簡易檢索 / 詳目顯示

研究生: 林揚倫
Lin, Yiang-luen
論文名稱: 獨立成份分析法降低ARIMA及渾沌需求下供應鏈長鞭效應之研究
Reducing the bullwhip effect in supply chain with ARIMA and chaotic demand by independent component analysis
指導教授: 吳植森
Wu, Chih-sen
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業與資訊管理學系
Department of Industrial and Information Management
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 85
中文關鍵詞: 獨立成份分析法啤酒遊戲主成份分析法長鞭效應渾沌需求整合自我迴歸移動平均
外文關鍵詞: Bullwhip effect, Beer game, PCA, ICA, Chaotic demand, ARIMA
相關次數: 點閱:100下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 長鞭效應存在於供應鏈中,並使供應鏈上的成員蒙受重大損失。而造成長鞭效應的一個原因就是資訊預測需求更新(demand forecasting updating),資料的準確性非常的重要。本研究利用獨立成份分析法(ICA)來減少供應鏈中需求資料中的雜訊以提高預測準確性。本文探討供應鏈之需求型態可由整合自我迴歸移動平均(ARIMA)以及渾沌來描述的資料型態下ICA能有效減少資料中的雜訊並提升預測準確度以降低長鞭效應。啤酒遊戲模擬結果顯示ICA確實較以主成份分析法(PCA)為前處理的方式有更好的結果。除了驗證ICA對於減少長鞭效應的效果外,本研究也透過迴歸分析法來分析影響長鞭效應的重要因素。我們發現預測的準確度對於訂單長鞭效應有顯著的影響,而預測的變異顯著影響存貨的長鞭效應。此結果之管理意涵顯示,控制需求的變異程度無法同時使訂貨及存貨的長鞭效應下降,因為需求變異對於存貨及訂貨長鞭效應是反向的關係。我們建議要使訂單長鞭應效應減少的話則要使需求的變異變小;而要使存貨長鞭應效應減少的話則要使需求的變異變大。

    In the supply chain, the bullwhip effect means that the ordering variation in the upstream would be higher than demand variation in the downstream. The accuracy of data is important because members in the supply will predict for decision making using historical data. In this thesis, we treat independent component analysis (ICA) as a novel technique in supply chain for reducing the noise in the demand data. Experiments simulate beer games for demonstrating that ICA has the ability to increase the predicting accuracy for reducing the bullwhip effect with autoregressive integrated moving average (ARIMA) and chaotic demand time series. In contrast to ICA, PCA is applied as a benchmark in this study. Results show that ICA outperforms PCA. Furthermore, multiple regression analysis is used to identify important factors affecting the bullwhip effect. We prove that predicting accuracy is crucial for bullwhip effect on order while predicting variation contributes to bullwhip on inventory. We also suggest that if the wholesaler could control the demand from retailers, pursuing low bullwhip on order should manipulate lower demand variation while pursuing low bullwhip on inventoy should resort to higher demand variation.

    ABSTRACT I 中文摘要 II 誌謝 III TABLE OF CONTENTS IV LIST OF TABLES VII LIST OF FIGURES VIII Chapter 1 Introduction 1 1.1 Research motivation 1 1.2 Research objectives 2 1.3 Research flow 3 1.4 Contributions 4 1.5 Limitations 5 Chapter 2 Literature Review 6 2.1 The bullwhip effect 6 2.1.1 The origin of the bullwhip effect 6 2.1.2 Causes of the bullwhip effect 7 2.1.3 Solutions for the bullwhip effect 8 2.1.4 Quantifying the bullwhip effect 9 2.2 The beer game 10 2.3 Independent component analysis (ICA) 10 2.3.1 ICA for blind source separation (BSS) 11 2.3.2 Independent component analysis 13 2.3.3 Assumptions of ICA 14 2.3.4 Preprocess for ICA 15 2.3.5 FastICA 16 2.3.6 Difference between ICA and PCA 18 2.4 Autoregressive Integrated Moving Average 18 2.4.1 Autoregressive model 19 2.4.2 Moving average model 20 2.4.3 Autoregressive moving average model 20 2.4.4 Autoregressive integrated moving average model 21 2.4.5 Stationarity and invertibility conditions 22 2.4.6 Autocorrelation and partial autocorrelation function 23 2.4.7 Building ARIMA models 25 2.4.8 An ARIMA supply chain model 28 2.5 Chaos theory 29 2.5.1 Chaos theory 29 2.5.2 Strange attractor 31 2.5.3 Lyapunov exponents 31 2.5.4 Chaotic demand 32 2.5.5 Artificial neural networks for predicting chaotic time series 32 Chapter 3 The research design and methodology 34 3.1 Research framework 34 3.2 The beer game 38 3.3 Building an ARIMA model for original data 39 3.4 Back-propagation network for chaotic time series 39 3.5 Data preprocessing for ICA 41 3.6 FastICA for finding de-noise time series 42 3.7 PCA for finding de-noise time series 45 3.8 Building an ARIMA or BPN model for de-noise data 46 3.9 Test for effectiveness 46 3.10 Regression analysis 47 Chapter 4 Experimental results 49 4.1 Simulation environment 49 4.1.1 The beer game 49 4.1.2 The demand time series 50 4.2 Building order and inventory time series 56 4.2.1 ARIMA model for ARIMA demand time series 56 4.2.2 BPN for chaotic demand time series 56 4.3 Independent component analysis 57 4.3.1 Data preprocessing for ICA 57 4.3.2 Finding dominant independent components 59 4.4 Principal component analysis 60 4.5 Results of hypothesis testing 61 4.5.1 Results of ARIMA demand time series 61 4.5.2 Results in chaotic demand time series 64 4.6 Regression analysis 66 4.6.1 Multiple regression analysis for ARIMA demand time series 67 4.6.2 Multiple regression analysis for chaotic demand time series 71 Chapter 5 Conclusions and future works 78 5.1 Conclusions 78 5.2 Future work 79 References 80

    Akaike, H., A new look at the statistical model identification, IEEE Transactions on Automatic Control, Vol. 19, No. 6, pp. 716-723, 1974.
    Ahn, H., Choi, E., and Han, I., Extracting underlying meaningful features and canceling noise using independent component analysis for direct marketing, Expert Systems with Applications, Vol. 33, pp. 181-191, 2007.
    Back, A. D., and Weigend, A. S., A First Application of Independent Component Analysis to Extracting Structure from Stock Returns, International Journal of Neural Systems, Vol. 8, No. 5, pp. 473-484, 1997.
    Baek, K., Draper, B., Beveridge, J. R., and She, K., PCA vs. ICA: A comparison on the FERET data set, Proceedings of Fourth International Conference Computer Vision, Pattern Recogn and Image Process, pp. 824-827, 2002.
    Basci Z., and Vizvári, B., Modelling chaotic behaviour in agricultural prices using a discrete deterministic nonlinear price model, Annals of Operations Research, No. 89, pp. 125-148, 1999.
    BuHamra, S., Smaoui, N., and Gabr, M., The Box-Jenkins analysis and neural networks: prediction and time series modeling, Applied mathematical modeling, Vol. 27, pp. 805-815, 2003.
    Box, G. E. P. and Jenkins, G. M., Times Series Analysis: Forecasting and Control, Holden Day, 1976.
    Box, G. E. P. and Pierce, D. A., Distribution of residual autocorrelations in autoregressive Integrated Moving Average Time Series Models, Journal of the American Statistical Association, Vol. 65, pp. 1509-1526, 1970.
    Cachon, G. P. and Terwiesch, C., Matching supply with demand: An introduction to operations management, McGraw-Hill, New York, 2004.
    Carpentier, A. S., Riva, A., Tisseur, P., Didier, G., and Hénaut, A., The operons, a criterion to compare the reliability of transcriptome analysis tools: ICA is more reliable than ANOVA, PLS and PCA, Computational Biology and Chemistry, Vol. 28, pp. 3-10, 2004.
    Chen, F., Drenzner, Z., Ryan, J. K., and Simchi-Levi, D., Quantifying the Bullwhip Effect in a Simple Supply Chain: The impact of Forecasting, Lead Times, and Information, Management Science, Vol. 46, No. 3, pp. 436-443, 2000.
    Comon, P., Independent component analysis, A new concept?, Signal Processing, Vol. 36, pp. 287-314, 1994.
    Dejonckheere, J., Disney, S. M., Lambrecht, M. R., and Towill D. R., Measuring and avoiding the bullwhip effect: A control theoretic approach, European Journal of Operational Research, Vol. 147, pp. 567-590, 2003.
    Dunne, A., Time series simulation, The Statistician, No. 41, pp. 3-8, 1992.
    Ediger, V. S., and Akar, S., ARIMA forecasting of primary energy demand by fuel in Turkey, Energy Policy, Vol. 35, pp. 1701-1708, 2007.
    Elshorbagy, A., Simonovic, S. P., and Panu, U. S., Estimation of missing streamflow data using principles of chaos theory, Journal of Hydrology, Vol. 255, pp. 123-133, 2002.
    Elsner, J. B., Predicting time series using a neural network as a method of distinguishing chaos from noise, Journal of Physics, Vol. 25A, pp. 843-850, 1992.
    Fiala, P., Information sharing in supply chains, Omega, Vol. 33, pp. 419-423, 2004.
    Forrester, J., Industrial Dynamics, Cambridge, Mass., MIT Press, 1961.
    Gilbert, K., An ARIMA Supply Chain Model, Management Science, Vol. 51, No. 2, pp. 305-310, 2005.
    Goh, B. H., The dynamic effect of the Asian financial crisis on construction demand and tender price levels in Singapore, Building and Environment, Vol. 40, pp. 267-276, 2005.
    Hotelling, H., Analysis of a complex of statistical variables into principal components, Journal of Educational Psychology, Vol. 24, pp. 417-441, 1933.
    Hyvärinen, A., Survey on Independent Component Analysis, Neural Computing Surveys, Vol. 2, pp. 94-128, 1999a.
    Hyvärinen, A., Fast and Robust Fixed-point Algorithm for independent component analysis, IEEE Transactions on Neural Networks, Vol. 10, No. 3, pp. 626-634, 1999b.
    Hyvärinen, A. and Oja, E., Independent Component Analysis: Algorithms and Applications, Neural Networks, Vol. 13, pp. 411-430, 2000.
    Ikeda, S. and Toyama, K., Independent component analysis for noisy data-MEG data analysis, Neural Networks, Vol. 13, pp. 1063-1074, 2000.
    Iokibe, T., Yonezawa Y., and Taniguchi, M., Short-term Prediction of Water Flow Data into hydroelectric Power Station Using Local Fuzzy Reconstruction Method, Transactions of IEEJ, Vol. 118, No.3, pp.329-334, 1998.
    Jolliffe, I. T., Principal Component Analysis, Springer-Verlag, New York, 1989.
    Karunasinghe, D. S. K. and Liong, S. Y., Chaotic time series prediction with a global model: Artificial neural network, Journal of Hydrology, Vol. 232, pp. 92-105, 2006.
    Kargupta, Hl, Huang, W., Sivakumar, K., and Johnson, E., Distributed Clustering Using Collective Principal Component Analysis, Knowledge and Information Systems, Vol. 3, No. 4, pp. 422-448, 2001.
    Karhunen, J., Hyvärinen, A., Vigario, R., Hurri, Jl., and Oja, E., Applications of neural blind separation to signal and image processing, in Proc. ICASSP, Vol. 1, pp. 131-134 ,1997.
    Kiviluoto, K. and Oja, E., Independent component analysis for parallel financial time series, In Proc. Int. Conf. on Neural Information Processing, Vol. 2, pp.895-898, 1998.
    Kumar, K. and Jain, V. K., Autoregressive integrated moving averages (ARIMA) modeling of a traffic noise time series, Applied acoustics, Vol. 58, pp. 283-294, 1999.
    Lee, H. L., Padmanabhan, V., and Whang, S., The Bullwhip Effect in Supply Chains, Sloan Management Review, Vol. 38, No. 3, pp. 93-102, 1997a.
    Lee, H. L., Padmanabhan, V., and Whang, S., Information Distortion in Supply Chain: The Bullwhip Effect, Management Science, Vol. 43, No. 4, pp. 546-558, 1997b.
    Lee, H. L., So, K. C., and Tang, C. S., The Value of Information Sharing in a Two-Level Supply Chain, Management Science, Vol. 46, No. 5, pp. 626-643, 2000.
    Lee, J. M., Yoo, C. K., and Lee, I. B., Statistical process monitoring with independent component analysis, Journal of process control, Vol. 14, pp. 467-485, 2004.
    Lawrence, W. L., Lin, F. Y., and Kuo, A. Y., Testing and prediction of traffic flow dynamics with chaos, Journal of the Easter Asia Society for Transportation Studies, Vol. 5, pp. 1975-1990, 2003.
    Liu, Z. and Liu, J., Chaotic time series multi-step direct prediction with partial least squares regression, Journal of Systems Engineering and Electronics, Vol. 18, No. 3, pp. 611-615, 2007.
    Ljung, G. M. and Box, G. E. P., On a measure of lack of fit in time series models, Biometrika, Vol. 65, pp. 297-303, 1978.
    Lorenz, E. N., Deterministic nonperiodic flow, Journal of Atmospheric Science, Vol. 20, No. 2, pp. 130-141, 1963.
    Metters, R., Quantifying the bullwhip effect in supply chains, Journal of Operations Management, Vol. 15, pp. 89-100, 1997.
    Moghaddam, B., Principal Manifolds and Probabilistic Subspaces for Visual Recognition, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 24, No. 6, pp. 780-788, 2002.
    Oh, K. J., and Kim, K. J., Analyzing stock market tick data using piecewise nonlinear model, Expert Systems with Applications, Vol. 22, pp. 249-255, 2002.
    Pearson, K., On lines and planes of closet fit to systems of points in space, Philosophical Magazine, Vol. 2, No. 6, pp. 559-572, 1901.
    Robert H. S. and David S. S., Time series analysis and its applications, Springer, New York, 2000.
    Sattar, F., Siyal., M. Y., Wee, L. C., and Yen, L. C., Blind source separation of audio signals using improved ICA method, Proceedings of the 11th IEEE Signal Processing Workshop on Statistical Signal Processing , pp. 452-455, 2001.
    Sterman, J. D., Modeling Managerial Behavior: Misperceptions of Feedback in a Dynamic Decision Making Experiment, Management Science, Vol. 35, No. 3, pp. 321-339, 1989.
    Stetter, M., Schießl, I., Otto, T., Sengpiel, F., Hübener, M., Bonhoeffer, T., and Obermayer, K., Principal Component Analysis and Blind Separation of Sources for Optical Imaging of Intrinsic Signals, NeuroImage, Vol. 11, pp. 482-490, 2000.
    Walker, G., On periodicity in series of related terms, Proc. Royal Soc, pp. 277-278, 1931.
    Wilding, R., Chaos theory: Implications for Supply Chain Management, The International Journal of Logistics Management, Vol. 9, pp. 43-56, 1998.
    Wolf, A., Swift, J. B., Swinney, H. L., and Vastano, J. A., Determining Lyapunov Exponents from a time series, Physica, Vol. 16D, pp. 285-317, 1985.

    下載圖示 校內:2010-07-02公開
    校外:2011-07-02公開
    QR CODE