簡易檢索 / 詳目顯示

研究生: 張育嘉
Chang, Yu-Chia
論文名稱: 以光散射法分析電紡聚(異丙基丙烯醯胺)水溶液之液柱:濃度與溫度效應
Analysis of electrospinning jet of poly(N-isopropyl acrylamide) aqueous solution by light scattering: effects of concentration and temperature
指導教授: 王紀
Wang, Chi
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 107
中文關鍵詞: 電紡絲液柱內微結構相分離聚(異丙基丙烯醯胺)光散射
外文關鍵詞: electrospinning, poly(N-isopropyl acrylamide), phase separation, light scattering, microstructure
相關次數: 點閱:113下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要以光散射實驗分析電紡絲液柱及內部微結構的大小。藉由聚(異丙基丙烯醯胺)的水溶液為研究載體,探討在不同濃度溫度下電紡絲製程的變化。首先以高速攝影機觀察其電紡絲液柱的瞬間變化,並搭配掃描式電子顯微鏡研究電紡所得的纖維型態,接著希望從光散射實驗找出這些液柱內微結構對於散射強度分布的貢獻。

    以光散射實驗取得兩種組成電紡液柱不同位置的散射強度分布實驗值,希望結合Mie theory與本實驗室推導的微結構理論方程式來分析電紡液柱與液柱內微結構散射強度分布的貢獻,並與兩種基礎的微結構理論進行比較。以Mie theory與兩種微結構理論方程式擬合散射強度分布實驗值時,需要一個適用的工具協助,從數學意義上在不同的變數組合中選出最佳解,因此希望藉由matlab程式將三種理論散射強度分布結合起來擬合散射強度分布實驗值,使用窮舉搜尋法搭配物理條件的限制提升尋找最佳解的效率,並賦予最佳解物理意義,避免徒具數學意義。事實上,與基礎的兩種微結構理論相比,本實驗室推導的微結構理論方程式具有相當大的不同,還需要更多關於微結構的物理條件限制才能使最佳解更貼近真實的電紡液柱及內部微結構系統。

    In this study, the effects of concentration and temperature on aqueous solution of poly(N-isopropyl acrylamide) during electrospinning had been thoroughly investigated. By means of high speed camera, the momentary change of Taylor-cone and spinning jet had been successfully captured, and discovered phase separation evidences.

    Considering the exisiting micro structure in the spinning jet, using light scattering to acquire scattering intensity profiles alonging liquid jet is a feasible way to realize the microstructural composition inside the liquid jet. To fit the intensity profile we got from lightscattering, several scattering intensity distribution theories were used, including Mie theory for jet diameter, string-like and RGB theory for string microstructure, ellipsoid-like and DB theory for ellipsoid microstructure. In order to obtain the optimized result, also attempted to use matlab program to fit experiment data.

    摘要 I Extended Abstract II 誌謝 XII 目錄 XIII 圖目錄 XVI 符號 XXI 一、前言 1 二、簡介 2 2.1 電紡絲模式 2 2.1.1 dripping mode 2 2.1.2 pulsating mode 3 2.1.3 cone-jet mode 3 2.1.4 multi-jet mode 3 2.2 電紡絲實驗之觀察 4 2.2.1 cone和jet形態 4 2.2.2 電紡纖維形態 4 2.3 窮舉搜尋法 4 三、文獻回顧 7 3.1聚異丙基丙烯醯胺 (poly (N-isopropyl acrylamide), PNIPAM) 7 3.2PNIPAM電紡絲 8 3.3 PNIPAM水溶液的相行為 10 3.4 以雷射光散射實驗分析電紡絲液柱行為 12 3.4.1 Mie theory與兩種微結構理論 13 四、實驗 30 4.1 實驗藥品 30 4.2 實驗儀器 30 4.2.1 light scattering 30 4.2.2 電紡絲 31 4.3 實驗裝置架設 32 4.3.1 電紡絲實驗 32 4.3.2 液態氮收集液柱 32 4.4 實驗步驟 32 4.4.1 電紡絲溶液配製 33 4.4.2 電紡絲實驗 33 4.4.3 light scattering 33 五、結果與討論 36 5.1 PNIPAM水溶液的性質 36 5.2 PNIPAM水溶液液滴滴落實驗 36 5.2濃度及溫度效應對電紡PNIPAM水溶液的影響 37 5.2.1 Taylor cone形態與cone height (Hc)以及jet length (Lj)測量 38 5.2.2 高速攝影機拍攝電紡絲之液柱 39 5.2.3 以SEM拍攝收集板所收集之PNIPAM水溶液電紡絲纖維 40 5.3 雷射散射分析電紡絲行為 42 5.3.1 電紡液柱之散射強度分布 42 5.3.2 Mie theory與微結構散射強度分布理論 44 5.3.3 電紡液柱之散射強度分布 46 六、結論 91 七、參考文獻 93 八、附錄 98 8.1 string-like液柱內微結構,Matlab函數 98 8.2 ellipsoid-like液柱內微結構,Matlab函數 100 8.3 微結構擬合matlab程式 103

    [1] Taylor, Geoffrey Ingram. "Electrically driven jets." Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, vol.313, no. 1515, pp. 453-475, 1969.
    [2] Reneker, Darrell H., et al. "Bending instability of electrically charged liquid jets of polymer solutions in electrospinning." Journal of Applied physics, vol.87, no. 9, pp. 4531-4547, 2000.
    [3] Reneker, Darrell H., and Alexander L. Yarin. "Electrospinning jets and polymer nanofibers." Polymer, vol.49, no. 10, pp. 2387-2425, 2008.
    [4] Wang, Chi, and Takeji Hashimoto. "Self-organization in electrospun polymer solutions: from dissipative structures to ordered fiber structures through fluctuations." Macromolecules, vol. 51, no. 12, pp. 4502-4515, 2018.
    [5] Wang, Chi, and Takeji Hashimoto. "A scenario of a fiber formation mechanism in electrospinning: Jet evolves assemblies of phase-separated strings that eventually split into as-spun fibers observed on the grounded collector." Macromolecules, vol. 53, no. 21, pp. 9584-9600, 2020.
    [6] Greenfeld, Israel, et al. “Fast X-ray phase-contrast imaging of electrospinning polymer jets: measurements of radius, velocity, and concentration.” Macromolecules, vol. 45, no. 8, pp. 3616-3626, 2012.
    [7] Helgeson, Matthew E., et al. "Theory and kinematic measurements of the mechanics of stable electrospun polymer jets." Polymer, vol. 49, no. 12, 2924-2936, 2008.
    [8] Greenfeld, Israel, XiaoMeng Sui, and H. Daniel Wagner. "Stiffness, strength, and toughness of electrospun nanofibers: effect of flow-induced molecular orientation." Macromolecules, vol. 49, no. 17, pp. 6518-6530, 2016.
    [9] Onuki, Akira. "Phase transitions of fluids in shear flow." Journal of Physics: Condensed Matter, vol. 9, no. 29, pp. 6119, 1997.
    [10] Hashimoto, Takeji, and Kiyotoshi Fujioka. "Shear-enhanced concentration fluctuations in polymer solutions as observed by flow light scattering." Journal of the Physical Society of Japan, vol. 60, no. 2, pp. 356-359, 1991.
    [11] Saito, Shin, et al. "Structures in a semidilute polymer solution induced under steady shear flow as studied by small-angle light and neutron scattering." Macromolecules, vol. 35, no. 2, pp. 445-459, 2002.
    [12] Saito, Shin, Katsuo Matsuzaka, and Takeji Hashimoto. "Structures of a semidilute polymer solution under oscillatory shear flow." Macromolecules, vol. 32, no. 15, pp. 4879-4888, 1999.
    [13] Doi, Masao, and Akira Onuki. "Dynamic coupling between stress and composition in polymer solutions and blends." Journal de Physique II, vol. 2, no. 8, pp. 1631-1656, 1992.
    [14] Wang, Yu, et al. "Extension rate of the straight jet in electrospinning of poly (N‐isopropyl acrylamide) solutions in dimethylformamide: Influences of flow rate and applied voltage." Journal of Polymer Science Part B: Polymer Physics, vol. 56, no. 4, pp. 319-329, 2018.
    [15] Niebuur, Bart-Jan, et al. "Nanoscale disintegration kinetics of mesoglobules in aqueous poly (N-isopropylacrylamide) solutions revealed by small-angle neutron scattering and pressure jumps." Nanoscale, vol.13, no. 31, pp. 13421-13426, 2021.
    [16] Wei, Zhimei, et al. "Smart carrier from electrospun core-shell thermo-sensitive ultrafine fibers for controlled drug release." European Polymer Journal, vol. 114, pp. 1-10, 2019.
    [17] Gu, Shu‐Ying, et al. "Switchable wettability of thermo‐responsive biocompatible nanofibrous films created by electrospinning." Macromolecular Materials and Engineering, vol. 295, no. 1, pp. 32-36.
    [18] Ono, Yousuke, and Toshiyuki Shikata. "Hydration and dynamic behavior of poly (N-isopropylacrylamide) s in aqueous solution: a sharp phase transition at the lower critical solution temperature." Journal of the American Chemical Society, vol. 128, no. 31, pp. 10030-10031, 2006.
    [19] Y. Okada and F. Tanaka, "Cooperative hydration, chain collapse, and flat LCST behavior in aqueous poly (N-isopropylacrylamide) solutions," Macromolecules, vol. 38, no. 10, pp. 4465-4471, 2005.
    [20] Schoolaert, Ella, et al. "Waterborne electrospinning of poly (N-isopropylacrylamide) by control of environmental parameters." ACS applied materials & interfaces, vol. 9, no. 28, pp. 24100-24110, 2017.
    [21] Halperin, Avraham, Martin Kröger, and Françoise M. Winnik. "Poly (N‐isopropylacrylamide) phase diagrams: fifty years of research." Angewandte Chemie International Edition, vol. 54, no. 51, pp. 15342-15367, 2015.
    [22] Zheng, Xu, et al. "Phase separation in poly (N-isopropyl acrylamide)/water solutions I. Cloud point curves and microgelation." Polymer journal, vol. 30, no. 4, pp. 284-288, 1998.
    [23] Nakano, Shinya, et al. "Thermoreversible gelation of isotactic-rich poly (N-isopropylacrylamide) in water." The Journal of chemical physics, vol. 135, no. 11, pp. 114903, 2011.
    [24] Choi, Jin Hyun, et al. "Phase behavior and physical gelation of high molecular weight syndiotactic poly (vinyl alcohol) solution." Macromolecules, vol. 34, no. 9, pp. 2964-2972, 2001.
    [25] Winter, Horst Henning, and Marian Mours. "Rheology of polymers near liquid-solid transitions." Neutron spin echo spectroscopy viscoelasticity rheology, pp. 165-234, 1999.
    [26] Ajji, Abdellah, and Lionel Choplin. "Rheology and dynamics near phase separation in a polymer blend: model and scaling analysis." Macromolecules, vol. 24, no. 18, pp. 5221-5223, 1991.
    [27] Wang, Chi, et al. "Physical gelation of aqueous solutions of atactic poly (N-isopropylacrylamide)." Macromolecules, vol. 55, no. 20, pp. 9152-9167, 2022.
    [28] Uemura, Yukikazu, et al. "Application of Light Scattering from Dielectric Cylinder Based upon Mie and Rayleigh—Gans—Born Theories to Polymer Systems. I. Scattering from a Glass Fiber." Polymer Journal, vol. 10, no. 3, pp. 341-351, 1978.
    [29] Wang, Yu, et al. "Extension rate of the straight jet in electrospinning of poly (N‐isopropyl acrylamide) solutions in dimethylformamide: Influences of flow rate and applied voltage." Journal of Polymer Science Part B: Polymer Physics, vol.56, no. 4, pp. 319-329, 2018.
    [30] Wang, Chi, and Takeji Hashimoto. "A scenario of a fiber formation mechanism in electrospinning: Jet evolves assemblies of phase-separated strings that eventually split into as-spun fibers observed on the grounded collector." Macromolecules, vol. 53, no. 21, pp. 9584-9600, 2022.
    [31] Chen, Guan‐Jie, et al. "Light Scattering of Electrospinning Jet with Internal Structures by Flow‐Induced Phase Separation." Macromolecular Rapid Communications, vol. 44, no. 1, pp. 2200273, 2023.
    [32] Chuang, Ya-Chen, et al. "Electrospinning of Aqueous Solutions of Atactic Poly (N-isopropylacrylamide) with Physical Gelation." Gels, vol. 8, no. 11, pp. 716, 2022.
    [33] Kubota, Kenji, Shouei Fujishige, and Isao Ando. "Solution properties of poly (N-isopropylacrylamide) in water." Polymer Journal, vol. 22, no. 1, pp. 15-20, 1990.
    [34] Semakov, Alexander V., et al. "On the nature of phase separation of polymer solutions at high extension rates." Journal of Polymer Science Part B: Polymer Physics, vol. 53, no. 8, pp. 559-565, 2015.
    [35] Okuzaki, Hidenori, Keiko Kobayashi, and Hu Yan. "Non-woven fabric of poly (N-isopropylacrylamide) nanofibers fabricated by electrospinning." Synthetic metals, vol. 159, no. 21-22, pp. 2273-2276, 2009.
    [36] Rockwood, Danielle N., et al. "Characterization of electrospun poly (N-isopropyl acrylamide) fibers." Polymer, vol. 49, no. 18, pp. 4025-4032, 2008.
    [37] Holzmeister, A., A. L. Yarin, and J. H. Wendorff. "Barb formation in electrospinning: Experimental and theoretical investigations." Polymer, vol. 51, no. 12, pp. 2769-2778, 2010.
    [38] Kujawa, P., et al. "Amphiphilic telechelic poly (N-isopropylacrylamide) in water: From micelles to gels⋆." The European Physical Journal E, vol.17, pp. 129-137, 2005.
    [39] 郭印川, “以光散射法量測電紡聚乙烯醇水溶液液柱內微結構”, 國立成功大學碩士論文 (2021).
    [40] 廖奕棋, “以光散射法分析電紡聚(異丙基丙烯醯胺)/聚乙烯醇混摻水溶液之液柱及內部微結構”, 國立成功大學碩士論文, (2022)

    無法下載圖示 校內:2028-06-29公開
    校外:2028-06-29公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE