簡易檢索 / 詳目顯示

研究生: 施順榮
Shih, Shun-Jung
論文名稱: 整合基因演算法與熱流分析軟體進行散熱模組最佳化
Integrating Genetic Algorithms with Thermofluid Package for Optimization of Heat Sink Modules
指導教授: 鄭金祥
Cheng, Chin-Hsiang
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 106
中文關鍵詞: 最佳化基因演算法散熱模組
外文關鍵詞: Heat sinks, Optimization, Genetic algorithms
相關次數: 點閱:83下載:18
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究針對平板式散熱模組,利用實數型基因演算法結合商用熱流分析軟體(CFD-ACE+)進行幾何外形參數最佳化。首先利用熱流分析軟體分別建構正向解全模組及單一流道模組,並進行參數分析,求出不同物理或幾何參數組合下之熱阻值,藉此了解幾何參數對散熱模組性能之影響;同時,架構一風洞實驗進行實驗量測以便獲得熱阻值,以實驗數據驗證正向解全模組與單一流道預測之準確性,其預測結果在合理範圍且穩定。
    本研究考慮的條件為下吹式配置,並考慮空氣入口與散熱片頂端存在間隙。在不同速度、間隙、散熱片材料條件下,將散熱模組幾何參數組合(如散熱片厚度、散熱片間距、散熱片高度、散熱模組底板厚度等)視為設計變數,將散熱模組熱阻值視為目標函數,以熱阻值最小化為目的,進行幾何參數組合的最佳化搜尋。研究結果顯示,本研究所提出之最佳化設計架構,可以有效地在不同條件之下,得到最小化熱阻的幾何參數組合。

    The study is concerned with optimization of the geometrical parameters with a parallel plate fin heat sink module by integrating the real-coded genetic algorithm(RCGA)with a commercial code, CFD-ACE+, which is regarded as the direct problem solver. Two simulation modules, namely the full module and the single-channel module, are built based on the framework of the commercial code. Firstly, numerical study of the performance of the heat sink has been performed to determine the thermal resistance of the heat sink at various physical and geometrical conditions. Parametric study is performed to evaluate the influence of the geometrical parameters of heat sink. Meanwhile, a wind tunnel has been constructed and experiments have been conducted. The experimental data for the thermal resistance have been collected to confirm the results of numerical simulation. The single-channel simulation module has further been combined with the RCGA method for seeking the optimal combination of designed geometrical parameters, including fin thickness, fin spacing, fin height, base plate thickness, and so on. In this study, the heat sink is referred to an impingement flow configuration and the effect of the gap between the air inlet and the fin tips is considered. The objective function is defined in term of the thermal resistance. The combination of the geometrical parameters is adjusted by the RCGA method such that the thermal resistance of the heat sink can be minimized. Optimal designs are presented for various incoming air velocities, gaps between fan and fin tips, and fin materials. Results show that the present approach is robust and can efficiently lead to the optimal combination of geometrical parameters under various conditions.

    摘要 I ABSTRACT II 誌謝 IV 目錄 V 表目錄 IX 圖目錄 X 符號索引 XIII 第一章 導論 1 1.1 研究背景與動機 1 1.2 文獻回顧 2 1.3 論文大綱 5 第二章 理論分析 6 2.1 基本假設 6 2.2 統御方程式 7 2.3 SIMPLEC演算法 10 第三章 數值模擬 15 3.1 軟體簡介 15 3.2 分析模型 15 3.2.1 全模組分析 15 3.2.2 單一流道分析 16 3.3 軟體設定 16 3.3.1 CFD-GEOM 設定 16 3.3.2 CFD-ACE+ 設定 17 3.4 散熱模組正向解 18 3.4.1 全模組正向解 18 3.4.2 全模組與單一流道比較 19 3.5 參數化分析 20 第四章 實驗量測 22 4.1 實驗目的 22 4.2 實驗設備 22 4.2.1 風洞系統組成 22 4.2.2 加熱器組成 24 4.2.3 量測儀器 24 4.3 實驗方法與步驟 27 4.4 實驗結果與數值模擬之比較 27 第五章 最佳化方法 29 5.1 實數型基因演算法(Real-Coded Genetic Algorithms, RCGA) 29 5.2 實數型基因演算法運作流程 30 5.2.1 初始化群體(Initial Population) 30 5.2.2 適應性評估(Fitness Evaluation) 30 5.2.3 精英策略(Elitism Strategy) 31 5.2.4 終止條件(Stopping Criterion) 31 5.2.5 選擇(Selection) 31 5.2.6 交配(Crossover) 32 5.2.7 突變(Mutation) 32 5.3 實數型基因演算法操作運算子 33 5.3.1 選擇 33 5.3.2 交配 34 5.3.3 突變 36 5.4 多值域函數驗證 37 第六章 散熱模組最佳化設計 39 6.1 散熱模組設計參數 39 6.2 模型設定 40 6.3 格點測試 40 6.4 最佳化設計流程 41 6.5 最佳化設計結果與討論 42 6.5.1 文獻[15]的比較 42 6.5.2 散熱片材質為A6061-T4之最佳化設計 43 6.5.3 散熱片材質為C1010之最佳化設計 44 第七章 結論 45 參考文獻 47 圖表彙整 51 自述 105 著作權聲明 106

    [1] R. W. Knight, J. S. Goodling and B. E. Gross, “Optimal thermal design of air cooled forced convection finned heat sinks-experimental verification,” IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Vol. 15(5), pp. 754-760, 1992.
    [2] R. W. Knight, D. J. Hall, J. S. Goodling and R. C. Jaeger, “Heat sink optimization with application to microchannels,” IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Vol. 15(5), pp. 832-842, 1992.
    [3] K. Azar, R. S. McLeod and R. E. Caron, “Narrow channel heat sink for cooling of high powered electronic components,” Proceedings of Eighth Annual IEEE Semiconductor Thermal Measurement and Management Symposium, pp. 12-19, 1992.
    [4] S. Lee, “Optimum design and selection of heat sinks,” IEEE Transactions on Components, Packaging, and Manufacturing Technology, Part A, Vol. 18(4), pp. 812-817, 1995.
    [5] O. Braunshtein, H. Kalman and A. Ullmann, “Performance and optimization of composed fin arrays,” Heat Transfer Engineering, Vol. 25(4), pp. 4-12, 2004.
    [6] J. R. Culham and Y. S. Muzychka, “Optimization of plate fin heat sinks using entropy generation minimization,” IEEE Transactions on Components and Packaging Technologies, Vol. 24(2), pp. 159-165, 2001.
    [7] A. Bar-Cohen and M. Iyengar, “Design and optimization of air-cooled heat sinks for sustainable development,” IEEE Transactions on Components and Packaging Technologies, Vol. 25(4), pp. 584-591, 2002.
    [8] C. L. Chapman, S. Lee and B. L. Schmidt, “Thermal performance of an elliptical pin fin heat sink,” Proceedings of Tenth IEEE Semiconductor Thermal Measurement and Management Symposium, pp. 24-31, 1994.
    [9] P. Teertstra, M. M. Yovanovich, J. R. Culham and T. Lemczyk, “Analytical forced convection modeling of plate fin heat sinks,” Proceedings of Fifteenth Annual IEEE Semiconductor Thermal Measurement and Management Symposium, pp. 34-41, 1999.
    [10]M. Saini and R. L. Webb, “Heat rejection limits of air cooled plane fin heat sinks for computer cooling,” IEEE Transactions on Components and Packaging Technologies, Vol. 26(1), pp. 71-79, 2003.
    [11]H. Iwasaki and M. Ishizuka, “Forced convection air cooling characteristics of plate fins for notebook personal computers,” IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, pp. 21-26, 2000.
    [12]J. A. Visser, D. J. de Kock and F. D. Conradie, “Minimisation of heat sink mass using mathematical optimisation,” Proceedings of Sixteenth Annual IEEE Semiconductor Thermal Measurement and Management Symposium, pp. 252-259, 2000.
    [13]C. H. Huang, I. C. Yuan and H. Ay, “A three-dimensional inverse problem in imaging the local heat transfer coefficients for plate finned-tube heat exchangers,” International Journal of Heat and Mass Transfer, Vol. 46(19), pp. 3629-3638, 2003.
    [14]W. B. Krueger and A. Bar-Cohen, “Optimal numerical design of forced convection heat sinks,” IEEE Transactions on Components and Packaging Technologies, Vol. 27(2), pp. 417-425, 2004.
    [15]謝惠茹,整合電腦輔助分析軟體進行散熱模組最佳化設計,大同大學,碩士論文,2006。
    [16]J. P. van Doormaal and G. D. Raithby, “Enhancements of the SIMPLE method for predicting incompressible fluid flows,” Numerical Heat Transfer, Vol. 7(2), pp. 147-163, 1984.
    [17]http://www.esi-group.com/
    [18]R. D. Mehta and P. Bradshaw, “Design rules for small low speed wind tunnels,” Aeronautical Journal, Vol. 83, pp. 443-449, 1979.
    [19]J. H. Holland, Adaptation in natural and artificial systems, University of Michigan Press, Ann Arbor, 1975.
    [20]D. E. Goldberg, Genetic algorithms in search, optimization and machine learning, Addison-Wesley, Boston, 1989.
    [21]Z. Michalewicz, Genetic algorithms + data structures = evolution programs, Springer-Verlag, New York, 1998.
    [22]K. Deb and R. B. Agrawal, “Simulated binary crossover for continuous search space,” Complex Systems, Vol. 9, pp. 115-148, 1995.
    [23]R. L. Haupt and S. E. Haupt, Practical genetic algorithms, Wiley-Interscience, New Jersey, 2004.
    [24]K. Krishnakumar, “Micro-genetic algorithms for stationary and non-stationary function optimization,” SPIE: Intelligent Control and Adaptive Systems, pp. 289-296, 1989.
    [25]F. P. Incropera and D. P. DeWitt, Fundamentals of heat and mass transfer, Wiley, New York, 1996.
    [26]ASM Handbook Volume 2, Properties and selection: nonferrous alloys and special-purpose materials, ASM International, 1990.

    下載圖示 校內:立即公開
    校外:2008-08-22公開
    QR CODE