簡易檢索 / 詳目顯示

研究生: 吳孟穎
Wu, Meng-Ying
論文名稱: 射頻磁控濺鍍摻鐵之氧化鎢薄膜及其氣體感測性質之研究
The study on gas sensing properties of Fe-doped tungsten oxide films grown by RF magnetron sputtering
指導教授: 齊孝定
Qi, Xiao-Ding
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 131
中文關鍵詞: 射頻磁控濺鍍共濺鍍氧化鎢薄膜氣體感測
外文關鍵詞: RF magnetron sputter, co-sputtered, WO3, thin film, gas sensor
相關次數: 點閱:61下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用雙靶反應式射頻共濺鍍法製備摻雜鐵之氧化鎢薄膜於玻璃基板上,並改變不同沉積條件,探討薄膜成分、結構及價態,對氣體感測性質之影響。薄膜結構以XRD、SEM、EDS、XPS等各項分析儀器進行分析,並利用本實驗室組裝之氣體感測儀器,分別針對一氧化碳、二氧化碳、甲醇、乙醇及丙酮五種目標氣體做氣體感測分析。
    根據實驗結果,與純氧化鎢薄膜相比,摻雜鐵確實能有效提升對於氣體之響應,且於650˚C下沉積摻雜鐵之氧化鎢薄膜在固定工作溫度350˚C下,對5ppm丙酮有最佳的敏感度。由SEM表面形貌觀察可發現鐵的摻雜可抑制晶粒成長,使其無法成長為緻密之薄膜,晶粒間產生孔洞,可增加提供氣體吸附的位置,有利於氣體感測分析。實驗結果亦發現隨著沉積時間的拉長,氣體感測響應值有顯著提升,經由XPS分析顯示是因結構中混有較多比例的低價態鎢之緣故。針對實際運用之需要,本研究也進行氣體感測響應值之再現性實驗,針對5 ppm之丙酮氣體反覆測試100次,實驗結果顯示對丙酮氣體之響應沒有明顯的衰退,其響應值僅由35.8稍降為32.3,顯示薄膜具有相當的穩定性及再現性。

    In this research, Fe-doped tungsten oxide films were deposited on glass substrates by RF magnetron sputtering to analyze their gas sensing capabilities. The films were grown at substrate temperatures from 400 °C to 650 °C and under different deposition conditions. The gas sensing performance of the films was measured at a working temperature of 350 °C for five target gases (CO, CO2, methanol, ethanol, and acetone) at the concentration of 5 ppm. The gas sensitivity (S) was defined as S=Rair/Rgas, where Rgas and Rair represent the resistances measured in target gas and in air, respectively. The results showed that the Fe-doping in tungsten oxide films enhanced gas sensitivity as compared to the undoped films. In particular, the Fe-doped films deposited at 650 °C for 45 minutes had the best sensitivity of S=35.8 to 5 ppm acetone. The experiment also found that as the deposition time increased, the acetone sensitivity of the grown films increased significantly. XPS analysis showed an increased level of low-valence tungsten in such films, which might be the reason for the increased acetone sensitivity. The microstructure of Fe-doped WO3-x films consisted of porous surfaces and fibrous cross-section, which were beneficial to gas sensing applications, because such a microstructure provided an excellent condition for gases to diffuse into the films. To determine the practical applicability of the films, repeatability tests were also conducted. The 5 ppm acetone gas and air were alternately injected into the measurement chamber for 100 times, and the results indicate that the sensitivity remained above 32 after the 100 runs, without a notable decrease from the initial value of 35.8. The results indicated that Fe-doped WO3-x films had good stability and repeatability for gas sensing application.

    摘要 I Extended Abstract II 致謝 IX 目錄 XI 表目錄 XV 圖目錄 XVI 第一章 緒論 1 1-1前言 1 1-2 研究動機與目的 4 第二章 文獻回顧 8 2.1濺鍍原理 8 2.1.1 直流濺鍍 ( DC sputtering deposition ) 11 2.1.2 射頻濺鍍 ( RF sputtering deposition ) 11 2.1.3 磁控濺鍍 ( Magnetron sputtering deposition ) 12 2.1.4 反應性濺鍍 ( Reactive sputtering deposition )13 2.2薄膜成核成長理論 14 2.3 氣體感測器介紹 22 2.3.1 氣體感測器效能 25 2.4 氣體感測器工作原理 29 2.4.1 蕭特基介面 29 2.4.2 氣體吸附機制 29 2.4.3 晶粒尺寸 35 2.5 氧化鎢 37 2.5.1 氧化鎢結構 37 2.5.2 氧化鎢應用與特性 40 第三章 實驗方法與步驟 42 3.1 實驗流程 42 3.2 實驗材料 43 3.2.1 靶材製備-固相合成法 45 3.2.2 金屬鎢及氧化鐵靶材製備 45 3.3 薄膜製備 48 3.3.1 濺鍍系統 48 3.3.2 基板前處理 50 3.3.3 濺鍍參數及製程 51 3.4 薄膜性質量測與分析 52 3.4.1 晶體結構分析 52 3.4.2 表面形貌結構與成分分析 54 3.4.3 成分與化學鍵結分析 56 3.5 氣體感測性質分析 58 3.5.1氣體感測系統 58 3.5.2試片製備 60 3.5.3氣體感測分析流程 61 第四章 結果與討論 62 4.1 純氧化鎢薄膜及摻雜鐵之氧化鎢薄膜比較分析 62 4.1.1 晶體結構分析 63 4.1.2 表面形貌與成分分析 66 4.1.3 橫截面( cross-section ) 68 4.1.4 氣體感測分析 70 4.2 不同沉積溫度對摻雜鐵之氧化鎢薄膜比較分析 79 4.2.1 摻雜Fe之氧化鎢薄膜晶體結構分析 80 4.2.2 摻雜Fe之氧化鎢薄膜表面形貌分析 83 4.2.3 摻雜Fe之氧化鎢薄膜橫截面(cross-section)與成分分析 86 4.2.4 摻雜Fe之氧化鎢薄膜氣體感測分析 88 4.3 不同沉積時間對摻雜Fe氧化鎢薄膜之影響 95 4.3.1 摻雜Fe之氧化鎢薄膜晶體結構分析 96 4.3.2 摻雜Fe之氧化鎢薄膜表面形貌分析 99 4.3.3 摻雜Fe之氧化鎢薄膜橫截面( cross-section ) 與成分分析 101 4.3.4 摻雜Fe之氧化鎢薄膜氣體感測分析 104 4.3.5 摻雜Fe之氧化鎢薄膜化學鍵結(XPS)分析 111 4.4 摻雜Fe之氧化鎢薄膜氣體感測延伸測試 118 4.4.1 摻雜Fe之氧化鎢薄膜再現性 (Repeatability) 118 第五章 結論 121 參考文獻 123

    [1] G. Heiland, "Zum einfluss von wasserstoff auf die elektrische leitfähigkeit von ZnO-kristallen." Z. Phys., 138, 459-464, (1954).
    [2] N. Taguchi, "Gas Detecting Devices.," Patent 3,631,436, 1971.
    [3] M. Masikini, M. Chowdhury, and O. Nemraoui, "Review—Metal Oxides: Application in Exhaled Breath Acetone Chemiresistive Sensors." Journal of The Electrochemical Society, 167, 3, 037537, (2020).
    [4] V. Ruzsányi and M. Péter Kalapos, "Breath acetone as a potential marker in clinical practice." Journal of Breath Research, 11, 2, 024002, (2017).
    [5] I. Ueta, Y. Saito, M. Hosoe, M. Okamoto, H. Ohkita, S. Shirai, H. Tamura, and K. Jinno, "Breath acetone analysis with miniaturized sample preparation device: In-needle preconcentration and subsequent determination by gas chromatography–mass spectroscopy." Journal of Chromatography B, 877, 24, 2551-2556, (2009).
    [6] P. N. B. Julian W. Gardner, "A brief history of electronic noses." Sensors and Actuators B: Chemical, 18 1-3, pp.210-211, (1994).
    [7] G. Korotcenkov, "Metal oxides for solid-state gas sensors: What determines our choice?" Materials Science and Engineering: B, 139, 1, 1-23, (2007).
    [8] C. Wang, L. Yin, L. Zhang, D. Xiang, and R. Gao, "Metal Oxide Gas Sensors: Sensitivity and Influencing Factors." Sensors, 10, 3, 2088-2106, (2010).
    [9] D. Ding, Y. Shen, Y. Ouyang, and Z. Li, "Hydrothermal deposition and photochromic performances of three kinds of hierarchical structure arrays of WO3 thin films." Thin Solid Films, 520, 24, 7164-7168, (2012).
    [10] P. Judeinstein and J. Livage, "Sol–gel synthesis of WO3 thin films." Journal of Materials Chemistry, 1, 4, 621-627, (1991).
    [11] C. Cantalini, H. Sun, M. Faccio, M. Pelino, S. Santucci, L. Lozzi, and M. Passacantando, "NO2 sensitivity of WO3 thin film obtained by high vacuum thermal evaporation." Sensors and Actuators B: Chemical, 31, 1-2, 81-87, (1996).
    [12] M. Y. Pi, L. Y. Zheng, H. Y. Luo, S. M. Duan, C. L. Li, J. Yang, D. K. Zhang, and S. J. Chen, "Improved acetone gas sensing performance based on optimization of a transition metal doped WO3 system at room temperature." Journal of Physics D-Applied Physics, 54, 15, (2021).
    [13] K. Wetchakun, T. Samerjai, N. Tamaekong, C. Liewhiran, C. Siriwong, V. Kruefu, A. Wisitsoraat, A. Tuantranont, and S. Phanichphant, "Semiconducting metal oxides as sensors for environmentally hazardous gases." Sensors and Actuators B: Chemical, 160, 1, 580-591, (2011).
    [14] H. Kawasaki, T. Ueda, Y. Suda, and T. Ohshima, "Properties of metal doped tungsten oxide thin films for NOx gas sensors grown by PLD method combined with sputtering process." Sensors and Actuators B: Chemical, 100, 1, 266-269, (2004).
    [15] L. J. LeGore, R. J. Lad, S. C. Moulzolf, J. F. Vetelino, B. G. Frederick, and E. A. Kenik, "Defects and morphology of tungsten trioxide thin films." Thin Solid Films, 406, 1, 79-86, (2002).
    [16] Y. Zeng, Z. Hua, X. Tian, Y. Li, Z. Qiu, and T. Wang, "Modified Impregnation Synthesis of Fe-loaded WO3 Nanosheets and the Gas-sensing Properties." Chemistry Letters, 46, 9, 1353-1356, (2017).
    [17] J. Xiao, Y. Che, B. Lv, M.-C. Benedicte, G. Feng, T. Sun, and C. Song, "Synthesis of WO3 Nanorods and Their Excellent Ethanol Gas-Sensing Performance." Materials Research, 24, (2021).
    [18] M. Ahsan, T. Tesfamichael, M. Ionescu, J. Bell, and N. Motta, "Low temperature CO sensitive nanostructured WO3 thin films doped with Fe." Sensors and Actuators B: Chemical, 162, 1, 14-21, (2012).
    [19] T. Tesfamichael, C. Piloto, M. Arita, and J. Bell, "Fabrication of Fe-doped WO3 films for NO2 sensing at lower operating temperature." Sensors and Actuators B: Chemical, 221, 393-400, (2015).
    [20] H. C. Ji, W. Zeng, and Y. Q. Li, "Gas sensing mechanisms of metal oxide semiconductors: a focus review." Nanoscale, 11, 47, 22664-22684, (2019).
    [21] X. Wang, F. Chen, M. Yang, L. Guo, N. Xie, X. Kou, Y. Song, Q. Wang, Y. Sun, and G. Lu, "Dispersed WO3 nanoparticles with porous nanostructure for ultrafast toluene sensing." Sensors and Actuators B: Chemical, 289, 195-206, (2019).
    [22] X.-X. Zou, G.-D. Li, P.-P. Wang, J. Su, J. Zhao, L.-J. Zhou, Y.-N. Wang, and J.-S. Chen, "A precursor route to single-crystalline WO3 nanoplates with an uneven surface and enhanced sensing properties." Dalton Transactions, 10.1039/C2DT30748K 41, 32, 9773-9780, (2012).
    [23] W. Zhang, Y. Fan, T. Yuan, B. Lu, Y. Liu, Z. Li, G. Li, Z. Cheng, and J. Xu, "Ultrafine tungsten oxide nanowires: synthesis and highly selective acetone sensing and mechanism analysis." ACS Applied Materials & Interfaces, 12, 3, 3755-3763, (2019).
    [24] S.-B. Choi, J. Lee, W. Lee, and C. Lee, "Acetone sensing of multi-networked WO3-NiO core-shell nanorod sensors." Journal of the Korean Physical Society, 71, 487-493, (2017).
    [25] G.-F. Meng, Q. Xiang, Q.-Y. Pan, and J.-Q. Xu, "The Selective Acetone Detection Based on Fe3O4 Doped WO3 Nanorods." Sensor Letters, 9, 1, 128-131, (2011).
    [26] Z. Zhu, L. Zheng, S. Zheng, J. Chen, M. Liang, Y. Tian, and D. Yang, "Cr doped WO3 nanofibers enriched with surface oxygen vacancies for highly sensitive detection of the 3-hydroxy-2-butanone biomarker." Journal of Materials Chemistry A, 10.1039/C8TA08670B 6, 43, 21419-21427, (2018).
    [27] S. Wei, G. Zhao, W. Du, and Q. Tian, "Synthesis and excellent acetone sensing properties of porous WO3 nanofibers." Vacuum, 124, 32-39, (2016).
    [28] S. Cao, C. Zhao, T. Han, and L. Peng, "Hydrothermal synthesis, characterization and gas sensing properties of the WO3 nanofibers." Materials Letters, 169, 17-20, (2016).
    [29] T. Liu, J. Liu, Q. Hao, Q. Liu, X. Jing, H. Zhang, G. Huang, and J. Wang, "Porous tungsten trioxide nanolamellae with uniform structures for high-performance ethanol sensing." CrystEngComm, 10.1039/C6CE01587E 18, 43, 8411-8418, (2016).
    [30] C. S. Prajapati and N. Bhat, "ppb level detection of NO2 using a WO3 thin film-based sensor: material optimization, device fabrication and packaging." RSC Advances, 10.1039/C7RA13659E 8, 12, 6590-6599, (2018).
    [31] S. Cao and H. Chen, "Nanorods assembled hierarchical urchin-like WO3 nanostructures: Hydrothermal synthesis, characterization, and their gas sensing properties." Journal of Alloys and Compounds, 702, 644-648, (2017).
    [32] S. Wei, L. Han, M. Wang, H. Zhang, W. Du, and M. Zhou, "Hollow cauliflower-like WO3 nanostructures: Hydrothermal synthesis and their CO sensing properties." Materials Letters, 186, 259-262, (2017).
    [33] L. Wang, A. Teleki, S. E. Pratsinis, and P. I. Gouma, "Ferroelectric WO3 Nanoparticles for Acetone Selective Detection." Chemistry of Materials, 20, 15, 4794-4796, (2008).
    [34] Y. Zeng, Z. Hua, X. Tian, X. Li, Z. Qiu, C. Zhang, M. Wang, and E.-p. Li, "Selective detection of methanol by zeolite/Pd-WO3 gas sensors." Sensors and Actuators B: Chemical, 273, 1291-1299, (2018).
    [35] A. Renitta and K. Vijayalakshmi, "A novel room temperature ethanol sensor based on catalytic Fe activated porous WO3 microspheres." Catalysis Communications, 73, 58-62, (2016).
    [36] J. Kaur, K. Anand, A. Kaur, and R. C. Singh, "Sensitive and selective acetone sensor based on Gd doped WO3/reduced graphene oxide nanocomposite." Sensors and Actuators B: Chemical, 258, 1022-1035, (2018).
    [37] P. Gao, H. Ji, Y. Zhou, and X. Li, "Selective acetone gas sensors using porous WO3–Cr2O3 thin films prepared by sol–gel method." Thin Solid Films, 520, 7, 3100-3106, (2012).
    [38] G. Adilakshmi, R. S. Reddy, A. S. Reddy, P. S. Reddy, and C. S. Reddy, "Ag-doped WO(3)nanostructure films for organic volatile gas sensor application." Journal of Materials Science-Materials in Electronics, Article 31, 15, 12158-12168, (2020).
    [39] M. Righettoni, A. Tricoli, and S. E. Pratsinis, "Si:WO3 Sensors for Highly Selective Detection of Acetone for Easy Diagnosis of Diabetes by Breath Analysis." Analytical Chemistry, 82, 9, 3581-3587, (2010).
    [40] X. Bai, H. Ji, P. Gao, Y. Zhang, and X. Sun, "Morphology, phase structure and acetone sensitive properties of copper-doped tungsten oxide sensors." Sensors and Actuators B: Chemical, 193, 100-106, (2014).
    [41] S. Karatodorov, "Combined Plasma Source for Emission Spectroscopy: Laser-Induced Plasma in Hollow Cathode Discharge," Solid State Physics, Bulgarian Academy of Sciences (2017).
    [42] J. Zekonyte, "Sputtering and Surface Modification of Thermoplast." (2005).
    [43] 田民波, "Thin film technology and materials." Wu-Nan Book Inc.(2007).
    [44] M. Ohring, "Materials science of thin films." (2nd Ed). Academic Press(1991).
    [45] A. C. Raghuram and R. F. Bunshah, "The Effect of Substrate Temperature on the Structure of Titanium Carbide Deposited by Activated Reactive Evaporation." Journal of Vacuum Science and Technology, 9, 6, 1389-1394, (1972).
    [46] J. A. Thornton, "Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings." Journal of Vacuum Science and Technology, 11, 4, 666-670, (1974).
    [47] J. A. Thornton, "The microstructure of sputter‐deposited coatings." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 4, 6, 3059-3065, (1986).
    [48] N. Kaiser, "Review of the fundamentals of thin-film growth." (2002).
    [49] O. Oluwatosin Abegunde, E. Titilayo Akinlabi, O. Philip Oladijo, S. Akinlabi, and A. Uchenna Ude, "Overview of thin film deposition techniques." AIMS Materials Science, 6, 2, 174-199, (2019).
    [50] E. Aparicio-Martínez, V. Osuna, R. B. Dominguez, A. Márquez-Lucero, E. A. Zaragoza-Contreras, and A. Vega-Rios, "Room Temperature Detection of Acetone by a PANI/Cellulose/WO3 Electrochemical Sensor." Journal of Nanomaterials, 2018, 1-9, (2018).
    [51] B. U.-W. a. J. W. G. Y. Xing, "Plasmonic enhanced CMOS non-dispersive infrared gas sensor for acetone and ammonia detection." IEEE International Instrumentation and Measurement Technology Conference (I2MTC), 1-5, (2018).
    [52] G. Eranna, "Metal Oxide Nanostructures as Gas Sensing Devices." CRC Press(2016).
    [53] Z. Li, H. Li, Z. Wu, M. Wang, J. Luo, H. Torun, P. Hu, C. Yang, M. Grundmann, X. Liu, and Y. Fu, "Advances in designs and mechanisms of semiconducting metal oxide nanostructures for high-precision gas sensors operated at room temperature." Materials Horizons, 6, 3, 470-506, (2019).
    [54] M. Faraday, "On Electrical Decomposition," Philosophical Transactions of the Royal Society, (1834).
    [55] M. M. S. Akrajas, Muhammad Yahaya,, "Enriching the selectivity of metalloporphyrins chemical sensors by means of optical technique." Sensors and Actuators B: Chemical, 85, 3, 191-196, (2002).
    [56] T. Qiu-lin, Z. Wen-dong, X. Chen-yang, X. Ji-jun, L. Jun, L. Jun-hong, and L. Ting, "Design, fabrication and characterization of pyroelectric thin film and its application for infrared gas sensors." Microelectronics Journal, 40, 1, 58-62, (2009).
    [57] A. Dey, "Semiconductor metal oxide gas sensors: A review." Materials Science and Engineering: B, 229, 206-217, (2018).
    [58] F. Sarf, "Metal oxide gas sensors by nanostructures." Gas Sensors, 1, (2020).
    [59] G. F. Fine, L. M. Cavanagh, A. Afonja, and R. Binions, "Metal oxide semi-conductor gas sensors in environmental monitoring." Sensors (Basel), 10, 6, 5469-5502, (2010).
    [60] S. A. Vanalakar, V. L. Patil, N. S. Harale, S. A. Vhanalakar, M. G. Gang, J. Y. Kim, P. S. Patil, and J. H. Kim, "Controlled growth of ZnO nanorod arrays via wet chemical route for NO2 gas sensor applications." Sensors and Actuators B-Chemical, Article 221, 1195-1201, (2015).
    [61] W. Ponhan, S. Phadungdhitidhada, and S. Choopun, "Fabrication of ethanol sensors based on ZnO thin film field-effect transistor prepared by thermal evaporation deposition." Materials Today: Proceedings, 4, 5, 6342-6348, (2017).
    [62] O. Lupan, V. Postica, V. Cretu, N. Wolff, V. Duppel, L. Kienle, and R. Adelung, "Single and networked CuO nanowires for highly sensitive p-type semiconductor gas sensor applications." physica status solidi (RRL) – Rapid Research Letters, 10, 3, 260-266, (2016).
    [63] I. Cho, K. Kang, D. Yang, J. Yun, and I. Park, "Localized Liquid-Phase Synthesis of Porous SnO2 Nanotubes on MEMS Platform for Low-Power, High Performance Gas Sensors." ACS Applied Materials & Interfaces, 9, 32, 27111-27119, (2017).
    [64] B. Bhowmik, A. Hazra, K. Dutta, and P. Bhattacharyya, "Repeatability and Stability of Room-Temperature Acetone Sensor Based on n TiO2 Nanotubes:Influence of Stoichiometry Variation." IEEE Transactions on Device and Materials Reliability, 14, 4, 961-967, (2014).
    [65] Nagmani, D. Pravarthana, A. Tyagi, T. C. Jagadale, W. Prellier, and D. K. Aswal, "Highly sensitive and selective H2S gas sensor based on TiO2 thin films." Applied Surface Science, Article 549, 7, (2021).
    [66] N. D. Cuong, D. Q. Khieu, T. T. Hoa, D. T. Quang, P. H. Viet, T. D. Lam, N. D. Hoa, and N. V. Hieu, "Facile synthesis of α-Fe2O3 nanoparticles for high-performance CO gas sensor." Materials Research Bulletin, 68, 302-307, (2015).
    [67] C. M. Hung, N. D. Hoa, N. Van Duy, N. Van Toan, D. T. T. Le, and N. Van Hieu, "Synthesis and gas-sensing characteristics of α-Fe2O3 hollow balls." Journal of Science: Advanced Materials and Devices, 1, 1, 45-50, (2016).
    [68] M. Seetha, P. Meena, D. Mangalaraj, Y. Masuda, and K. Senthil, "Synthesis of indium oxide cubic crystals by modified hydrothermal route for application in room temperature flexible ethanol sensors." Materials Chemistry and Physics, 133, 1, 47-54, (2012).
    [69] S. F. Shen, M. L. Xu, D. B. Lin, and H. B. Pan, "The growth of urchin-like Co3O4 directly on sensor substrate and its gas sensing properties." Applied Surface Science, 396, 327-332, (2017).
    [70] C. Dong, R. Zhao, L. Yao, Y. Ran, X. Zhang, and Y. Wang, "A review on WO3 based gas sensors: Morphology control and enhanced sensing properties." Journal of Alloys and Compounds, 820, 153194, (2020).
    [71] H. Liu, Y. Xu, X. Zhang, W. Zhao, A. Ming, and F. Wei, "Enhanced NO2 sensing properties of Pt/WO3 films grown by glancing angle deposition." Ceramics International, 46, 13, 21388-21394, (2020).
    [72] Q. Ding, Y. Wang, P. Guo, J. Li, C. Chen, T. Wang, K. Sun, and D. He, "Cr-Doped Urchin-Like WO3 Hollow Spheres: The Cooperative Modulation of Crystal Growth and Energy-Band Structure for High-Sensitive Acetone Detection." Sensors, 20, 12, 3473, (2020).
    [73] A. Chargui, R. E. Beainou, A. Mosset, S. Euphrasie, V. Potin, P. Vairac, and N. Martin, "Influence of Thickness and Sputtering Pressure on Electrical Resistivity and Elastic Wave Propagation in Oriented Columnar Tungsten Thin Films." Nanomaterials (Basel), 10, 1, (2020).
    [74] D. E. Williams, "Semiconducting oxides as gas-sensitive resistors." Sensors and Actuators B: Chemical, 57, 1, 1-16, (1999).
    [75] J. Wang, Z. Xie, Y. Si, X. Liu, X. Zhou, J. Yang, P. Hu, N. Han, J. Yang, and Y. Chen, "Ag-Modified In2O3 Nanoparticles for Highly Sensitive and Selective Ethanol Alarming." Sensors, 17, 10, 2220, (2017).
    [76] G. Halek, M. Malewicz, and H. Teterycz, "Methods of selectivity improvements of semiconductor gas sensors." in 2009 International Students and Young Scientists Workshop "Photonics and Microsystems", 2009, pp. 31-35.
    [77] S. M. Durrani, E. E. Khawaja, and M. F. Al-Kuhaili, "CO-sensing properties of undoped and doped tin oxide thin films prepared by electron beam evaporation." (in eng), Talanta, 65, 5, 1162-1167, (2005).
    [78] V. Bochenkov and G. Sergeev, "Sensitivity, selectivity, and stability of gas-sensitive metal-oxide nanostructures." vol. 3, (2010), pp. 31-52.
    [79] N. a. Janković, "Semiconductor sensors: S.M. Sze (ed.), John Wiley & Sons, New York, 1994." Microelectronics Journal, 28, 3, 360, (1997).
    [80] S. R. Morrison, "The Chemical Physics of Surfaces." Springer US(2013).
    [81] P. B. Weisz, "Effects of Electronic Charge Transfer between Adsorbate and Solid on Chemisorption and Catalysis." The Journal of Chemical Physics, 21, 9, 1531-1538, (1953).
    [82] C. C. Mardare and A. W. Hassel, "Review on the Versatility of Tungsten Oxide Coatings." physica status solidi (a), 216, 12, 1900047, (2019).
    [83] Y. Xiao, L. Lu, A. Zhang, Y. Zhang, L. Sun, L. Huo, and F. Li, "Highly Enhanced Acetone Sensing Performances of Porous and Single Crystalline ZnO Nanosheets: High Percentage of Exposed (100) Facets Working Together with Surface Modification with Pd Nanoparticles." ACS Applied Materials & Interfaces, 4, 8, 3797-3804, (2012).
    [84] Tungstentrioxide.Available: https://www.webelements.com/compounds/tungsten/tungsten_trioxide.html
    [85] S. Wang, W. Fan, Z. Liu, A. Yu, and X. Jiang, "Advances on tungsten oxide based photochromic materials: strategies to improve their photochromic properties." Journal of Materials Chemistry C, 10.1039/C7TC04189F 6, 2, 191-212, (2018).
    [86] X. Liu, H. Zhai, P. Wang, Q. Zhang, Z. Wang, Y. Liu, Y. Dai, B. Huang, X. Qin, and X. Zhang, "Synthesis of a WO3 photocatalyst with high photocatalytic activity and stability using synergetic internal Fe3+ doping and superficial Pt loading for ethylene degradation under visible-light irradiation." Catalysis Science & Technology, 10.1039/C8CY02375A 9, 3, 652-658, (2019).
    [87] G. Hodes, D. Cahen, and J. Manassen, "Tungsten trioxide as a photoanode for a photoelectrochemical cell (PEC)." Nature, 260, 5549, 312-313, (1976).
    [88] M. Butler, R. Nasby, and R. K. Quinn, "Tungsten trioxide as an electrode for photoelectrolysis of water." Solid State Communications, 19, 10, 1011-1014, (1976).
    [89] T. Kuroki, Y. Matsushima, and H. Unuma, "Electrochromic response of WO3 and WO3-TiO2 thin films prepared from water-soluble precursors and a block copolymer template." Journal of Asian Ceramic Societies, 4, 4, 367-370, (2016).
    [90] P. Shaver, "Activated WO3 gas detector." Appl Phys Lett, 11, 255-230, (1967).
    [91] N. Gleichmann. (2020, February 25). SEM vs TEM. Available: https://www.technologynetworks.com/analysis/articles/sem-vs-tem-331262
    [92] L. H. Yahia and L. K. Mireles, "4 - X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF SIMS)." in Characterization of Polymeric Biomaterials, M. C. Tanzi and S. Farè, Eds.: Woodhead Publishing, (2017), pp. 83-97.
    [93] T. S. Kim, Y. B. Kim, K. S. Yoo, G. S. Sung, and H. J. Jung, "Sensing characteristics of dc reactive sputtered WO3 thin films as an NOx gas sensor." Sensors and Actuators B: Chemical, 62, 2, 102-108, (2000).
    [94] M. Ferroni, V. Guidi, G. Martinelli, P. Nelli, and G. Sberveglieri, "Gas-sensing applications of W–Ti–O-based nanosized thin films prepared by r.f. reactive sputtering." Sensors and Actuators B: Chemical, 44, 1, 499-502, (1997).
    [95] A. L. Patterson, "The Scherrer Formula for X-Ray Particle Size Determination." Physical Review, 56, 10, 978-982, (1939).
    [96] J.-M. Lin, "Growth and sensing properties of doped tungsten oxide films," Materials science and engineering, NCKU, (2020).
    [97] T. Tesfamichael, A. Ponzoni, M. Ahsan, and G. Faglia, "Gas sensing characteristics of Fe-doped tungsten oxide thin films." Sensors and Actuators B: Chemical, 168, 345-353, (2012).
    [98] A. Cros, "Charging effects in X-ray photoelectron spectroscopy." Journal of Electron Spectroscopy and Related Phenomena, 59, 1, 1-14, (1992).
    [99] A. K. Mohamedkhair, Q. A. Drmosh, M. Qamar, and Z. H. Yamani, "Tuning Structural Properties of WO3 Thin Films for Photoelectrocatalytic Water Oxidation." Catalysts, 11, 3, 381, (2021).

    無法下載圖示 校內:不公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE