簡易檢索 / 詳目顯示

研究生: 林昇志
Lin, Sheng-Chih
論文名稱: 量子點的組裝及其在染料敏化太陽能電池的應用
The Assembly of Quantum Dots and It’s Application in Dye-sensitized Solar Cell
指導教授: 李玉郎
Lee, Yuh-Lang
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 104
中文關鍵詞: 量子點組裝硫化鎘量子點染料敏化太陽能電池自組裝單分子膜化學浴沈積法
外文關鍵詞: Cadmium sulfide quantum dot, Dye-sensitized Solar Cells, Quantum dot assembly, Self-assembly monolayers, Chemical bath deposition
相關次數: 點閱:89下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用硫化鎘量子點(CdS quantum dots)作為染料敏化太陽能電池(Dye-sensitized Solar Cells, DSSCs)的光敏化劑,並研究CdS量子點的沈積製程對電池效率的影響。在CdS量子點的合成方面,在微乳化系統中成功合成出4-6nm大小且分散均一的粒子。而在CdS量子點的沈積方面,利用原子力顯微鏡觀察發現在TiO2薄膜上事先利用帶有硫醇官能基的矽氧烷分子作表面修飾後,能使CdS量子點有效且完整的覆蓋在TiO2薄膜表面,形成量子點的自組裝單分子層(self-assembly quantum dot monolayers),之後再利用化學浴沈積法(Chemical Bath Deposition, CBD)持續沈積CdS量子點,並研究CBD層數對電池的短路電流(short-circuit current)、開路電壓(open-circuit potential)以及效率的影響。實驗結果發現在5次的CBD製程後,可得到最高的短路電流(3.44mA/cm2)、開路電壓(657mV)以及1.35%的電池效率。此效率值已超越目前文獻中量子點敏化太陽能電池的最高紀錄。在不照光的環境下,經量測電流電壓曲線發現CdS量子點的自組裝單分子層薄膜具有一能障(energy barrier)能抑制激發電子回到量子點的基態能階與電解質中,降低電子電洞再結合的機率,故能得到最佳效率。另外也對TiO2薄膜厚度作關於吸收光譜、穿透度以及電性的分析,發現在此系統中,厚度為5.51μm的TiO2薄膜能得到最高短路電流與最高效率。

    In this study, cadmium sulfide quantum dots (CdS QDs) were used as a sensitizer of dye-sensitized Solar Cells (DSSCs). The effect of assembly technique of CdS QDs on the cell efficiency was studied in this work.
    We successfully synthesized uniform dispersed CdS QDs of 4-6nm in diameter by a microemulsion process. A self-assembly monolayer was first formed on TiO2 surface, which leaves a pending thiol group for anchoring the CdS QDs. The assembly of the QDs on the SAM-modified TiO2 surface was confirmed by the analysis of atomic force microscopy. After forming the “self-assembly QD monolayer”, CdS QDs were further deposited by chemical bath deposition (CBD) and the cell efficiency was studied as function of the CBD layers. The result showed that the highest short-circuit current(3.44mA/cm2), open-circuit potential(657mV), and highest cell efficiency(1.35%), appeared at 5 layers of CBD coating. According to the current-voltage characteristic measured in dark space, we found the existence of an energy barrier due to the self-assembly QD monolayers, which plays a role to inhibit the recombination effect of excited electrons to the holes in CdS QDs and to the electrolyte. Therefore we conclude that the high efficiency of the solar cell is attributed to the effect of self-assembly QD monolayers in reducing the probability of electron-hole pair recombination. In addition to the above studies, the optimum thickness of TiO2 film was also studied and a thickness of 5.51μm was found to perform best in the DSSCs.

    目錄 中文摘要..................................................................................................... I Abstract....................................................................................................... II 誌謝............................................................................................................. III 目錄............................................................................................................. IV 表目錄......................................................................................................... VIII 圖目錄......................................................................................................... IX 第一章 緒論............................................................................................... 1    1-1前言............................................................................................. 1    1-2研究動機與目的......................................................................... 2 第二章 實驗原理與文獻回顧................................................................... 4    2-1半導體奈米材料與量子點......................................................... 4    2-2量子點薄膜................................................................................. 9      2-2.1化學浴沈積法................................................................ 10      2-2.2自組裝單分子膜............................................................ 11    2-3濕式化學法合成奈米粒子....................................................... 12      2-3.1微乳化合成法................................................................ 15    2-4太陽電池的簡介....................................................................... 18      2-4.1結晶矽太陽能電池........................................................ 18      2-4.2非晶矽太陽能電池........................................................ 18      2-4.3銅銦鎵二硒太陽能電池................................................ 19      2-4.4染料敏化太陽能電池.................................................... 19    2-5 DSSC的發展現況................................................................... 20    2-6 DSSC的工作原理與組成結構............................................... 25      2-6.1透明導電玻璃................................................................ 27      2-6.2二氧化鈦........................................................................ 27      2-6.3染料-光敏化劑............................................................ 30      2-6.4電解液............................................................................ 31      2-6.5金屬/導電玻璃對電極................................................... 32      2-6.6 DSSC的組裝............................................................... 32    2-7太陽能電池的電流電壓輸出特性............................................34 第三章 實驗方法..................................................................................... 39    3-1儀器設備................................................................................... 39    3-2實驗藥品................................................................................... 47    3-3實驗流程................................................................................... 49      3-3.1 CdS量子點的合成....................................................... 50      3-3.2 TiO2薄膜的製備.......................................................... 52      3-3.3 SAMs組裝CdS量子點................................................ 54      3-3.4 CBD方法沈積CdS量子點...........................................55      3-3.5組裝電池........................................................................ 55 第四章 實驗數據與結果討論................................................................. 58    4-1 CdS量子點的特性.................................................................. 58      4-1.1光學特性與粒徑分析.................................................... 58      4-1.2 CdS量子點的結晶相態............................................... 61    4-2 TiO2薄膜特性.......................................................................... 62      4-2.1 TiO2薄膜厚度分析....................................................... 62      4-2.2 表面型態與P25結晶相態.............................................62    4-3 CdS量子點的組裝.................................................................. 65      4-3.1表面型態分析................................................................ 65      4-3.2 CdS量子點定量分析................................................... 69    4-4太陽能電池的效能分析........................................................... 75      4-4.1不同方法沈積量子點的電池效率.................................75      4-4.2 TiO2薄膜厚度與電池效率的關係...............................83      4-4.3 CBD層數與電池效率的關係.......................................87 第五章 結論............................................................................................. 92 第六章 未來工作及建議......................................................................... 93 參考文獻.................................................................................................. 96 自述........................................................................................................ 104

    1.M. Grätzel, “Powering the planet” Nature 403, 363, 2000

    2.B. O’Regan, M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films” Nature 353, 737, 1991

    3.高濂, 鄭珊, 張青紅, 奈米光觸媒, 五南圖書, 2004

    4.W. W. Yu, X. Peng, “Formation of High-Quality CdS and Other II-VI Semiconductor Nanocrystals in Noncoordinating Solvents: Tunable Reactivity of Monomers” Angew. Chem. Int. Ed. 41(13), 2368, 2002

    5.Y. Wang, N. Herron, “Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties” J. Phys. Chem. 95, 525, 1991

    6.R. Rossetti, J. L. Ellison, J. M. Gibson, L. E. Brus, “Size effects in the excited electronic states of small colloidal CdS crystallites” J. Chem. Phys. 80, 4464, 1983

    7.W. W. Yu, L. Qu, W. Guo, X. Peng, “Wxperimental Determination of the Extinction Coefficient of CdTe, CdSe, and CdS Nanocrystals” Chem. Mater. 15, 2854, 2003

    8.A. J. Nozik, “Quantum dot solar cells” Physica E 14, 115, 2002

    9.R. D. Schaller, V. I. Klimov, “High Efficiency Carrier Multiplication in PbSe Nanocrystals: Implications for Solar Energy Conversion” Phys. Rev. Lett. 92(18), 186601, 2004

    10.I. Gur, N. A. Fromer, M. L. Geier, A. P. Alivisatos, “Air-Stable All-Inorganic Nanocrystal Solar Cells Processed from Solution” Science 310, 462, 2005

    11.S. K. Haram, A. J. Bard, “Scanning Electrochemical Microscopy. 42. Studies of the Kinetics and Photoelectrochemistry of Thin Film CdS/Electrolyte Interface” J. Phys. Chem. B 105, 8192, 2001

    12.M. L. Breen, J. T. Woodward, IV, D. K. Schwartz, “Direct Evidence for an Ion-by-Ion Deposition Mechanism in Solution Growth of CdS Thin Films” Chem. Mater. 10, 710, 1998

    13.P. O’Brien, J. McAleese, “Developing an understanding of the processes controlling the chemical bath deposition of ZnS and CdS” J. Mater. Chem. 8(11), 2309, 1998

    14.J. L. Blackburn, D. C. Selmarten, A. J. Nozik, “Electron Transfer Dynamics in Quantum Dot/Titanium Dioxide Composites Formed by in-situ Chemical Bath Deposition” J. Phys. Chem. B 107, 14154, 2003

    15.C. P. Collier, R. J. Saykally, J. J. Shiang, S. E. Henrichs, J. R. Heath, “Reversible Tuning of Silver Quantum Dot Monolayers Trough the Metal-Insulator Transition” Science 277, 1978, 1997

    16.Z. Y. Pan, X. J. Liu, S. Y. Zhang, G. J. Shen, L. G. Zhang, Z. H. Lu, J. Z. Liu, “Controlled Growth of the Ordered Cadmium Sulfide Particulate Films and the Photoacoustics Investigation” J. Phys. Chem. B 101, 9703, 1997

    17.A. Samokhvalov, R. W. Gurney, M. Lahav, R. Naaman, “Electronic Properties of Hybrid Organic/Inorganic Langmuir-Blodgett Films Containing CdS Quantum Particles” J. Phys. Chem. B 106, 9070, 2002

    18.A. Samokhvalov, R. W. Gurney, M. Lahav, S. Cohen, H. Cohen, R. Naaman, “Charge Transfer between a Gold Substrate and CdS Nanoparticles Assembled in Hybrid Organic-Inorganic Films” J. Phys. Chem. B 107, 4245, 2003

    19.P. Jiang, Z. F. Liu, S. M. Cai, “Growing Monodispersed PbS Nanoparticles on Self-Assembled Monolayers of 11-Mercaptoundecanoic Acid on Au(111) Substrate” Langmuir 18, 4495, 2002

    20.M. Sastry, M. Rao, K. N. Ganesh, “Electrostatic Assembly of Nanoparticles and Biomarcromolecules” Acc. Chem. Res. 35, 847, 2002

    21.L. Sheeney-Haj-Ichia, S. Pogorelova, Y. Gofer, I. Willner, “Enhanced Photoelectrochemistry in CdS/Au Nanoparticle Bilayers” Adv. Funct. Mater. 14(5), 416, 2004

    22.L. Sheeney-Haj-Ichia, J. Wasserman, I. Willner, “CdS-Nanoparticle Architectures on Electrodes for Enhanced Photocurrent Generation” Adv. Mater. 14(18), 1323, 2002

    23.L. Sheeney-Haj-Ichia, B. Basnar, I. Willner, “Efficient Generation of Photocurrents by Using CdS/Carbon Nanotube Assemblies on Electrodes” Angew. Chem. Int. Ed. 44, 78, 2005

    24.M. Lahav, V. H. Shabtai, J. Wasserman, E. Katz, I. Willner, H. Dürr, Y. Z. Hu, S. H. Bossmann, “Photoelectrochemistry with Integrated Photosensitizer-Electron Acceptor and Au-Nanoparticle Arrays” J. Am. Chem. Soc. 122, 11480, 2000

    25.H. Haick, M. Ambrico, T. Ligonzo, D. Cahen, “Discontinuous Molecular Films Can Control Metal/Semiconductor Junctions” Adv. Mater. 16(23-24), 2145, 2004

    26.A. Vilan, A. Shanzer, D. Cahen, “Molecular control over Au/GaAs diodes” Nature 404, 166, 2000

    27.J. Zhu, M. Zhou, J. Xu, X. Liao, “Preparation of CdS and ZnS nanoparticles using microwave irradiation” Mater. Lett. 47, 25, 2001

    28.R. He, X. Qian, J. Yin, H. Xi, L. Bian, Z. Zhu, “Formation of monodispersed PVP-capped ZnS and CdS nanocrystals under microwave irradiation” Colloids and Surface A: Physicochem. Eng. Aspects 220, 151, 2003

    29.Y. C. Cao, J. Wang, “One-Pot Synthesis of High-Quality Zinc-Blende CdS Nanocrystals” J. Am. Chem. Soc. 126, 14336, 2004

    30.L. Qu, Z. A. Peng, X. Peng, “Alternative Routes toward High Quality CdSe Nanacrystals” Nano Lett. 1(6), 333, 2001

    31.Z. A. Peng, X. Peng, “Formation of High-Quality CdTe, CdSe, and CdS Nanocrystals Using CdO as Precursor” J. Am. Chem. Soc. 123, 183, 2001

    32.M. Lazell, P. O’Brien, “A novel single source precursor route to self capping CdS quantum dots” ChemComm. 2041, 1999

    33.N. Pradhan, S. Efrima, “Single-Precursor, One-Pot Versatile Synthesis under near Ambient Conditions of Tunable, Single and Dual Band Fluorescing Metal Sulfide Nanopaticles” J. Am. Chem. Soc. 125, 2050, 2003

    34.J. Joo, H. B. Na, T. Yu, J. H. Yu, Y. W. Kim, F. Wu, J. Z. Zhang, T. Hyeon, “Generalized and Facile Synthesis of Semiconducting Metal Sulfide Nanocrystals” J. Am. Chem. Soc. 125, 11100, 2003

    35.S. Besson, T. Gacoin, C. Ricolleau, C. Jacquiod, J. P. Boilot, “3D Quantum Dot Lattice Inside Mesoporous Silica Films” Nano Lett. 2(4), 409, 2002

    36.Y. Nagasaki, T. Ishii, Y. Sunaga, Y. Watanabe, H. Otsuka, K. Kataoka, “Novel Molecular Recognition via Fluorescent Resonance Energy Transfer Using a Biotin – PEG/Polyamine Stabilized CdS Quantum Dot” Langmuir 20, 6396, 2004

    37.S. C. Farmer, T. E. Patten, “Photoluminescence Polymer/Quantum Dot Composite Nanoparticles” Chem. Mater. 2001, vol.13, 3920

    38.L. Bakueva, I. Gorelikov, S. Musikhin, X. S. Zhao, E. H. Sargent, “PbS Quantum Dots with Stable Efficient Luminescence in the Near-IR Spectral Range” Adv. Mater. 16(11), 926, 2004

    39.X. S. Zhao, I. Gorelikov, S. Musikhin, S. Cauchi, V. Sukhovatkin, E. H. Sargent, E. Kumacheva, “Synthesis and Optical properties of Thiol-Stabilized PbS Nanocrystals” Langmuir 21, 1086. 2005

    40.Q. Lu, F. Gao, D. Zhao, “The assembly of semiconductor sulfide nanocrystallites with organic reagents as templates” Nanotechnology 13, 741, 2002

    41.A. Agostiano, M. Catalano, M. L. Curri, M. D. Monica, L. Manna, L. Vasanelli, “Synthesis and structural characterization of CdS nanoparticles prepared in a four-components water-in-oil microemulsion” Micron 31, 253, 2000

    42.J. Zhang, L. Sun, C. Liao, C. Yan, “Size control and photoluminescence enhancement of CdS nanoparticles prepared via reverse micelle method” Solid State Comm. 124, 45, 2002

    43.A. R. Loukanov, C. D. Dushkin, K. I. Papazova, A. V. Kirov, M. V. Abrashev, E. Adachi, “Photoluminescence depending on the ZnS shell thickness of CdS/ZnS core-shell semiconductor nanoparticles” Colloids and Surface A: Physicochem. Eng. Aspects 245, 9, 2004

    44.E. Caponetti, L. Pedone, D. C. Martino, V. Panto, V. T. Liveri, “Synthesis, size control, and passivation of CdS nanoparticles in water/AOT/n-heptane microemulsions” Mater. Sci. and Eng. C 23, 531, 2003

    45.M. L. Curri, A. Agostiano, F. Mavelli, M. D. Monica, “Reverse micellar system: self organized assembly as effective route for the synthesis of colloidal semiconductor nanocrystals” Mater. Sci. and Eng. C 22, 423, 2002

    46.H. Sato, N. Asaji, I. Komasawa, “A Population Balance Approach for Particle Coagulation in Reverse Micelles” Ind. Eng. Chem. Res. 39, 328, 2000

    47.J. Wu, G. Li, Z. Zhang, G. Zhou, K. Ji, “A study of the microstructure of CTAB/1-butanol/octane/water system by PGSE-NMR, conductivity and cryo-TEM” Colloids and Surface A: Physicochem. Eng. Aspects 191, 269, 2001

    48.W. Xu, D. L. Akins, “Reverse micellar synthesis of CdS nanoparticles and self-assembly into a superlattice” Mater. Lett. 58, 2623, 2004

    49.P. Calandra, A. Longo, V. T. Liveri, “Synthesis of Ultra-small ZnS Nanaparticles by Solid-Solid Reaction in the Confined Space of AOT Reversed Micelles” J. Phys. Chem. B 107, 25, 2003

    50.M. L. Curri, A. Agostiano, L. Manna, M. D. Monica, M. Catalano, L. Chiavarone, V. Spagnolo, M. Lugarà, “Synthesis and Characterization of CdS Nanoclusters in a Quaternary Microemulsion: the Role of the Cosurfactant” J. Phys. Chem. B 104, 8391, 2000

    51.M. Giustini, G. Palazzo, G. Colafemmina, M. D. Monica, M. Giomini, A. Ceglie, “Microstructure and Dynamics of the Water-in-Oil CTAB/n-Pentanol/n-Hexane/Water Microemulsion: A Spectroscopic and Conductivity Study” J. Phys. Chem. B 100, 3190, 1996

    52.J. Lin, W. Zhou, C. J. O’Connor, “Formation of ordered arrays of gold nanoparticles from CTAB reverse micells” Mater. Lett. 49, 282, 2001

    53.H. Li, Y. Zhu, S. Chen, O. Palchik, J. Xiong, Y. Koltypin, Y. Gofer, A. Gedanken, “A novel ultrasound-assisted approach to the synthesis of CdSe and CdS nanoparticles” J. Solid State Chem. 172, 102, 2003

    54.D. Mondelaers, G. Vanhoyland, H. Van den Rul, J. D’Haen, M. K. Van Bael, J. Mullens, L. C. Van Poucke, “Synthesis of ZnO nanopowder via an aqueous acetate-citrate gelation method” Mater. Res. Bull. 37, 901, 2002

    55.R. D. Purohit, B. P. Sharma, K. T. Pillai, A. K. Tyagi, “Ultrafine ceria powders via glycine-nitrate combustion” Mater. Res. Bull. 36, 2711, 2001

    56.C. Julien, S. S. Michael, S. Ziolkiewicz, “Structural and electrochemical properties of LiNi0.3Co0.7O2 synthesized by different loe-temperature techniques” J. Inorg. Mater. 1, 29, 1999

    57.B. A. Harruff, C. E. Bunker, “Spectral Properties of AOT-protected CdS Nanaparticles: Quantum Yield Enhancement by Photolysis” Langmuir 19, 893, 2003

    58.R. B. Khomane, A. Manna, A. B. Mandale, B. D. Kulkarni, “Synthesis and Characterization of Dodecanethiol-Capped Cadmium Sulfide Nanoparticles in a Winsor II Microemulsion of DiethylEther/AOT/Water” Langmuir 18, 8237, 2003

    59.M. Grätzel, “Solar Energy Conversion by Dye-sensitized Photovoltaic Cells” Inorg. Chem. 44, 6841, 2005

    60.W. Shockley, H. J. Queisser, “Detailed Balance Limit of Efficiency of p-n Junction Solar Cells” J. Appl. Phys. 32, 510, 1961

    61.F. Hurd, R. Livingston, “The Quantum Yield of Some Dye-sensitized Photooxidations” J. Phys. Chem. 44, 865, 1940

    62.H. Tsubomura, M. Matsumura, Y, Nomura, T. Amamiya, “Dye-sensitized zinc oxide/aqueous electrolyte/platinum photocell” Nature 261, 402, 1976

    63.A. Hagfeldt, M. Grätzel, “Molecular Photovoltaics” Acc. Chem. Res. 33, 269, 2000

    64.Md. K. Nazeeruddin, R. Humphry-Baker, P. Liska, M. Grätzel, “Investigation of Sensitizer Adsorption and the Influence of Photons on Current and Voltage of a Dye-Sensitized Nanocrystalline TiO2 Solar Cell” J. Phys. Chem. B 107, 8981, 2003

    65.G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, C. A. Grimes, “Use of Highly-Ordered TiO2 Nanotube Arrays in Dye-Sensitized Solar Cells” Nano Lett. 6(2), 215, 2006

    66.S. G. Chen, S. Chappel, Y. Diamant, A. Zaban, “Preparation of Nb2O5 Coated TiO2 Nanoporous Electrodes and Their Application in Dye-Sensitized Solar Cells” Chem. Mater. 13, 4629, 2001

    67.H. Alarcón, G. Boschloo, P. Mendoza, J. L. Solis, A. Hagfeldt, “Dye-Sensitized Solar Cells Based on Nanocrystalline TiO2 Films Surface Treated with Al3+ Ions: Photovoltage and Electron Transport Studies” J. Phys. Chem. B 109, 18483, 2005

    68.Y. Tian, T. Tatsuma, “Mechanisms and Applications of Plasmon-Induced Charge Separation at TiO2 Films Loaded with Gold Nanoparticles” J. Am. Chem. Soc. 127, 7632, 2005

    69.K. G. U. Wijayantha, L. M. Peter, L. C. Otley, “Fabrication of CdS quantum dot sensitized solar cells via pressing route” Solar Energy Mater. & Solar Cells 83, 363, 2004

    70.J. Tang, H. Birkedal, E. W. McFarland, G. D. Stucky, “Self-assembly of CdSe/CdS quantum dots by hydrogen bonding on Au surfaces for photoreception” Chem. Comm. 2278, 2003

    71.D. Liu, P. V. Kamat, “Photoelectrochemical Behavior of Thin CdSe and Coupled TiO2/CdSe Semiconductor Films” J. Phys. Chem. 97, 10769, 1993

    72.I. Roble, V. Subramanian, M. Kuno, P. V. Kamat, “Quantum Dot Solar Cells. Harvesting Light Energy with CdSe Nanocrystals Molecularly Linked to Mesoscopic TiO2 Films” J. Am. Chem. Soc. 128, 2385, 2006

    73.Q. Shen, T. Toyoda, “Characterization of Nanostructured TiO2 Electrodes Sensitized with CdSe Quantum Dots Using Photoacoustic and Photoelectrochemical Current Methods” J. J. Appl. Phys. 43(5B), 2946, 2004

    74.A. Zaban, O. I. Micic, B. A. Gregg, A. J. Nozik, “Photosensitization of Nanoporous TiO2 Electrodes with InP Quantum Dots” Langmuir 14, 3153, 1998

    75.P. Hoyer, R. Könenkamp, “Photoconduction in porous TiO2 sensitized by PbS quantum dots” Appl. Phys. Lett. 66(3), 349, 1995

    76.R. Plass, S. Pelet, J. Krueger, M. Grätzel, “Quantum Dot Sensitization of Organic-Inorganic Hybrid Solar Cells” J. Phys. Chem. B 106, 7578, 2002

    77.S. A. McDonald, G. Konstantatos, S. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics” Nature Mater. 4, 138, 2005

    78.R. Vogel, P. Hoyer, H. Weller, “Quantum-Sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 Particles as Sensitizers for Various Nanoporous Wide-Bandgap Semiconductors” J. Phys. Chem. 98, 3183, 1994

    79.J. Krueger, U. Bach, M. Grätzel, “Modification of TiO2 Heterojunctions with Benzoic Acid Derivatives in Hybrid Molecular Solid-State Devices” Adv. Mater. 12(6), 447, 2000

    80.M. Grätzel, “Photoelectrochemical Cells” Nature 414, 338, 2001

    81.K. Kalyanasundaram, M. Grätzel, “Applications of functionalized transition metal complexes in photonic and optoelectronic devices” Coordin. Chem. Rev. 177, 347, 1998

    82.B. H. Kim, J. H. Ahn, J. H. Jeong, Y. S. Jeon, O. K. Jeon, K. S. Kwan, “Preparation of TiO2 thin film on SnO2 glass by a spin coating-pyrolysis process” Ceram. Int. 32, 223, 2006

    83.Q. Cai, M. Paulose, O. K. Varghese, C. A. Grimes, “The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation” J. Mater. Res. 20(1), 230, 2005

    84.G. Wolfbauer, A. Bond, J. C. Eklund, D. R. MacFarlane, “A channel flow cell system specially designed to test the efficiency of redox shuttles in dye sensitized solar cell” Solar Energy Mater. & Solar Cells 70, 85, 2001

    85.O. Kohle, M. Gratzel, A. F. Meyer, T. B. Meyer, “The Photovoltaic Stability of Bis (isothiocyanato) ruthenium (II)-bis-2,2´- bipyridine -4,4´-dicarboxylic Acid and Related Sensitizers” Adv. Mater. 9(11), 904, 1997

    86.J. Krüger, R. Plass, L. Cevey, M. Piccirelli, M. Grätzel, “High efficiency solid-state photovoltaic device due to inhibition of interface charge recombination” Appl. Phys. Lett. 79(13), 2085, 2001.

    87.C. C. Wang, J. Y. Ying, “Sol-gel Synthesis and Hydrothermal Processing of Anatase and Rutile Titania Nanocrystals” Chem. Mater. 11, 3113, 1999

    下載圖示 校內:2007-07-20公開
    校外:2007-07-20公開
    QR CODE