abrashev, E. Adachi, “Photoluminescence depending on the ZnS shell thickness of CdS/ZnS core-shell semiconductor nanoparticles” Colloids and Surface A: Physicochem. Eng. Aspects 245, 9, 2004
44.E. Caponetti, L. Pedone, D. C. Martino, V. Panto, V. T. Liveri, “Synthesis, size control, and passivation of CdS nanoparticles in water/AOT/n-heptane microemulsions” Mater. Sci. and Eng. C 23, 531, 2003
45.M. L. Curri, A. Agostiano, F. Mavelli, M. D. Monica, “Reverse micellar system: self organized assembly as effective route for the synthesis of colloidal semiconductor nanocrystals” Mater. Sci. and Eng. C 22, 423, 2002
46.H. Sato, N. Asaji, I. Komasawa, “A Population Balance Approach for Particle Coagulation in Reverse Micelles” Ind. Eng. Chem. Res. 39, 328, 2000
47.J. Wu, G. Li, Z. Zhang, G. Zhou, K. Ji, “A study of the microstructure of CTAB/1-butanol/octane/water system by PGSE-NMR, conductivity and cryo-TEM” Colloids and Surface A: Physicochem. Eng. Aspects 191, 269, 2001
48.W. Xu, D. L. Akins, “Reverse micellar synthesis of CdS nanoparticles and self-assembly into a superlattice” Mater. Lett. 58, 2623, 2004
49.P. Calandra, A. Longo, V. T. Liveri, “Synthesis of Ultra-small ZnS Nanaparticles by Solid-Solid Reaction in the Confined Space of AOT Reversed Micelles” J. Phys. Chem. B 107, 25, 2003
50.M. L. Curri, A. Agostiano, L. Manna, M. D. Monica, M. Catalano, L. Chiavarone, V. Spagnolo, M. Lugarà, “Synthesis and Characterization of CdS Nanoclusters in a Quaternary Microemulsion: the Role of the Cosurfactant” J. Phys. Chem. B 104, 8391, 2000
51.M. Giustini, G. Palazzo, G. Colafemmina, M. D. Monica, M. Giomini, A. Ceglie, “Microstructure and Dynamics of the Water-in-Oil CTAB/n-Pentanol/n-Hexane/Water Microemulsion: A Spectroscopic and Conductivity Study” J. Phys. Chem. B 100, 3190, 1996
52.J. Lin, W. Zhou, C. J. O’Connor, “Formation of ordered arrays of gold nanoparticles from CTAB reverse micells” Mater. Lett. 49, 282, 2001
53.H. Li, Y. Zhu, S. Chen, O. Palchik, J. Xiong, Y. Koltypin, Y. Gofer, A. Gedanken, “A novel ultrasound-assisted approach to the synthesis of CdSe and CdS nanoparticles” J. Solid State Chem. 172, 102, 2003
54.D. Mondelaers, G. Vanhoyland, H. Van den Rul, J. D’Haen, M. K. Van Bael, J. Mullens, L. C. Van Poucke, “Synthesis of ZnO nanopowder via an aqueous acetate-citrate gelation method” Mater. Res. Bull. 37, 901, 2002
55.R. D. Purohit, B. P. Sharma, K. T. Pillai, A. K. Tyagi, “Ultrafine ceria powders via glycine-nitrate combustion” Mater. Res. Bull. 36, 2711, 2001
56.C. Julien, S. S. Michael, S. Ziolkiewicz, “Structural and electrochemical properties of LiNi0.3Co0.7O2 synthesized by different loe-temperature techniques” J. Inorg. Mater. 1, 29, 1999
57.B. A. Harruff, C. E. Bunker, “Spectral Properties of AOT-protected CdS Nanaparticles: Quantum Yield Enhancement by Photolysis” Langmuir 19, 893, 2003
58.R. B. Khomane, A. Manna, A. B. Mandale, B. D. Kulkarni, “Synthesis and Characterization of Dodecanethiol-Capped Cadmium Sulfide Nanoparticles in a Winsor II Microemulsion of DiethylEther/AOT/Water” Langmuir 18, 8237, 2003
59.M. Grätzel, “Solar Energy Conversion by Dye-sensitized Photovoltaic Cells” Inorg. Chem. 44, 6841, 2005
60.W. Shockley, H. J. Queisser, “Detailed Balance Limit of Efficiency of p-n Junction Solar Cells” J. Appl. Phys. 32, 510, 1961
61.F. Hurd, R. Livingston, “The Quantum Yield of Some Dye-sensitized Photooxidations” J. Phys. Chem. 44, 865, 1940
62.H. Tsubomura, M. Matsumura, Y, Nomura, T. Amamiya, “Dye-sensitized zinc oxide/aqueous electrolyte/platinum photocell” Nature 261, 402, 1976
63.A. Hagfeldt, M. Grätzel, “Molecular Photovoltaics” Acc. Chem. Res. 33, 269, 2000
64.Md. K. Nazeeruddin, R. Humphry-Baker, P. Liska, M. Grätzel, “Investigation of Sensitizer Adsorption and the Influence of Photons on Current and Voltage of a Dye-Sensitized Nanocrystalline TiO2 Solar Cell” J. Phys. Chem. B 107, 8981, 2003
65.G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, C. A. Grimes, “Use of Highly-Ordered TiO2 Nanotube Arrays in Dye-Sensitized Solar Cells” Nano Lett. 6(2), 215, 2006
66.S. G. Chen, S. Chappel, Y. Diamant, A. Zaban, “Preparation of Nb2O5 Coated TiO2 Nanoporous Electrodes and Their Application in Dye-Sensitized Solar Cells” Chem. Mater. 13, 4629, 2001
67.H. Alarcón, G. Boschloo, P. Mendoza, J. L. Solis, A. Hagfeldt, “Dye-Sensitized Solar Cells Based on Nanocrystalline TiO2 Films Surface Treated with Al3+ Ions: Photovoltage and Electron Transport Studies” J. Phys. Chem. B 109, 18483, 2005
68.Y. Tian, T. Tatsuma, “Mechanisms and Applications of Plasmon-Induced Charge Separation at TiO2 Films Loaded with Gold Nanoparticles” J. Am. Chem. Soc. 127, 7632, 2005
69.K. G. U. Wijayantha, L. M. Peter, L. C. Otley, “Fabrication of CdS quantum dot sensitized solar cells via pressing route” Solar Energy Mater. & Solar Cells 83, 363, 2004
70.J. Tang, H. Birkedal, E. W. McFarland, G. D. Stucky, “Self-assembly of CdSe/CdS quantum dots by hydrogen bonding on Au surfaces for photoreception” Chem. Comm. 2278, 2003
71.D. Liu, P. V. Kamat, “Photoelectrochemical Behavior of Thin CdSe and Coupled TiO2/CdSe Semiconductor Films” J. Phys. Chem. 97, 10769, 1993
72.I. Roble, V. Subramanian, M. Kuno, P. V. Kamat, “Quantum Dot Solar Cells. Harvesting Light Energy with CdSe Nanocrystals Molecularly Linked to Mesoscopic TiO2 Films” J. Am. Chem. Soc. 128, 2385, 2006
73.Q. Shen, T. Toyoda, “Characterization of Nanostructured TiO2 Electrodes Sensitized with CdSe Quantum Dots Using Photoacoustic and Photoelectrochemical Current Methods” J. J. Appl. Phys. 43(5B), 2946, 2004
74.A. Zaban, O. I. Micic, B. A. Gregg, A. J. Nozik, “Photosensitization of Nanoporous TiO2 Electrodes with InP Quantum Dots” Langmuir 14, 3153, 1998
75.P. Hoyer, R. Könenkamp, “Photoconduction in porous TiO2 sensitized by PbS quantum dots” Appl. Phys. Lett. 66(3), 349, 1995
76.R. Plass, S. Pelet, J. Krueger, M. Grätzel, “Quantum Dot Sensitization of Organic-Inorganic Hybrid Solar Cells” J. Phys. Chem. B 106, 7578, 2002
77.S. A. McDonald, G. Konstantatos, S. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics” Nature Mater. 4, 138, 2005
78.R. Vogel, P. Hoyer, H. Weller, “Quantum-Sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 Particles as Sensitizers for Various Nanoporous Wide-Bandgap Semiconductors” J. Phys. Chem. 98, 3183, 1994
79.J. Krueger, U. Bach, M. Grätzel, “Modification of TiO2 Heterojunctions with Benzoic Acid Derivatives in Hybrid Molecular Solid-State Devices” Adv. Mater. 12(6), 447, 2000
80.M. Grätzel, “Photoelectrochemical Cells” Nature 414, 338, 2001
81.K. Kalyanasundaram, M. Grätzel, “Applications of functionalized transition metal complexes in photonic and optoelectronic devices” Coordin. Chem. Rev. 177, 347, 1998
82.B. H. Kim, J. H. Ahn, J. H. Jeong, Y. S. Jeon, O. K. Jeon, K. S. Kwan, “Preparation of TiO2 thin film on SnO2 glass by a spin coating-pyrolysis process” Ceram. Int. 32, 223, 2006
83.Q. Cai, M. Paulose, O. K. Varghese, C. A. Grimes, “The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation” J. Mater. Res. 20(1), 230, 2005
84.G. Wolfbauer, A. Bond, J. C. Eklund, D. R. MacFarlane, “A channel flow cell system specially designed to test the efficiency of redox shuttles in dye sensitized solar cell” Solar Energy Mater. & Solar Cells 70, 85, 2001
85.O. Kohle, M. Gratzel, A. F. Meyer, T. B. Meyer, “The Photovoltaic Stability of Bis (isothiocyanato) ruthenium (II)-bis-2,2´- bipyridine -4,4´-dicarboxylic Acid and Related Sensitizers” Adv. Mater. 9(11), 904, 1997
86.J. Krüger, R. Plass, L. Cevey, M. Piccirelli, M. Grätzel, “High efficiency solid-state photovoltaic device due to inhibition of interface charge recombination” Appl. Phys. Lett. 79(13), 2085, 2001.
87.C. C. Wang, J. Y. Ying, “Sol-gel Synthesis and Hydrothermal Processing of Anatase and Rutile Titania Nanocrystals” Chem. Mater. 11, 3113, 1999