簡易檢索 / 詳目顯示

研究生: 黃靖文
Huang, Jing-Wen
論文名稱: 水熱法製備摻鎳之鐵酸鉍及其導電及光伏性質之研究
The study on electric conductivity and photovoltaic property of nickel-substituited bismuth ferrite prepared by hydrothermal synthesis
指導教授: 齊孝定
Qi, Xiao-Ding
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 80
中文關鍵詞: 鐵電光伏性質鐵酸鉍水熱法
外文關鍵詞: Anomalous Photovoltaic Effect, Bismuth Ferrite, Hydrothermal Method
相關次數: 點閱:107下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,鐵電光伏材料的研究越來越多,尤其以鐵酸鉍為最熱門的研究材料之一,但所有鐵電材料都具有相當大的電阻,若要應用於鐵電光伏上,首先需要提高其導電度,本研究的主要研究目標即是透過摻雜來增加鐵酸鉍的導電度。在本實驗中,以水熱法成功製備出鎳摻雜鐵酸鉍純相,並在鈮(Nb)摻雜之鈦酸鍶基板(NSTO)上成長鎳摻雜鐵酸鉍磊晶薄膜,比較冷壓塊材與磊晶薄膜間電性的差異。首先,本研究針對不同的水熱條件,包含水熱溫度、礦化劑KOH(Mineralizer)濃度等,尋找最適合鐵酸鉍成長的環境,發現在溫度200oC、KOH濃度為9M為最佳的鐵酸鉍成相條件,並摻雜少量的鎳離子(3%),經由TOPAS精修軟體進行擬合後,發現鎳摻雜鐵酸鉍的晶格體積增加,符合預期,而拉曼光譜的結果發現,鎳摻雜鐵酸鉍試片在高頻區段的鐵離子振動模式皆往低頻位置位移,亦可證實鎳離子有取代鐵離子;而透過電性的量測,發現鎳摻雜確實有助於鐵酸鉍電導率的提升,3%鎳摻雜可提升鐵酸鉍電導率兩個數量級,經由阿瑞尼斯方程式的擬合,未摻雜鐵酸鉍活化能約為0.95 eV,經過3%鎳摻雜鐵酸鉍活化能為0.8 eV,鎳摻雜降低了鐵酸鉍的電阻活化能,但皆屬於氧空缺的活化能範圍內(0.8-1.2 eV)。XPS結果說明了鎳摻雜後鐵酸鉍中Fe3+轉變為Fe2+,未摻雜的Fe2+/Fe3+為15.8/84.2,而3%鎳摻雜鐵酸鉍Fe2+/Fe3+為23.9/76.1,Fe2+的含量增加,為了維持整體晶格電中性,氧空缺濃度需增加以進行電荷補償,所以鐵酸鉍的導電機制源自於氧空缺;最後,我們量測鎳摻雜鐵酸鉍的光電性質,發現鎳摻雜使鐵酸鉍的電阻下降後,有利於整體光載子的提取,成功證實降低電阻確實有助於光電流的增加,未摻雜鐵酸鉍光電流約為0.92 uA/cm2,3%鎳摻雜鐵酸鉍光電流則為3.40 uA/cm2;此外,本實驗亦利用水熱法在NSTO基板上成長鐵酸鉍薄膜,因NSTO與鐵酸鉍的晶格匹配,能夠成長良好的磊晶薄膜,其照光的電流行為表現出類似p-n二極體的整流行為,且鎳摻雜對於其光電流的提升更加明顯,未摻雜鐵酸鉍光電流為12 uA/cm2,3%摻雜鐵酸鉍光電流則可達369.2 uA/cm2,但無論是在塊材或薄膜,均未觀察到明顯的開路電壓,僅照光後光電流提升,詳細機制尚待進一步探討

    SUMMARY
    The anomalous photovoltaic (PV) effect in BiFeO3 (BFO), which results in an open-circuit voltage that is considerably larger than the bandgap of the material, has recently received attention in the field of photoferroelectrics. For solar power applications, in addition to open-circuit voltage, electric current is important. In this study, we dope nickel into BFO to increase the carrier concentration and thus PV current. This doping is expected to increase the PV current by several-fold due to the introduction of extra carriers. Ni-doped BFO powder and epitaxy films are prepared via the hydrothermal method. The effects of nickel doping on the crystal structure, microstructure, chemical bonding, electrical resistance, and PV properties are investigated. The results show that BFO doped with 0-3% Ni has a perovskite structure. The addition of nickel effectively decreases the electrical resistance of BFO because it increases the oxygen vacancy concentration. The illumination current of Ni-doped BFO increases with increasing nickel content, which can be explained by the decrease in electrical resistance. The Ni-doped BFO films show rectifying characteristics similar to those of a diode. The current density-electric field behavior of the films differs from that of the bulk. The illumination current increases dramatically when the Ni-doped BFO films are illuminated.

    摘要……………………………………………………………………..Ⅰ Abstract…………………………………………………………………Ⅲ 致謝………………………………………………………………..……Ⅹ 目錄………………….………………………………………………….Ⅺ 圖目錄……………………………………………………………….. XIV 表目錄……………………………………………………………..…XVII 第一章 緒論…………………………..………………………………..1 1-1 前言………………………………………………….………….1 1-2 研究動機………………………………………………………..3 第二章 理論基礎及文獻回顧…………………………………………..4 2-1 鐵電光伏性質……………………………………..…………….4 2-1-1 鐵電電域與域壁…………………….………...…………...6 2-1-2 蕭特基接面…………………………...…….……………...7 2-1-3 退極化場效應………………………...……………………9 2-2 鐵酸鉍介紹…………………..………………………………...10 2-2-1 晶體結構………………………………………………….10 2-2-2 Bi2O3-Fe2O3的相圖……………………………………….13 2-3 壓電性質……………………………………………………….15 2-4 鐵電性質……………………………..………………...……....18 2-5 介電性質……………………………….……………………....22 2-5-1 極化機制……………………….………...…...….….……22 2-5-2 介電崩潰……………………...……....………….…….....25 2-6 水熱法……………………………..…………………………...26 第三章 實驗方法…………………………..…………………………28 3-1 實驗藥品…………………………………..…………………...28 3-2 實驗步驟……………………..………………………………...28 3-3 分析儀器……………………………..………………………...31 3-3-1 X-ray 粉末繞射儀………………………………………..32 3-3-2 結構擬合……………………...……...….………….…….32 3-3-3 拉曼光譜……………….…………………..……….…….34 3-3-4 直流多功能電表……...……….……………...….……….36 3-3-5 壓電系數量測儀…………………….…...……....……….36 3-3-6 太陽光模擬器………………….………...……….……....37 第四章 結果與討論……………………………………………………38 4-1 水熱法製備鐵酸鉍………………………………..…………...39 4-2 水熱法製備鐵酸鉍塊材及量測…………………………..…...39 4-2-1 KOH濃度對於鐵酸鉍成相之影響………………....……39 4-2-2 反應溫度對於鐵酸鉍成相之影響…………….…...…….40 4-2-3 不同鎳摻雜量對於鐵酸鉍成相之影響……….…..….….41 4-2-4 拉曼光譜量測……...……………….……………….…....46 4-2-5 鐵酸鉍塊材微觀組織及元素成分分析………...….….…50 4-2-6 電阻量測……….……………………………...……….…52 4-2-7 XPS化學成分分析…………………….……………….…55 4-2-8 鐵酸鉍塊材照光電流分析……...………….………….…59 4-3 水熱法製備鐵酸鉍磊晶厚膜及量測………………..………...63 4-3-1 鎳摻雜鐵酸鉍厚膜製備…………………….…………....63 4-3-2 水熱製備鎳摻雜鐵酸鉍厚膜…………….………………66 4-3-3 鐵酸鉍厚膜照光電流分析…………….…………………68 第五章 結論…………………………..………………………………72 第六章 參考文獻…………………………..…………………………74

    1. W. Eerenstein, N. D. Mathur, J. F. Scott, ”Multiferroic and magnetoelectric materials”, Nature Reviews, 442, 759-765 (2009).
    2. J. Lu, L. J. Qiao, P. Z. Fu, “Phase equilibrium of Bi2O3–Fe2O3 pseudo-binary system and growth of BiFeO3 single crystal”, Journal of Crystal Growth, 318, 936–941 (2011).
    3. D. K. Mishra, X. Qi, ” Energy levels and photoluminescence properties of nickel-doped bismuth ferrite”, Journal of Alloys and Compounds, 504, 27-31 (2010)
    4. Y. Yuan, Z. Xiao, B. Yang, J. Huang, “Arising applications of ferroelectric materials in photovoltaic devices”, Journal of Materials Chemistry, 2, 6027-6041 (2014).
    5. S. Y. Yang, J. Seidel, S. J. Byrnes, P. Shafer, C.-H. Yang, M. D. Rossell, P. Yu, Y.-H. Chu, J. F. Scott, J. W. Ager, L. W. Martin, R. Ramesh, ”Above-bandgap voltages from ferrelectric photovoltaic devices”, Nature Nanotechnology, 2, 143-147 (2011).
    6. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, “Organometal Halide Perovskites as Visible”, American Chemical Society, 1, 6050-6051 (2009).
    7. T. Choi, S. Lee, Y. J. Choi, V. Kiryukhin, S.-W. Cheong, “Switchable Ferroelectric Diode and Photovoltaic Effect in BiFeO3,” Science, 324, 63-66 (2009).
    8. D. J. Kim, J. Y. Jo, Y. S. Kim, Y. J. Chang, J. S. Lee, J. -G. Yoon, T. K. Song, T. W. Noh, “Polarization Relaxation Induced by a Depolarization Field in Ultrathin Ferroelectric BaTiO3 Capacitors”, Physical Review Letters, 95, 237602 (2005).
    9. B. Chen, M. Li, Y. Liu, Z. Zuo, F. Zhuge, Q.-F. Zhan, R.-W. Li, “Effect of top electrodes on photovoltaic properties of polycrystalline BiFeO3 based thin film capacitors”, Nanotechnology, 22, 1-5 (2011).
    10. T. Shimada, T. Matsui, T. Xu, K. Arisue, Y. Zhang, J. Wang, T. Kitamura, ‘‘Multiferroic nature of intrinsic point defects in BiFeO3: A hybrid Hartree-Fock density functional study’’, Physical Review B, 93, 174107 (2016).
    11. J. E. Lennard-Jones, “Processes of adsorption and diffusion of solid surfaces”, Transactions of Faraday Society, 28, 333-359 (1932).
    12. F. Kubel, H. Schmid, ‘‘Structure of a ferroelectric and ferroelastic monodomain crystal of the perovskite BiFeO3’’, Acta Crystallographica Section B, 46, 698–702 (1990).
    13. M. Kadomtseva, Y. F. Popov, A. P. Pyatakov, G. P. Vorob’ev, A. K. Zvezdin, D. Viehland, ‘‘Phase transitions in multiferroic BiFeO3 crystals, thin-layers, and ceramics: enduring potential for a single phase, room-temperature magnetoelectric ‘holy grail’ ’’, Phase Transitions, 79, 1019–1042 (2006).
    14. M. A. Einarsrud, T. Grande, ‘‘1D oxide nanostructures from chemical solutions,’’ Chem. Soc. Rev., 43, 2187–2199, 2014
    15. S. M. Selbach, M. A. Einarsrud, T. Grande, ‘‘On the thermodynamic stability of BiFeO3’’, Chemistry of Materials, 21, 169–173 (2009).
    16. G. A. Smolenskii, I. E. Chupis, “Ferroelectromagnets”, Soviet Physics Uspekhi, 25, 475-493 (1928).
    17. S. M. Selbach, M. A. Einarsrud, T. Grande, ‘‘On the thermodynamic stability of BiFeO3,’’ Chemistry of Materials, 21, 169–173 (2009).
    18. C. Gutiérrez-Lázaro, I. Bretos, R. Jiménez, J. Ricote, H. E. Hosiny, D. Pérez-Mezcua, R. J. J. Rioboó, M. García-Hernández, and M. L. Calzada, ‘‘Solution synthesis of BiFeO3 thin films onto silicon substrates with ferroelectric, magnetic, and optical functionalities’’, Journal of American Ceramic Society, 96, 3061–3069 (2013).
    19. S. Z. Lu, X. Qi, ‘‘Magnetic and dielectric properties of nanostructured BiFeO3 prepared by sol-gel method,’’ Journal of American Ceramic Society, 97, 2185–2194 (2014).
    20. T. Tong, J. Chen, D. Jin, J. Cheng, ‘‘Preparation and gas sensing characteristics of BiFeO3 crystallites,’’ Matereals Letters, 197, 160–162 (2017).
    21. 吳朗,”電子陶瓷-壓電”,全欣科技圖書, 7, (1994).
    22. Z. Yang, H. Li, X. Zong, Y. Chang, “Structure and electrical properties of PZT-PMS-PZN piezoelectric ceramics”, Journal of the European Ceramic Society, 26, 3197-3202 (2006).
    23. P. Hermet, M. Goffinet, J. Kreisel, P. Ghosez, ”Raman and infrared spectra of multiferroic bismuth ferrite from first principles,” Physical Review B, 75, 220102 (2007).
    24. R. Wördenweber, M. Grüninger, ”Manipulating the Structural and Electronic Properties of Epitaxial NaNbO3 Films via Strain and Stoichiometry”, Tag der mündlichen Prüfung, (2016).
    26. M. Alexander Waddell, C. Perez,”Limiting, “Limiting the Deformation of a Spacecraft’s Hull through the Application of Piezoelectric Materials”, Florida International University, (2015).
    27. G. H. Haertling, ‘‘Ferroelectric ceramics: history and technology’’, Journal of American Ceramic Society, 82, 797–818, (1999).
    28. R. Tararam, I. K. Bdikin, N. Panwar, J. A. Varela, P. R. Bueno, A. L. Kholkin, ‘‘Nanoscale electromechanical properties of CaCu3Ti4O12 ceramics’’, Journal of Applied Physics, 110, 052019, (2011).
    29. J. Guyonnet, “Ferroelectric domain walls: statics, dynamics, and functionalities revealed by atomic force microscopy”, Springer, (2014).
    30. L. Jin, F. Li, and S. Zhang, ‘‘Decoding the fingerprint of ferroelectric loops: comprehension of the material properties and structures’’, Journal of American Ceramic Society, 97, 1–27 (2014).
    31. 范振豊, ”鐵酸鉍鐵電薄膜的電性及光伏效應, 清華大學材料科學及工程學系碩士論文 (2012).
    32. A. Yoko, T. Aida, N. Aoki, D. Hojo, M. Koshimizu, S. Ohara, G. Seong, S. Takami, T. Togashi, T. Tomai, T. Tsukada, T. Adschiri, “Application 53 - Supercritical Hydrothermal Synthesis of Nanoparticles”, Nanoparticle Technology Handbook, 683-689 (2018).
    33. L. –Y. Meng, B. Wang, M. –G. Ma, K. -L. Lin, “The progress of microwave-assisted hydrothermal method in the synthesis of functional nanomaterials”, Materials Today Chemistry, 63-68 (2016).
    34. R. I. Walton, “Subcritical solvothermal synthesis of condensed inorganic materials”, Chemical Society Reviews, 3, 275-277 (1965).
    35. X-ray diffraction– Bruker D8 Discover (2019).
    36. TOPAS software, XRD Software-Diffraction.suit (2019).
    37. Gardiner, Derek J. , Graves, Pierre R. , “Practical Raman spectroscopy”, Springer-Verlag (1989).
    38. 汪建民, “材料分析”, 中國材料學會, (2001).
    39. D. L. Jeanmaire, R. P. Van Duyne, “Surface Raman Electrochemistry Part I. Heterocyclic, Aromatic and Aliphatic Amines Adsorbed on the Anodized Silver Electrode”, Journal of Electroanalytical Chemistry, 84, 1-20 (1977).
    40. R. S. Chao, R. K. Khanna, E. R. Lippincott, “Theoretical and experimental resonance Raman intensities for the manganate ion”, Journal of Raman Spectroscopy, 3, 121-131 (1974).
    41. D. Hunter, K. Lord, T. M. Williams, K. Zhang, A. K. Pradhana, “Junction characteristics of SrTiO3 or BaTiO3 on p-Si „100… heterostructures”, Applied Physics Letters, 89 (2003).
    42. X. Xu, W. Liu, H. Zhang, M. Guo, P. Wu, S. Wang, J. Gao, G. Rao, “The abnormal electrical and optical properties in Na and Ni codoped BiFeO3 nanoparticles,” Journal of Applied Physics, 117, 174106 (2015).
    43. D. Rout, S. H. Han, K. –S. Moon, H. G. Kim, C. Cheon, “Low temperature hydrothermal epitaxy and Raman study of heteroepitaxial BiFeO3 film”, Applied Physics Letters, 95,122509 (2009).
    44. H. Fukumura, H. Harima, K. Kisoda, M. Tamada, Y. Noguchi, M. Miyayama, “Raman scattering study of multiferroic BiFeO3 single crystal”, Journal of Magnetism and Magnetic Materials, 310, e367-e369 (2007).
    45. D. Kothari, V. R. Reddy, V. G. Sathe, A. Gupta, A. Banerjee, A. M. Awasth, ” Raman scattering study of polycrystalline magnetoelectric BiFeO3,” Journal of Magnetism and Magnetic Materials, 320, 548–552 (2008).
    46. P. Hermet, M. Goffinet, J. Kreisel, P. Ghosez, ”Raman and infrared spectra of multiferroic bismuth ferrite from first principles,” Physical Review B, 75, 220102 (2007).
    47. C. Quan, Y. Han, N. Gao, W. Mao, J. Zhang, J. Yang, X. Li, W. Huang, ‘‘Comparative studies of pure, Ca-doped, Co-doped and co-doped BiFeO3 nanoparticles’’, Ceramics International, 42, 537–544 (2016).
    48. W. Xia, H. Wu, Z. Xing, Q. Hang, X. Zhu, Z. Liu, ‘‘Structural and vibrational properties of (Bi1-xLax)FeO3 and (Bi1-yBay)(Fe1-yTiy)O3 multiferroic ceramics investigated by Raman scattering,’’ Ceramics International, 43, S43–S48 (2017).
    49. X. Qi, J. Dho, R. Tomov, M. G. Blamire, J. L. MacManus-Driscoll, “Greatly reduced leakage current and conduction mechanism in aliovalent-ion-doped BiFeO3”, Applied Physics Letters, 86, 062903 (2005).
    50. J. S. Hwang, Y. J. Yoo, Y. P. Lee, J.-H. Kang, ”Reinforced magnetic properties of Ni-doped BiFeO3 ceramic,” Journal of the Korean Physical Society, 69, 282-285 (2016).
    51. D. K. Mishra, X. Qi, ”Energy levels and photoluminescence properties of nickel-doped bismuth ferrite,” Journal of Alloys and Compounds, 504, 27-31 (2010).
    52. J. S. Hwang, Y. J. Yoo , Y. P. Lee, J.-H. Kang,” Reinforced magnetic properties of Ni-doped BiFeO3 ceramic”, Journal of the Korean Physical Society, 69, 282-285, (2016).
    53. Q. Q. Ke, X. J. Lou, Y. Wang, J. Wang, ‘‘Oxygen-vacancy-related relaxation and scaling behaviors of Bi0.9La0.1Fe0.98Mg0.02O3 ferroelectric film,’’ Physical Review B, 82, 024102 (2010).
    54. C. H. Park, ‘‘Microscopic study on migration of oxygen vacancy in ferroelectric perovskite oxide,’’ Journal of Korean Physical Society, 42, S1420–S1424 (2003).
    55. Y. –W. Lu, X. Qi, “Hydrothermal synthesis of pure and Sb-doped BiFeO3 with the typical hysteresis loops of ideal ferroelectrics”, Journal of Alloys and Compounds, 774, 386-395 (2019).
    56. Q. Q. Ke, X. J. Lou, Y. Wang, J. Wang, ‘‘Oxygen-vacancy-related relaxation and scaling behaviors of Bi0.9La0.1Fe0.98Mg0.02O3 ferroelectric film,’’ Physical Review B, 82, 024102 (2010).
    57. A. Bhatnagar, A. R. Chaudhuri, Y. H. Kim, D. Hesse1, M. Alexe1,” Role of domain walls in the abnormal photovoltaic effect in BiFeO3”, Nature Communications, 27, 1-7 (2013).
    58. Y. –W. Lu, X. Qi, “Hydrothermal synthesis of pure and Sb-doped BiFeO3 with the typical hysteresis loops of ideal ferroelectrics,” Journal of Alloys and Compounds, 774, 386-395 (2019).
    59. D. Hunter, K. Lord, T. M. Williams, K. Zhang, A. K. Pradhana, “Junction characteristics of SrTiO3 or BaTiO3 on p-Si „100… heterostructures,” Applied Physics Letters, 89, 092102 (2003).
    60. A. Tsurumaki, H.Yamada, A. Sawa, “Impact of Bi Deficiencies on Ferroelectric Resistive Switching Characteristics Observed at p-Type Schottky-Like Pt/Bi1–δFeO3 Interfaces”, Advanced Functional Materials, 22,1040-1047 (2012).
    61. Y. M. Cui, L. W. Zhang, C. C. Wang, G. L. Xie, C. P. Chen, B. S. Cao, ”Strain-assisted tunneling current through TbMnO3∕Nb-1 wt %-doped SrTiO3 p–n junctions”, Applied Physics Letters, 86, 2005
    62. D. Hunter, K. Lord, T. M. Williams, K. Zhang, and A. K. Pradhana, “Junction characteristics of SrTiO3 or BaTiO3 on p-Si(100) heterostructures,” APPLIED PHYSICS LETTERS, 86, 203501 (2006).
    63. R. K. Katiyar, Y. Sharma, P. Misra, V. S. Puli, S. Sahoo, A. Kumar, J. F. Scott, G. Morell, B. R. Weiner, R. S. Katiyar, “Studies of the switchable photovoltaic effect in co-substituted BiFeO3 thin films”, Applied Physics Letters, 105, 172904 (2014).
    64. R. K. Katiyar, P. Misra, S. Sahoo, G. Morell, R. S. Katiyar, “Enhanced photoresponse in BiFeO3/SrRuO3 heterostructure”, Journal of Alloys and Compounds, 609, 168-172 (2014).
    65. W. Cai, C. Fu, R. Gao, W. Jiang, X. Deng, G. Chen, “Photovoltaic enhancement based on improvement of ferroelectricproperty and band gap in Ti-doped bismuth ferrite thin films”, Journal of Alloys and Compounds, 617, 240-246 (2014).
    66. Z. Fan, K. Yao, J. Wang, “Photovoltaic effect in an indium-tin-oxide/ZnO/BiFeO3/Pt heterostructure,” Applied Physics Letters, 105, 162903 (2014).

    下載圖示 校內:2024-07-01公開
    校外:2024-07-01公開
    QR CODE