簡易檢索 / 詳目顯示

研究生: 黃柏允
Huang, Bo-Yun
論文名稱: 介電修飾層對雙極性有機薄膜電晶體之影響與應用研究
Studies of the dielectric buffer layer effects on the ambipolar organic thin-film transistors and applications
指導教授: 鄭弘隆
Cheng, Horng-Long
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 113
中文關鍵詞: 雙極性有機電晶體電特性聚乙烯亞胺五環素
外文關鍵詞: ambipolar organic transistors, electrical properties, polyethylenimine, pentacene
相關次數: 點閱:141下載:18
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要為有機薄膜電晶體中導入一高分子材料LPEI,探討其對雙極性電晶體的影響與應用方面之研究。藉由電性分析了解元件的載子傳輸變化,表面能、極化電場圖與導納分析界面的特性,由拉曼、原子力顯微鏡與X光繞射儀分析Pentacene的結構。最後發現LPEI可以有效降低Pentacene元件的N型操作電壓。
    電特性分析,導入LPEI後,元件的載子遷移率皆下降,但是LPEI在PMMA與Pentacene間可以有效降低N型臨界電壓。極化電場與導納分析,LPEI可以降低Pentacene元件的缺陷態密度與減少載子鬆弛時間,不過因為PMMA與LPEI偶極相消,導致額外電場的消失,所以有LPEI的Pentacene元件其電特性皆下降。表面能分析,LPEI表面的極性項高,所以不利於Pentacene成長。拉曼光譜分析,LPEI上的Pentacene,其264 cm-1的半高寬變窄,所以電子傳輸較PMMA上的Pentacene佳。原子力顯微鏡與X光繞射分析,因為PMMA玻璃轉換溫度接近380 K,導致PMMA在380 K時分子會大規模的震動。使PMMA上的Pentacene在380 K其結晶變差,而LPEI上的Pentacene在380 K不僅結晶變差,其結晶均勻性也變差。
    光感測器分析,PMMA上旋塗LPEI可以提高Pentacene元件光響應能力。光記憶體分析,PMMA上旋塗LPEI對532 nm雷射光有記憶效應。溫度感測器分析,PMMA上旋塗LPEI可以藉由載子遷移率的增加感測環境溫度,但是降溫後元件會衰退。

    This thesis investigated the effect of gate dielectric buffer layers on the electrical characteristics of ambipolar organic field-effect transistors (OFETs) and their applications. The pentacene-based ambipolar OFETs with a linear polyethylenimine (LPEI) buffer layer on a polymethylmethacrylate (PMMA)/silicon dioxide main gate dielectric was examined. With the LPEI layer, the n-channel characteristics of the ambipolar OFETs were improved and the threshold voltage was reduced. The pentacene/LPEI interface had relatively low interfacial trap density and shorter mean interface trap time constant than the pentacene/PMMA interface. Therefore, the potential and general usage of the LPEI buffer layer for pentacene-based ambipolar OFETs can be expected to be used in electronics.

    中文摘要 I Abstract III 誌謝 IX 目錄 X 表目錄 XIV 圖目錄 XVII 第1章 緒論 1 1-1 有機半導體材料簡介 1 1-2 有機薄膜電晶體概論 2 1-3 電晶體基本結構 2 1-4 電晶體操作原理 3 1-5 電晶體基本電特性 3 1-6 本論文之研究目的 6 第2章 實驗元件製程與分析儀器介紹 11 2-1 實驗材料介紹 11 2-2 實驗製程介紹 12 2-2-1 基板處理與清潔 12 2-2-2 介電層製作 12 2-2-3 半導體與電極製作 13 2-2-4 旋塗LPEI層 13 2-3 分析儀器介紹 13 2-3-1 半導體參數分析儀器(KEITHLEY 4200SCS) 13 2-3-2 精密阻抗分析儀(Agilent E4980A) 14 2-3-3 拉曼光譜儀 14 2-3-4 原子力顯微鏡(Atomic Force Microscope, AFM) 15 2-3-5 X光繞射儀(X-ray Diffractometer, XRD) 15 第3章 LPEI對雙極性有機薄膜電晶體之影響 17 3-1 前言 17 3-2 研究方法 17 3-3 Pentacene元件之電特性分析 18 3-3-1 導入LPEI層對Pentacene元件的影響 18 3-3-2 後處理對Pentacene元件的影響 20 3-4 LPEI對介電層的影響 23 3-4-1 電容與導納分析 23 3-4-2 表面能分析 25 3-4-3 拉曼光譜分析 26 3-5 結論 27 第4章 LPEI對雙極性有機薄膜電晶體之應用 55 4-1 前言 55 4-2 研究方法 56 4-3 光感測器之電性分析 57 4-4 光記憶體之電性分析 58 4-5 溫度感測器之電性分析 60 4-6 結論 63 第5章 總結與未來展望 108 參考文獻 110

    [1] C. K. Chiang, C. R. Fincher, Jr., Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gau, and A. G. MacDiarmid, ”Electrical conductivity in doped polyacetylene”, Phys. Rev. Lett., 39, 1098–1101, 1977.
    [2] M. Rockelé, D. Pham, A. Hoppe, J. Steiger, S. Botnaras, M. Nag, S. Steudel, K. Myny, S. Schols, R. Müller, B. van der Putten, J. Genoe, and P. Heremans, ”Low-temperature and scalable complementary thin-film technology based on solution-processed metal oxide n-TFTs and pentacene p-TFTs”, Org. Electron., 12, 1909–1913, 2011.
    [3] X. Xu, T. Xiao, X. Gu, X. Yang, S. V. Kershaw, N. Zhao, J. Xu, and Q. Miao, ”Solution-processed ambipolar organic thin-film transistors by blending p- and n‑type semiconductors: solid solution versus microphase separation”, ACS Appl. Mater. Interfaces., 7, 28019−28026, 2015.
    [4] T. Sekitani, and T. Someya, ”Stretchable, large-area organic electronics”, Adv. Mater., 22, 2228–2246, 2010.
    [5] G. Oh, J. Kim, J. H. Jeon, E. Won, J. W. Son, D. H. Lee, C. K. Kim, J. Jang, T. Lee, and B. H. Park, ”Graphene/pentacene barristor with ion-gel gate dielectric: flexible ambipolar transistor with high mobility and on/off ratio”, ACS nano, 9, 7515-7522, 2015.
    [6] H. Dong, C. Wang, and W. Hu, ”High performance organic semiconductors for field-effect transistors”, Chem. Commun., 46, 5211–5222, 2010.
    [7] R. Wang, D. Liu, H. Ren, T. Zhang, H. Yin, G. Liu, and J. Li, ”Highly efficient orange and white organic light-emitting diodes based on new orange iridium complexes”, Adv. Mater., 23, 2823–2827, 2011.
    [8] J. Han, W. Wang, J. Ying, and W. Xie, ”Ambipolar organic thin-film transistor-based nano-floating-gate nonvolatile memory”, Appl. Phys. Lett., 104, 013302, 2014.
    [9] B. Park, ”Dielectric relaxation dependent memory elements in pentacene/[6,6]-phenyl-C61-butyric acid methyl ester bi-layer field effect transistors”, Thin Solid Films, 578, 156–160, 2015.
    [10] T. Someya, A. Dodabalapur, J. Huang, K. C. See, and H. E. Katz, ”Chemical and physical sensing by organic field-effect transistors and related devices”, Adv. Mater., 22, 3799–3811, 2010.
    [11] L. Mao, J. Hwang, and Y. Chueh, ”Materials and interfaces issues in pentacene/PTCDI-C8 ambipolar organic field-effect transistors with solution-based gelatin dielectric”, Org. Electron., 15, 2400–2407, 2014.
    [12] K. Zhou, H. Dong, H. Zhang, and W. Hu, ”High performance n-type and ambipolar small organic semiconductors for organic thin film transistors”, Phys. Chem. Chem. Phys., 16, 22448-22457, 2014.
    [13] A. Tsumura, H. Koezuka, and T. Ando, ”Macromolecular electronic device: field-effect transistor with a polythiophene thin film”, Appl. Phys. Lett., 49, 1210, 1986.
    [14] H. Koezuka, A. Tsumura, and T. Ando, ”Field-effect transistor with polythiophene thin film”, Synthetic Metals, 18, 699-704, 1987.
    [15] G. Horowitz, D. Fichou, X. Peng, Z. Xu, and F. Garnier, ”A field-effect transistor based on conjugated alpha-sexithienyl”, Solid State Communications, 72, 381-384, 1989.
    [16] S. R. Saudari, and C. R. Kagan, ”Electron and hole transport in ambipolar thin film pentacene transistors”, J. Appl. Phys., 117, 035501, 2015.
    [17] M. An, H. Seo, Y. Zhang, J. Oh, and J. Choi, ”Air stable, ambipolar organic transistors and inverters based upon a heterojunction structure of pentacene on N,N′-ditridecylperylene-3,4,9,10-tetracarboxylic di-imide”, Appl. Phys. Lett., 97, 023506, 2010.
    [18] W. Wang, J. Ying, J. Han, and W. Xie, ”High mobility pentacene/C60-based ambipolar OTFTs by thickness optimization of bottom pentacene layer”, IEEE Trans. Electron Devices, 61, 3845-3851, 2014.
    [19] G. Long, X. Yang, W. Chen, M. Zhang, Y. Zhao, Y. Chen, and Q. Zhang, ”Doping pentacene with sp2-phosphorus atoms: towards high performance ambipolar semiconductors”, Phys. Chem. Chem. Phys., 18, 3173-3178, 2016.
    [20] Y. Liang, H. Chang, P. P. Ruden, and C. D. Frisbie, ”Examination of Au, Cu and Al contacts in organic field-effect transistors via displacement current measurements”, J. Appl. Phys., 110, 064514, 2011.
    [21] S. R. Saudari, Y. J. Lin, Y. Lai, and C. R. Kagan, ”Device configurations for ambipolar transport in flexible pentacene transistors”, Adv. Mater., 22, 5063–5068, 2010.
    [22] E. B. Namdas, B. B. Y. Hsu, J. D. Yuen, I. D. W. Samuel, and A. J. Heeger, ”Optoelectronic gate dielectrics for high brightness and high-efficiency light-emitting transistors”, Adv. Mater., 23, 2353–2356, 2011.
    [23] D. Kim, J. Oh, E. Shin, H. Seo, and J. Choi, ”Study on copper phthalocyanine and perylene-based ambipolar organic light-emitting field-effect transistors produced using neutral beam deposition method”, J. Appl. Phys., 115, 164503, 2014.
    [24] F. Zhang, C. Melzer, A. Gassmann, H. von Seggern, T. Schwalm, C. Gawrisch, and M. Rehahn, ”High-performance n-channel thin-film transistors with acene-based semiconductors”, Org. Electron., 14, 888–896, 2013.
    [25] L. Chiu, H. Cheng, W. Chou, and F. Tang, “The influence of dual-carrier recombination and release on electrical characteristics of pentacene-based ambipolar transistors”, Appl. Phys. Lett., 103, 193302, 2013.
    [26] L. Mao, J. Hwang , T. Chang, C. Hsieh, L. Tsai, Y. Chueh, S. S. H. Hsu, P. Lyu, and T. Liu, ”Pentacene organic thin-film transistors with solution-based gelatin dielectric”, Org. Electron., 14, 1170–1176, 2013.
    [27] K. Noda, S. Tanida, H. Kawabata, and K. Matsushige, ”N-channel operation of pentacene thin-film transistors with ultrathin polymer gate buffer layer”, Synth. Met., 160, 83–87, 2010.
    [28] H. Wang, Y. Zhou, V. A. L. Roy, D. Yan, J. Zhang, and C. Lee, ”Polymorphism and electronic properties of vanadyl-phthalocyanine films”, Org. Electron., 15, 1586–1591, 2014.
    [29] P. Lang, D. Mottaghi, and P. Lacaze, ”On the relationship between the structure of self-assembled carboxylic acid monolayers on alumina and the organization and electrical properties of a pentacene thin film”, Appl. Surf. Sci., 365, 364–375, 2016.
    [30] M. Salinas, C. M. Jager, A. Y. Amin, P. O. Dral, T. Meyer-Friedrichsen, A. Hirsch, T. Clark, and M. Halik, ”The relationship between threshold voltage and dipolar character of self-assembled monolayers in organic thin-film transistors”, J. Am. Chem. Soc., 134, 12648−12652, 2012
    [31] W. Wang, J. Han, J. Ying, L. Xiang, and W. Xie, ”Low-voltage p-channel, n-channel and ambipolar organic thin-film transistors based on an ultrathin inorganic/polymer hybrid gate dielectric layer”, Org. Electron., 15, 2568–2574, 2014.
    [32] C. Di, Y. Liu, G. Yu, and D. Zhu, ”Interface engineering: an effective approach toward high-performance organic field-effect transistors”, Acc. Chem. Res., 42, 1573-1583, 2009.
    [33] L. Chiu, H. Cheng, H. Wang, W. Chou, and F. Tang, ”Manipulating the ambipolar characteristics of pentacene-based field-effect transistors”, J. Mater. Chem. C, 2, 1823-1829, 2014.
    [34] F. Wu, K. Tung , W. Chou , F. Tang, and H. Cheng, ”Charge selectivity in polymer: fullerene-based organic solar cells with a chemically linked polyethylenimine interlayer”, Org. Electron., 29, 120-126, 2016.
    [35] M. Kawagoe, M. Nakanishi, J. Qiu, and M. Morita, ”Growth and healing of a surface crack in poly(methyl methacrylate) under case II diffusion of methanol”, Polymer, 38, 5969-5975, 1997.
    [36] N. Wrachien, A. Cester, D. Bari, J. Jakabovic, J. Kovác, D. Donoval, and G. Meneghesso, ”Visible light and low-energy UV effects on organic thin-film transistors”, IEEE Trans. Electron Devices, 59, 1501-1509, 2012.
    [37] W. Li, M. Yi, H. Ling, F. Guo, T. Wang, T. Yang, L. Xie, and W. Huang, ”Analysis of temperature-dependent electrical transport properties of nonvolatile organic field-effect transistor memories based on PMMA film as charge trapping layer”, J. Phys. D:Appl. Phys., 49, 125104, 2016.
    [38] R. Rahimi, and D. Korakakis,” Transport mechanism in ambipolar pentacene organic thin film transistors with lithium fluoride gate dielectric”, J. Appl. Phys., 110, 013702, 2011.

    無法下載圖示 校內:2021-07-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE