| 研究生: |
李兆寅 Li, Jhao-yin |
|---|---|
| 論文名稱: |
結合隨機隱藏式馬可夫模型之二因子模糊時間序列預測模式 A Study of Forecasting Two-factor Fuzzy Time Series using a Stochastic Hidden Markov Model |
| 指導教授: |
李昇暾
Li, Sheng-tun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 資訊管理研究所 Institute of Information Management |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 英文 |
| 論文頁數: | 49 |
| 中文關鍵詞: | 模糊時間序列 、隱藏式馬可夫模式 、模糊關係 、模糊集合 、預測 、蒙地卡羅 |
| 外文關鍵詞: | hidden Markov model, forecasting, fuzzy time series, Monte Carlo, fuzzy relations, fuzzy sets |
| 相關次數: | 點閱:103 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在我們的日常生活中,模糊以及不完全的資料充斥在我們的身邊。因此,近年來,在不確定的環境下模糊時間序列預測漸漸地扮演著越來越重要的角色。本研究擬提出以隱藏式馬可夫模式為基礎之新的模糊時間序列預測模式。希望透過隱藏式馬可夫模式此一有系統的機率模式,利用狀態間的轉移機率來處理模糊時間序列預測問題。並且,本預測模式結合了蒙地卡羅模擬法,希望透過多次的抽樣實驗,將不論機率大小的實驗結果皆納入考量,使得最終預測結果能較貼近實際結果,並獲得較低的預測誤差率。最後,本研究將把所提出的預測模式實際應用於台北地區每日平均溫度與雲量資料,藉此以完整說明本研究所提出之預測流程,並透過均方誤與平均預測誤差率此二衡量指標,說明本研究所提出之預測模式較過去相關的模糊時間序列預測模式,擁有較低的預測誤差率。
In various areas, vague and incomplete data described as linguistic variables massively exists in our daily life. The goal of fuzzy time series forecasting under uncertain situations becomes more and more important but difficult as well. The transitions of states in a system are probabilistic due to the inherent uncertainty involving time evolution. In this paper, we present a new forecasting model based on Hidden Markov Model for fuzzy time series to understand the probability of the transition of states and acquire the forecasting outcome using simple Monte Carlo’s simulation method in order to achieve the true performance of the model approximately. Based on the model, experiments of temperature prediction could be developed, where the data of daily average temperature and average cloud density from June to September, 1993 to 1996 in Taipei are used to illustrate the forecasting process. The experiments validate the better accuracy of the proposed model achieved over traditional fuzzy time series models by training data.
Chen, S.-M. Forecasting enrollments based on fuzzy time series. Fuzzy Sets Syst., 81, 311-319, 1996.
Chen, S.-M. Forecasting enrollments based on high-order fuzzy time series. Cybernetics and Systems: An International Journal, 33, 1-16, 2002.
Chen, S.-M., & Hsu, C.-C. A new method to forecast enrollments using fuzzy time series. International Journal of Applied Science and Engineering, 2, 234-244, 2004.
Chen, S.-M., & Hwang, J.-R. Temperature prediction using fuzzy time series. IEEE Transactions on Systems, Man, and Cybernetics─Part B: Cybernetics, 30, 263-275, 2000.
Cheng, C.-H., Wang, J.-W., & Li, C.-H. Forecasting the number of outpatient visits using a new fuzzy time series based on weighted-transitional matrix. Expert Systems with Applications, 34, 2568-2575, 2008.
Hsu, Y.-Y., Tse, S.-M., & Wu, B. A new approach of bivariate fuzzy time series analysis to the forecasting of a stock index. Fuzziness and Knowledge-Based Systems, 11, 671-690, 2003.
Huarng, K. Heuristic models of fuzzy time series for forecasting. Fuzzy Sets Syst., 123, 369-386, 2001a.
Huarng, K. Effective lengths of intervals to improve forecasting in fuzzy time series. Fuzzy Sets Syst., 123, 387-394, 2001b.
Huarng, K. A dynamic approach to adjusting lengths of intervals in fuzzy time series forecasting. Intelligent Data Analysis, 8, 3-27, 2004.
Huarng, K., & Yu, T. H.-K. Ratio-based lengths of intervals to improve fuzzy time series forecasting. IEEE Transactions on Systems, Man, and Cybernetics─Part B: Cybernetics, 36, 328-340, 2006.
Hwang, J.-R., Chen, S.-M., & Lee, C.-H. Handling forecasting problems using fuzzy time series. Fuzzy Sets Syst., 100, 217-228, 1998.
Lee, C.-H. L., Liu, A., & Chen, W.-S. Pattern discovery of fuzzy time series for financial prediction. IEEE Transactions on Knowledge and Data Engineering, 18, 613-625, 2006.
Lee, L.-W., Wang, L.-H., Chen, S.-M., & Leu, Y.-H. Handling forecasting problems based on two-factors high-order fuzzy time series. IEEE Transactions on Fuzzy Systems, 14, 468-477, 2006.
Li, S.-T., & Cheng, Y.-C. Deterministic fuzzy time series model for forecasting enrollments. Comput. Math. Appl., 53, 1904-1920, 2007.
Own, C.-M., & Yu, P.-T. Forecasting fuzzy time series on a heuristic high-order model. Cybernetics and Systems: An International Journal, 36, 705-717, 2005.
Rabiner, L. R., & Juang, B. H. An introduction to hidden Markov models. IEEE ASSP Mag., 3, 4-16, 1986.
Song, Q., & Chissom, B. S. Forecasting enrollments with fuzzy time series—part I. Fuzzy Sets Syst., 54, 1-9, 1993a.
Song, Q., & Chissom, B. S. Fuzzy time series and its models. Fuzzy Sets Syst., 54, 269-277, 1993b.
Song, Q., & Chissom, B. S. Forecasting enrollments with fuzzy time series—part II. Fuzzy Sets Syst., 62, 1-8, 1994.
Sullivan, J., & Woodall, W. H. A comparison of fuzzy forecasting and Markov modeling. Fuzzy Sets Syst., 64, 279-293, 1994.
Tsaur, R.-C., Yang, J.-C. O., & Wang, H.-F. Fuzzy relation analysis in fuzzy time series model. Computers and Mathematics with Applications, 49, 539-548, 2005.
Viterbi, A. J. Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Trans. Informat. Theory, 13, 260-269, 1967.
Wangming, W. Fuzzy reasoning and fuzzy relational equations. Fuzzy Sets Syst., 20, 67-78, 1986.
Yu, T. H.-K., & Huarng, K.-H. A bivariate fuzzy time series model to forecast the TAIEX. Expert Systems with Applications, 34, 2945-2952, 2008.
Zadeh, L. A. Fuzzy sets. Inform. and Control, 8, 338-353, 1965.
Zadeh, L. A. The concept of a linguistic variable and its application to approximate reasoning, parts 1-3. Inform. Sci., 8: 199-249; 8: 301-357; 9: 43-80, 1975.
Zhang, G., Patuwo, B. E., & Hu, M. Y. Forecasting with artificial neural networks: The state of the art. International Journal of Forecasting, 14(1), 35-62, 1998.