| 研究生: |
彭琮洋 Peng, Tsung-Yang |
|---|---|
| 論文名稱: |
泰勒模型模擬B.C.C.金屬中剪切帶之織構研究 Texture Simulation of Shear Bands in B.C.C. Metals Using Taylor-Based Models |
| 指導教授: |
郭瑞昭
Kuo, Jui-Chao |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 197 |
| 中文關鍵詞: | Taylor模型 、剪切帶 、軋延織構 、B.C.C.金屬 |
| 外文關鍵詞: | Taylor model, Shear band, B.C.C., Deformation texture. |
| 相關次數: | 點閱:105 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為了探討B.C.C.金屬中軋延形變以及剪切帶形成過程之織構演化,本研究首先使用完全限制(Full-Constraints)Taylor晶體變形模型,將啟動的滑移系統定為變數,對於多晶的B.C.C.金屬進行模擬,並對照實驗結果中軋延後產生的-fiber及γ-fiber晶粒分佈,得到了以{110}, {112}和{123}三組的滑移平面沿著<111>方向的滑移系統同時啟動的情況下,與實驗最為符合,並進一步分析此條件下各別滑移所貢獻的剪應變,發現在-fiber中,低軋延量(30%)時,以{110}<111>滑移系統主導變形,而在中軋延量時(60%),則由{110}及{123}<111>滑移系統共同主導;而在ϒ-fiber中則由三組滑移系統共同主導變形。
而在模擬剪切帶中織構方面,結合了Taylor模型以及剪切帶幾何模型,以實驗常見的{111}[112 ̅]作為起始方位,代入啟動的滑移系統、剪切帶類型及形成剪切帶與軋延方向的角度作為變數進行模擬。可以發現在單滑移系統{110}<111>或是{112}<111>啟動的情況下,剪切帶中的織構會沿著±TD作旋轉。但是一旦單滑移系統 ({123}<111>)、雙滑移系統 ({110}<111>和{112}<111>,{110}<111>和{123}<111>,{112}<111>和{123}<111>) 或是三滑移系統({110}<111>、{112}<111>及{123}<111>) 啟動的情況下,剪切帶內的織構會出現了隨機的旋轉。
Four kinds of strain tensor in shear bands and full-constraint Taylor model were combined to simulate the texture inside shear bands on B.C.C. (111) [112 ̅] single crystals. Orientation inside shear bands rotates along ±TD while only one slip system {110}<111> or {112}<111> is activated. Random texture inside shear bands are observed assuming one slip system ({123}<111>), two slip systems ({110}<111> and {112}<111>, {110}<111> and {123}<111>, {112}<111> and {123}<111>) and three slip systems ({110}<111>, {112}<111> and {123}<111>).
Also, simulations were done on polycrystalline B.C.C. by full-constraint Taylor model. The complete -fiber are shown under 60% reduction ratio assuming two slip systems ({110} <111> and {112} <111>, {110}<111> and {123} <111>) and three slip system ({110}<111>, {112}<111> and {123}<111>).
[1] F. Adcock. "The internal mechanism of cold-work and recrystallization in Cupro-Nickel." J. Inst. Metals. 27.P: 73-92.1922.
[2] W.B. Hutchinson. "Development of Textures in Recrystallization." Metal Science. 8.P: 185-196.1974.
[3] E. Furubayashi. "Origin of the recrystallized grains with preferred orientations in cold rolled Fe-3%Si." Transactions of the Iron and Steel Institute of Japan. 11.P: 243-260.1969.
[4] K. Murakami, N. Morishige, K. Ushioda. "The Effect of Cold Rolling Reduction on Shear Band and Texture Formation in Fe-3% Si Alloy." Materials Science Forum. 715.P: 158-163.2012.
[5] K. Murakami, M. Sugiyama, K. Ushioda. "Deformation, recovery and recrystallization from heterogeneous shear bands in steel sheets." IOP Conference Series: Materials Science and Engineering. 89.P: 012009.2015.
[6] D. Raabe, K. Lücke. "Annealing textures of B.C.C. metals." Scripta Metallurgica et Materialia. 27.P: 1533-1538.1992.
[7] K. Ushioda, W. Hutchinson. "Role of shear bands in annealing texture formation in 3% Si–Fe (111)[112] single crystals." ISIJ International. 29.P: 862-867.1989.
[8] T. Haratani, W. Hutchinson, I. Dillamore, P. Bate. "Contribution of shear banding to origin of Goss texture in silicon iron." Metal Science. 18.P: 57-66.1984.
[9] D. Raabe. "Simulation of rolling textures of b.c.c. metals considering grain interactions and crystallographic slip on {110}, {112} and {123} planes." Materials Science and Engineering: A. 197.P: 31-37.1995.
[10] P. Wagner, O. Engler, K. Lücke. "Formation of Cu-type shear bands and their influence on deformation and texture of rolled f.c.c. {112}<111> single crystals." Acta Metallurgica et Materialia. 43.P: 3799-3812.1995.
[11] J. Gil Sevillano, P. van Houtte, E. Aernoudt. "Large strain work hardening and textures." Progress in Materials Science. 25.P: 69-134.1980.
[12] K. Ushioda, W. Hutchinson. "Role of shear bands in annealing texture formation in 3% Si-Fe (111)[112] single crystals." ISIJ International. 29.P: 862-867.1989.
[13] W. Fahrenhorst, E. Schmid. "Über die plastische Dehnung von α-Eisenkristallen." Zeitschrift für Physik. 78.P: 383-394.1932.
[14] G. Taylor, C. Elam. "The distortion of iron crystals." Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character. 112.P: 337-361.1926.
[15] H.G. Sossinka, B. Schmidt, F. Sauerwald. "Die Frage nach der gittergeometrischen Bedingtheit der Gleitflächen in Kristallen." Zeitschrift für Physik. 85.P: 761-771.1933.
[16] C.S. Barrett, G. Ansel, R. Mehl. "Slip, twinning and cleavage in iron and silicon ferrite." Transactions of the American Society of Metals. 25.P: 702.1937.
[17] A.J. Opinsky, R. Smoluchowski. "The crystallographic aspect of slip in body-centered cubic single crystals. II. Interpretation of experiments." Journal of Applied Physics. 22.P: 1488-1492.1951.
[18] R.M. Rose. "Yielding and plastic flow in single crystals of tungsten." Transactions of the Metallurgical Society of American Institute of Mining, Metallurgical, and Petroleum Engineers. 224.P: 981-989.1962.
[19] N.K. Chen, R. Maddin. "Slip planes and the energy of dislocations in a bodycentered cubic structure." Acta Metallurgica. 2.P: 49-51.1954.
[20] G. Taylor. "Deformation and Flow of Solids." IUTAM Colloquium. Springer Berlin.P: 3.1956.
[21] X. Zhang, Q. Yan, S. Lang, M. Xia, C. Ge. "Texture evolution and basic thermal–mechanical properties of pure tungsten under various rolling reductions." Journal of Nuclear Materials. 468.P: 339-347.2016.
[22] D. Raabe, K. Lücke. "Rolling and annealing textures of B.C.C. metals." Trans Tech Publication. 157.P: 597-610.1994.
[23] T. Nguyen-Minh, J.J. Sidor, R.H. Petrov, L.A.I. Kestens. "Occurrence of shear bands in rotated Goss ({110}<110>) orientations of metals with B.C.C. crystal structure." Scripta Materialia. 67.P: 935-938.2012.
[24] I. Dillamore, J. Roberts, A. Bush. "Occurrence of shear bands in heavily rolled cubic metals." Metal Science. 13.P: 73-77.1979.
[25] D. Dorner, S. Zaefferer. "Microstructure and Texture of Shear Bands in Cold Rolled Silicon Steel Single Crystals of Goss Orientation." Solid State Phenomena. 105.P: 239-244.2005.
[26] 陳志慶. "奈米鋁材料塑性行為之探討." 成功大學材料科學及工程學系學位論文.P: 1-114.2006.
[27] P. Van Houtte, E. Aernoudt. "Solution of generalized taylor theory of plastic-flow." Zeitschrift fur metallkunde. 66.P: 303-306.1975.
[28] 謝秉穎. "泰勒模型模擬 FCC 金屬中剪切帶之織構研究." 成功大學材料科學及工程學系學位論文.P: 1-172.2015.
[29] J.G. Sevillano, P. Van Houtte, E. Aernoudt. "Large strain work hardening and textures." Progress in Materials Science. 25.P: 69-134.1980.
[30] 張智星. "MATLAB 程式設計: 入門篇." 清蔚科技.2004.
[31] Y. Nakayama, K. Morii. "Microstructure and shear band formation in rolled single crystals of Al-Mg alloy." Acta Metallurgica. 35.P: 1747-1755.1987.
[32] D. Dorner, S. Zaefferer, D. Raabe. "Retention of the Goss orientation between microbands during cold rolling of an Fe3%Si single crystal." Acta Materialia. 55.P: 2519-2530.2007.
[33] S.V. Harren, H.E. Dève, R.J. Asaro. "Shear band formation in plane strain compression." Acta Metallurgica. 36.P: 2435-2480.1988.
[34] D. Okai, T. Doi, A. Yamamoto. "Transformation texture of pure iron after cold-rolling and annealing." 8th Pacific Rim International Congress on Advanced Materials and Processing 2013, PRICM 8. 4.P: 2701-2707.2013.
[35] M. Hölscher, D. Raabe, K. Lücke. "Relationship between rolling textures and shear textures in fcc and B.C.C. metals." Acta metallurgica et materialia. 42.P: 879-886.1994.
[36] D. Kuhlmann-Wilsdorf. "Theory of plastic deformation: - properties of low energy dislocation structures." Materials Science and Engineering: A. 113.P: 1-41.1989.
[37] B.L. Li, A. Godfrey, Q.C. Meng, Q. Liu, N. Hansen. "Microstructural evolution of IF-steel during cold rolling." Acta Materialia. 52.P: 1069-1081.2004.
[38] K.C. Liao, P.A. Friedman, J. Pan, S.C. Tang. "Texture development and plastic anisotropy of B.C.C. strain hardening sheet metals." International Journal of Solids and Structures. 35.P: 5205-5236.1998.
[39] R. Maddin, N.K. Chen. "Geometrical aspects of the plastic deformation of metal single crystals." Progress in Metal Physics. 5.P: 53-95.1954.
[40] D. Raabe. "Experimental investigation and simulation of crystallographic rolling textures of Fe–11Cr steel." Materials science and technology. 11.P: 985-993.1995.
[41] C.R. Weinberger, B.L. Boyce, C.C. Battaile. "Slip planes in B.C.C. transition metals." International Materials Reviews. 58.P: 296-314.2013.
[42] M. Hatherly, A. Malin. "Shear bands in deformed metals." Scripta metallurgica. 18.P: 449-454.1984.
[43] A.B. Kustas, D. Sagapuram, S. Chandrasekar, K.P. Trumble. "Deformation and recrystallization texture development in Fe-4%Si subjected to large shear deformation." IOP Conference Series: Materials Science and Engineering. 82.2015.
[44] D. Dorner, S. Zaefferer. "Microstructure and texture of shear bands in cold rolled silicon steel single crystals of goss orientation." Solid State Phenomena. 105.P: 239-244.2005.
[45] B. Duggan, G. Liu, L. Zhang. "The effect of a deformation banding criterion on simulated B.C.C. rolling textures." Materials science forum. 273.P: 291-298.1998.