| 研究生: |
王翠霙 Wang, Tsui-Ying |
|---|---|
| 論文名稱: |
新穎致癌基因 MSP58 之功能性探討 Functional analysis of a novel candidate oncogene, 58-kDa microspherule protein (MSP58) |
| 指導教授: |
張文昌
Chang, Wen-Chang 林鼎晏 Lin, Ding-Yen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 藥理學研究所 Department of Pharmacology |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 59 |
| 中文關鍵詞: | 細胞老化 、細胞凋亡 |
| 外文關鍵詞: | MSP58, apoptosis, senescence |
| 相關次數: | 點閱:84 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
58-kDa微小球蛋白(MSP58)已被報導參與在基因轉錄調控和細胞轉型(transformation)能力。在我們的研究中發現利用干擾RNA降低MSP58的表現會導致細胞分裂不正常進而誘導細胞凋亡(apoptosis)的發生,然而大量表現MSP58會導致類似細胞老化的生長停滯。研究持續大量表現MSP58的人類纖維肉瘤細胞株HT1080中發現細胞生長停滯是由於誘導pRB去磷酸化、CDK的抑制劑p21的表現上升以及端粒酶(telomerase)活性的抑制。進而我們利用干擾RNA在持續表現MSP58的HT1080細胞株中降低p21的表現會阻止MSP58 所誘導的細胞老化。此外,近來我們確認分析一些與MSP58有交互作用的新穎蛋白質如需ATP的染色質重建複體(chromatin remodeling complex)成員與參與端粒酶活性的結合蛋白。總結以上實驗我們提供了MSP58調控基因轉錄和細胞老化的新功能。
The nucleolar 58-kDa microspherule protein (MSP58) has been implicated in functional roles of genes transcriptional regulation and cellular transformation. In our studies, abrogation of the endogenous MSP58 function by small interfering RNA knockdown caused aneuploidy and apoptosis, whereas overexpression of MSP58 gene induced the senescence-like growth arrest in HT1080 cells . Studies in the MSP58 stably expressed clones in HT1080 cells revealed that the growth arrest may in part be accounted for by inducing hypophosphorylation of pRB, up-regulation cyclin-dependent kinase inhibitors p21 and telomerase activity inhibition. In addition, abrogation of the endogenous p21 function by RNA interferences in MSP58 stable clones prevents the induction of senescence. Recently, we identified and characterized some MSP58-interacting proteins that is comprised of a SWI/SNF chromatin remodeling complex sununit and novel telomerase regulators. These results provides a previously uncharacterized biological function of MSP58 in its ability to regulate gene expression and cellular senescence.
1. Mahajan, A., Yuan, C., Lee, H., Chen, E.S., Wu, P.Y. and Tsai, M.D. (2008) Structure and function of the phosphothreonine-specific FHA domain. Science signaling, 1, re12.
2. Ren, Y., Busch, R.K., Perlaky, L. and Busch, H. (1998) The 58-kDa microspherule protein (MSP58), a nucleolar protein, interacts with nucleolar protein p120. European journal of biochemistry / FEBS, 253, 734-742.
3. Okumura, K., Zhao, M., Depinho, R.A., Furnari, F.B. and Cavenee, W.K. (2005) Cellular transformation by the MSP58 oncogene is inhibited by its physical interaction with the PTEN tumor suppressor. Proceedings of the National Academy of Sciences of the United States of America, 102, 2703-2706.
4. Song, H., Li, Y., Chen, G., Xing, Z., Zhao, J., Yokoyama, K.K., Li, T. and Zhao, M. (2004) Human MCRS2, a cell-cycle-dependent protein, associates with LPTS/PinX1 and reduces the telomere length. Biochemical and biophysical research communications, 316, 1116-1123.
5. Hirohashi, Y., Wang, Q., Liu, Q., Du, X., Zhang, H., Sato, N. and Greene, M.I. (2006) p78/MCRS1 forms a complex with centrosomal protein Nde1 and is essential for cell viability. Oncogene, 25, 4937-4946.
6. Du, X., Wang, Q., Hirohashi, Y. and Greene, M.I. (2006) DIPA, which can localize to the centrosome, associates with p78/MCRS1/MSP58 and acts as a repressor of gene transcription. Experimental and molecular pathology, 81, 184-190.
7. Bader, A.G., Schneider, M.L., Bister, K. and Hartl, M. (2001) TOJ3, a target of the v-Jun transcription factor, encodes a protein with transforming activity related to human microspherule protein 1 (MCRS1). Oncogene, 20, 7524-7535.
8. Wang, Q., Hirohashi, Y., Furuuchi, K., Zhao, H., Liu, Q., Zhang, H., Murali, R., Berezov, A., Du, X., Li, B. et al. (2004) The centrosome in normal and transformed cells. DNA and cell biology, 23, 475-489.
9. Lin, W., Zhang, J., Zhang, J., Liu, X., Fei, Z., Li, X., Davidovic, L., Tang, Z., Shen, L., Deng, Y. et al. (2009) RNAi-mediated inhibition of MSP58 decreases tumour growth, migration and invasion in a human glioma cell line. Journal of cellular and molecular medicine, 13, 4608-4622.
10. Hayflick, L. (1965) The limited in vitro lifetime of human diploid cell strains. Experimental cell research, 37, 614-636.
11. Bodnar, A.G., Ouellette, M., Frolkis, M., Holt, S.E., Chiu, C.P., Morin, G.B., Harley, C.B., Shay, J.W., Lichtsteiner, S. and Wright, W.E. (1998) Extension of life-span by introduction of telomerase into normal human cells. Science (New York, N.Y, 279, 349-352.
12. Chen, Q. and Ames, B.N. (1994) Senescence-like growth arrest induced by hydrogen peroxide in human diploid fibroblast F65 cells. Proceedings of the National Academy of Sciences of the United States of America, 91, 4130-4134.
13. Harley, C.B., Futcher, A.B. and Greider, C.W. (1990) Telomeres shorten during ageing of human fibroblasts. Nature, 345, 458-460.
14. Saito, H., Hammond, A.T. and Moses, R.E. (1995) The effect of low oxygen tension on the in vitro-replicative life span of human diploid fibroblast cells and their transformed derivatives. Experimental cell research, 217, 272-279.
15. Ogryzko, V.V., Hirai, T.H., Russanova, V.R., Barbie, D.A. and Howard, B.H. (1996) Human fibroblast commitment to a senescence-like state in response to histone deacetylase inhibitors is cell cycle dependent. Molecular and cellular biology, 16, 5210-5218.
16. Ramirez, R.D., Morales, C.P., Herbert, B.S., Rohde, J.M., Passons, C., Shay, J.W. and Wright, W.E. (2001) Putative telomere-independent mechanisms of replicative aging reflect inadequate growth conditions. Genes & development, 15, 398-403.
17. Serrano, M., Lin, A.W., McCurrach, M.E., Beach, D. and Lowe, S.W. (1997) Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell, 88, 593-602.
18. Di Micco, R., Fumagalli, M., Cicalese, A., Piccinin, S., Gasparini, P., Luise, C., Schurra, C., Garre, M., Nuciforo, P.G., Bensimon, A. et al. (2006) Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature, 444, 638-642.
19. Trotter, K.W. and Archer, T.K. (2008) The BRG1 transcriptional coregulator. Nuclear receptor signaling, 6, e004.
20. Hendricks, K.B., Shanahan, F. and Lees, E. (2004) Role for BRG1 in cell cycle control and tumor suppression. Molecular and cellular biology, 24, 362-376.
21. Dunaief, J.L., Strober, B.E., Guha, S., Khavari, P.A., Alin, K., Luban, J., Begemann, M., Crabtree, G.R. and Goff, S.P. (1994) The retinoblastoma protein and BRG1 form a complex and cooperate to induce cell cycle arrest. Cell, 79, 119-130.
22. Zhang, H.S., Gavin, M., Dahiya, A., Postigo, A.A., Ma, D., Luo, R.X., Harbour, J.W. and Dean, D.C. (2000) Exit from G1 and S phase of the cell cycle is regulated by repressor complexes containing HDAC-Rb-hSWI/SNF and Rb-hSWI/SNF. Cell, 101, 79-89.
23. Lee, D., Kim, J.W., Seo, T., Hwang, S.G., Choi, E.J. and Choe, J. (2002) SWI/SNF complex interacts with tumor suppressor p53 and is necessary for the activation of p53-mediated transcription. The Journal of biological chemistry, 277, 22330-22337.
24. Kang, H., Cui, K. and Zhao, K. (2004) BRG1 controls the activity of the retinoblastoma protein via regulation of p21CIP1/WAF1/SDI. Molecular and cellular biology, 24, 1188-1199.
25. Napolitano, M.A., Cipollaro, M., Cascino, A., Melone, M.A., Giordano, A. and Galderisi, U. (2007) Brg1 chromatin remodeling factor is involved in cell growth arrest, apoptosis and senescence of rat mesenchymal stem cells. Journal of cell science, 120, 2904-2911.
26. Kerr, J.F., Wyllie, A.H. and Currie, A.R. (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. British journal of cancer, 26, 239-257.
27. Saraste, A. and Pulkki, K. (2000) Morphologic and biochemical hallmarks of apoptosis. Cardiovascular research, 45, 528-537.
28. Wyllie, A.H. (1980) Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature, 284, 555-556.
29. Zhivotovsky, B. and Kroemer, G. (2004) Apoptosis and genomic instability. Nature reviews, 5, 752-762.
30. Singh, M., Sharma, H. and Singh, N. (2007) Hydrogen peroxide induces apoptosis in HeLa cells through mitochondrial pathway. Mitochondrion, 7, 367-373.
31. Sheikh, M.S., Antinore, M.J., Huang, Y. and Fornace, A.J., Jr. (1998) Ultraviolet-irradiation-induced apoptosis is mediated via ligand independent activation of tumor necrosis factor receptor 1. Oncogene, 17, 2555-2563.
32. Van Antwerp, D.J., Martin, S.J., Kafri, T., Green, D.R. and Verma, I.M. (1996) Suppression of TNF-alpha-induced apoptosis by NF-kappaB. Science (New York, N.Y, 274, 787-789.
33. Meier, P., Finch, A. and Evan, G. (2000) Apoptosis in development. Nature, 407, 796-801.
34. Harper, J.W. and Elledge, S.J. (2007) The DNA damage response: ten years after. Molecular cell, 28, 739-745.
35. Harrison, J.C. and Haber, J.E. (2006) Surviving the breakup: the DNA damage checkpoint. Annual review of genetics, 40, 209-235.
36. Sancar, A., Lindsey-Boltz, L.A., Unsal-Kacmaz, K. and Linn, S. (2004) Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annual review of biochemistry, 73, 39-85.
37. Hallstrom, T.C. and Nevins, J.R. (2006) Jab1 is a specificity factor for E2F1-induced apoptosis. Genes & development, 20, 613-623.
38. Park, J.I., Venteicher, A.S., Hong, J.Y., Choi, J., Jun, S., Shkreli, M., Chang, W., Meng, Z., Cheung, P., Ji, H. et al. (2009) Telomerase modulates Wnt signalling by association with target gene chromatin. Nature, 460, 66-72.
39. Lee, H.S., Park, J.H., Kim, S.J., Kwon, S.J. and Kwon, J. A cooperative activation loop among SWI/SNF, gamma-H2AX and H3 acetylation for DNA double-strand break repair. The EMBO journal, 29, 1434-1445.
40. Park, J.H., Park, E.J., Hur, S.K., Kim, S. and Kwon, J. (2009) Mammalian SWI/SNF chromatin remodeling complexes are required to prevent apoptosis after DNA damage. DNA repair, 8, 29-39.
41. Zhang, L., Zhang, Q., Jones, K., Patel, M. and Gong, F. (2009) The chromatin remodeling factor BRG1 stimulates nucleotide excision repair by facilitating recruitment of XPC to sites of DNA damage. Cell cycle (Georgetown, Tex, 8, 3953-3959.
42. Carcagno, A.L., Ogara, M.F., Sonzogni, S.V., Marazita, M.C., Sirkin, P.F., Ceruti, J.M. and Canepa, E.T. (2009) E2F1 transcription is induced by genotoxic stress through ATM/ATR activation. IUBMB life, 61, 537-543.
43. Yoshida, K. and Inoue, I. (2004) Expression of MCM10 and TopBP1 is regulated by cell proliferation and UV irradiation via the E2F transcription factor. Oncogene, 23, 6250-6260.
校內:2015-08-05公開