| 研究生: |
許瑋育 Hsu, Wei-Yu |
|---|---|
| 論文名稱: |
VAV1在啟動子與基因轉錄區之甲基化異常與胰臟癌轉移之關係 Aberrant Methylation of VAV1 Genebody and Promoter Associates with Pancreatic Cancer Metastasis |
| 指導教授: |
黃柏憲
Huang, Po-Hsien |
| 共同指導教授: |
陳昌熙
Chen, Chang-Shi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 生物化學暨分子生物學研究所 Department of Biochemistry and Molecular Biology |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 53 |
| 中文關鍵詞: | VAV1 、甲基化 、免疫檢查基因 |
| 外文關鍵詞: | VAV1, methylation, immune checkpoint |
| 相關次數: | 點閱:81 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
胰臟癌在所有癌症當中為一個預後極差的癌症,五年均存活率約在百分之七以下。VAV1基因被證實和胰臟癌的低存活率有極大關連,但對於其異常表現及作用機制仍不明確。在此藉由一個高通量DNA甲基化定量系統,我們測得在胰臟癌病患於腫瘤檢體、胰液、癌症纖維細胞、周邊血單核球中,VAV1基因啟動子及基因轉錄區位置上的甲基化異常導致胰臟癌病患有較差的生存率。經由給予轉化生長因子β刺激後,於胰臟癌細胞株可發現有較高量VAV1基因表達,同時誘導產生片狀偽足。由於已知Kras基因和Smad4基因在調控胰臟癌進程扮演重要角色,因此當突變Kras基因或抑制SMAD4基因時,VAV1基因同時有過表達現象。此外VAV1基因的高度表達亦導致免疫檢查基因諸如:PD-L1,PD-L2,PD-1等過表達,進而使癌細胞逃避免疫監視,導致較惡化的病程。在本研究中我們發現,發現胰臟癌病患中VAV1基因和免疫檢查基因的甲基化表現量異常,同時突變的Kras基因使VAV1基因高度表達並活化免疫檢查基因PD-L1、PD-L2,使得癌細胞較為惡化。
VAV1 has been linked to poor survival of pancreatic cancer, but the regulatory mechanism leading to its ectopic expression in the clinical setting remains unclear. Using a high throughput quantitative DNA methylation assay, we identified that aberrant methylation patterns of VAV1 in the promoter and genebody correlated with poor prognosis of pancreatic ductal adenocarcinoma (PDAC) cases. By analyzing the cancer-associated fibroblasts (CAFs), pancreatic juice (PJ), and the peripheral blood mononuclear cells (PBMCs), aberrant VAV1 methylation identified a subset of pancreatic cancers. Transient transfection of VAV1 specific siRNA in PDAC cell lines PANC-04.03 revealed that the Transforming Growth Factor β (TGFβ) and the immune checkpoint pathway genes were differentially altered at the messenger RNA (mRNA) level. We firstly treated PDAC cell lines with TGFβ and identified that TGFβ induced the formation of lamellipodia structure in cells with high VAV1 expression. Furthermore, methylation analysis of candidate genes revealed that aberrant methylation of VAV1 and four immune checkpoint genes, including the programmed death ligand 1 (PD-L1), programmed death ligand 2 (PD-L2), programmed death 1 (PD-1) and cytotoxic T lymphocyte-associated antigen 4 (CTLA4) in the PBMC and the PDAC specimen. Our results showed that ectopic VAV1 expression associated with the immune check point genes in Kras mutant PDAC cell lines. In summary, our data indicate that TGFβ-VAV1 signaling plays an important role in promoting the progression, invasion, and evasion of immune surveillance in PDAC, which warrant further investigation of the use of TGFβ-targeted treatment in a subgroup of PDAC.
1. Hidalgo M. Pancreatic cancer. N Engl J Med. 2010;362(17):1605-17.
2. Rahib L, Smith BD, Aizenberg R, Rosenzweig AB, Fleshman JM, Matrisian LM. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 2014;74(11):2913-21.
3. Warshaw AL, Fernandez-del Castillo C. Pancreatic carcinoma. N Engl J Med. 1992;326(7):455-65.
4. Ahrendt SA, Pitt HA. Surgical management of pancreatic cancer. Oncology (Williston Park). 2002;16(6):725-34; discussion 34, 36-8, 40, 43.
5. Hruban RH, Adsay NV, Albores-Saavedra J, Compton C, Garrett ES, Goodman SN, et al. Pancreatic intraepithelial neoplasia: a new nomenclature and classification system for pancreatic duct lesions. Am J Surg Pathol. 2001;25(5):579-86.
6. Bardeesy N, DePinho RA. Pancreatic cancer biology and genetics. Nat Rev Cancer. 2002;2(12):897-909.
7. Bailey P, Chang DK, Nones K, Johns AL, Patch AM, Gingras MC, et al. Genomic analyses identify molecular subtypes of pancreatic cancer. Nature. 2016;531(7592):47-52.
8. Moskaluk CA, Hruban RH, Kern SE. p16 and K-ras gene mutations in the intraductal precursors of human pancreatic adenocarcinoma. Cancer Res. 1997;57(11):2140-3.
9. Yamano M, Fujii H, Takagaki T, Kadowaki N, Watanabe H, Shirai T. Genetic progression and divergence in pancreatic carcinoma. Am J Pathol. 2000;156(6):2123-33.
10. Massague J, Blain SW, Lo RS. TGFbeta signaling in growth control, cancer, and heritable disorders. Cell. 2000;103(2):295-309.
11. Biewusch K, Heyne M, Grutzmann R, Pilarsky C. DNA methylation in pancreatic cancer: protocols for the isolation of DNA and bisulfite modification. Methods Mol Biol. 2012;863:273-80.
12. Robertson KD. DNA methylation and human disease. Nat Rev Genet. 2005;6(8):597-610.
13. Yang H, Bueso-Ramos C, DiNardo C, Estecio MR, Davanlou M, Geng QR, et al. Expression of PD-L1, PD-L2, PD-1 and CTLA4 in myelodysplastic syndromes is enhanced by treatment with hypomethylating agents. Leukemia. 2014;28(6):1280-8.
14. Jones PA. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet. 2012;13(7):484-92.
15. Kisiel JB, Raimondo M, Taylor WR, Yab TC, Mahoney DW, Sun Z, et al. New DNA Methylation Markers for Pancreatic Cancer: Discovery, Tissue Validation, and Pilot Testing in Pancreatic Juice. Clin Cancer Res. 2015;21(19):4473-81.
16. Katzav S. Vav1: A Dr. Jekyll and Mr. Hyde protein--good for the hematopoietic system, bad for cancer. Oncotarget. 2015;6(30):28731-42.
17. Katzav S, Martin-Zanca D, Barbacid M. vav, a novel human oncogene derived from a locus ubiquitously expressed in hematopoietic cells. EMBO J. 1989;8(8):2283-90.
18. Bustelo XR, Suen KL, Leftheris K, Meyers CA, Barbacid M. Vav cooperates with Ras to transform rodent fibroblasts but is not a Ras GDP/GTP exchange factor. Oncogene. 1994;9(8):2405-13.
19. Razidlo GL, Magnine C, Sletten AC, Hurley RM, Almada LL, Fernandez-Zapico ME, et al. Targeting Pancreatic Cancer Metastasis by Inhibition of Vav1, a Driver of Tumor Cell Invasion. Cancer Res. 2015;75(14):2907-15.
20. Fernandez-Zapico ME, Gonzalez-Paz NC, Weiss E, Savoy DN, Molina JR, Fonseca R, et al. Ectopic expression of VAV1 reveals an unexpected role in pancreatic cancer tumorigenesis. Cancer Cell. 2005;7(1):39-49.
21. Turner M, Billadeau DD. VAV proteins as signal integrators for multi-subunit immune-recognition receptors. Nat Rev Immunol. 2002;2(7):476-86.
22. Biankin AV, Waddell N, Kassahn KS, Gingras MC, Muthuswamy LB, Johns AL, et al. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature. 2012;491(7424):399-405.
23. Ebert MP, Fei G, Schandl L, Mawrin C, Dietzmann K, Herrera P, et al. Reduced PTEN expression in the pancreas overexpressing transforming growth factor-beta 1. Br J Cancer. 2002;86(2):257-62.
24. Zhang J, Tian XJ, Xing J. Signal Transduction Pathways of EMT Induced by TGF-beta, SHH, and WNT and Their Crosstalks. J Clin Med. 2016;5(4).
25. Hezel AF, Deshpande V, Zimmerman SM, Contino G, Alagesan B, O'Dell MR, et al. TGF-beta and alphavbeta6 integrin act in a common pathway to suppress pancreatic cancer progression. Cancer Res. 2012;72(18):4840-5.
26. Gore AJ, Deitz SL, Palam LR, Craven KE, Korc M. Pancreatic cancer-associated retinoblastoma 1 dysfunction enables TGF-beta to promote proliferation. J Clin Invest. 2014;124(1):338-52.
27. Medicherla S, Li L, Ma JY, Kapoun AM, Gaspar NJ, Liu YW, et al. Antitumor activity of TGF-beta inhibitor is dependent on the microenvironment. Anticancer Res. 2007;27(6B):4149-57.
28. Ostapoff KT, Cenik BK, Wang M, Ye R, Xu X, Nugent D, et al. Neutralizing murine TGFbetaR2 promotes a differentiated tumor cell phenotype and inhibits pancreatic cancer metastasis. Cancer Res. 2014;74(18):4996-5007.
29. Coppola J, Bryant S, Koda T, Conway D, Barbacid M. Mechanism of activation of the vav protooncogene. Cell Growth Differ. 1991;2(2):95-105.
30. Katzav S. Flesh and blood: the story of Vav1, a gene that signals in hematopoietic cells but can be transforming in human malignancies. Cancer Lett. 2007;255(2):241-54.
31. Costello PS, Walters AE, Mee PJ, Turner M, Reynolds LF, Prisco A, et al. The Rho-family GTP exchange factor Vav is a critical transducer of T cell receptor signals to the calcium, ERK, and NF-kappaB pathways. Proc Natl Acad Sci U S A. 1999;96(6):3035-40.
32. Li R, Wei F, Yu J, Li H, Ren X, Hao X. IDO inhibits T-cell function through suppressing Vav1 expression and activation. Cancer Biol Ther. 2009;8(14):1402-8.
33. Homet Moreno B, Ribas A. Anti-programmed cell death protein-1/ligand-1 therapy in different cancers. Br J Cancer. 2015;112(9):1421-7.
34. Meng X, Huang Z, Teng F, Xing L, Yu J. Predictive biomarkers in PD-1/PD-L1 checkpoint blockade immunotherapy. Cancer Treat Rev. 2015;41(10):868-76.
35. Teixido C, Gonzalez-Cao M, Karachaliou N, Rosell R. Predictive factors for immunotherapy in melanoma. Ann Transl Med. 2015;3(15):208.
36. Francisco LM, Sage PT, Sharpe AH. The PD-1 pathway in tolerance and autoimmunity. Immunol Rev. 2010;236:219-42.
37. Nurieva RI, Liu X, Dong C. Yin-Yang of costimulation: crucial controls of immune tolerance and function. Immunol Rev. 2009;229(1):88-100.
38. Dariavach P, Mattei MG, Golstein P, Lefranc MP. Human Ig superfamily CTLA-4 gene: chromosomal localization and identity of protein sequence between murine and human CTLA-4 cytoplasmic domains. Eur J Immunol. 1988;18(12):1901-5.
39. Jaffee EM, Hruban RH, Canto M, Kern SE. Focus on pancreas cancer. Cancer Cell. 2002;2(1):25-8.
40. Korc M. Role of growth factors in pancreatic cancer. Surg Oncol Clin N Am. 1998;7(1):25-41.
41. Sahai E, Marshall CJ. RHO-GTPases and cancer. Nat Rev Cancer. 2002;2(2):133-42.
42. Ortegel JW, Staren ED, Faber LP, Warren WH, Braun DP. Modulation of tumor-infiltrating lymphocyte cytolytic activity against human non-small cell lung cancer. Lung Cancer. 2002;36(1):17-25.
43. Sharpe AH, Freeman GJ. The B7-CD28 superfamily. Nat Rev Immunol. 2002;2(2):116-26.
44. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12(4):252-64.
45. Jia X, Zhang L, Wu W, Zhang W, Wu C. Driver Mutation Analysis and PD-L1 Expression in Synchronous Double Primary Lung Cancer. Appl Immunohistochem Mol Morphol. 2016.
46. Sapoznik S, Hammer O, Ortenberg R, Besser MJ, Ben-Moshe T, Schachter J, et al. Novel anti-melanoma immunotherapies: disarming tumor escape mechanisms. Clin Dev Immunol. 2012;2012:818214.
校內:2021-07-23公開