簡易檢索 / 詳目顯示

研究生: 廖益廷
Liao, Yi-Ting
論文名稱: 以生質炭為碳熱還原反應之還原劑的特性研究
Study on Characteristics of Reducing Agent on the Carbothermic Reduction with Biomass Char
指導教授: 黃文星
Hwang, Weng-Sing
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 93
中文關鍵詞: 生質炭直接還原鐵碳熱還原鹽基度旋轉床爐
外文關鍵詞: Biomass Char, Direct Reduced Iron, Carbothermic Reduction, Basicity, Rotary Hearth Furnace
相關次數: 點閱:99下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近幾年來,台灣產業能源使用低成本、高污染之化石能源比例偏高,使得CO2排放成長率高於國際水準,未來若面臨高額碳稅,勢必影響台灣產業發展與經濟成長。其中,鋼鐵工業的CO2排放量約佔全國總排放量之一成,其中又以傳統高爐製程為最。為追求綠色環境與產業永續發展,先進大型鋼鐵廠皆已投入低碳煉鐵技術之開發,來降低鋼材生產的CO2排放量。
    本研究在針對稻殼炭、竹炭、椰殼炭與細焦炭進行物化性分析的基礎上,分別和燒石灰與鐵礦粉依不同比例混合,並使用高溫爐來進行碳熱還原(Carbothermic Reduction),來調查預熱過程、生質炭種類以及不同成份組成對鐵礦還原反應的影響。
    實驗結果發現,不同還原劑的鐵金屬化率與還原率依序為竹炭~椰殼炭>細焦炭>稻穀炭;使用稻殼炭為還原劑時,經碳熱反應過程所得之鐵碳複合團塊有明顯鐵珠分離的現象,鐵珠與直接還原鐵(Direct Reduced Iron, DRI)不同處在於殘碳高,係因經熔融過程,表面張力使之為球形;此外,鐵金屬化程度、還原率與渣鹽基度(Basicity, B2)有關,適當的B2可有效降低渣相熔點,有利還原反應的進行。
    本研究以不同生質炭(Biomass Char)為還原劑還原鐵礦,模擬旋轉床爐(Rotary Hearth Furnace, RHF)製程所產製的碳熱還原產物不僅金屬化率可達70~96%,且殘碳介於2.48~3.9%之間,較現今鋼鐵廠中絕大多數皆被用來處理含鐵碳之固雜料70%還高,所產製的複合球團則以既存之鋼鐵冶煉製程來回收。此研究成果可供RHF製程條件、原料配比與改質劑添加設定之參考。

    In recent years, Taiwan industry uses low cost, high pollution, high proportion of fossil fuel to make CO2 emission growth rate higher than the international standard. If Taiwan faces temporary high carbon tax, Taiwan industrial development and economic growth is bound to affected. Among the industries, the steel industry’s CO2 emissions account for 10% of total emissions, of which traditional blast furnace process the most. In order to pursuit green environment and industry sustainability, advanced large-scale steel mills have switched into developing low-carbon ironmaking technology to reduce CO2 emissions from steel production.
    In this research, carbonaceous reductant like rice husk charcoal, bamboo charcoal, coconut shell charcoal (biomass char) and coke breeze's from different physical properties and chemical composition which influence the rate of intrinsic chemical composition and gas pore diffusion, respectively. Consequently, the overall reduction rates may also be affected. The iron oxides under investigation is commercial grade ores. The high temperature furnace experiments involve laboratory scale simulations of the carbothermic reduction. The goal of this study is to investigate the effects of preheating process and B2 to different biomass char on the metallization of iron-oxide-carbon composites.
    The results showed that the iron metallization degree and reduction degree of various reducing agents is in the order of bamboo charcoal ~ coconut shell charcoal > coke > rice husk charcoal. When rice husk charcoal was used as reducing agent, iron bead proceeds has significantly separation phenomenon. The different between iron bead and general direct reduced iron (DRI) is high residual carbon content. Due to the melting process, the spherical is formed by surface tension. In addition, the degree of iron metallization and reduction degree are related to basicity (B2). Property B2 can benefit reduction reaction by lower slag melting temperature.
    In this experiment, different biomass char was used as reducing agent of iron ore reduction reaction. Carbothermic reduction products produced by simulating rotary hearth furnace (RHF) process can achieved 70 ~ 96% of metallization, and the residual carbon content was between 2.48 ~ 3.9%. It is higher than residual materials, which is about 70% of metallization. It produced the iron-oxide-carbon composites could recover existing iron making and steel making process. The research results can provide reference in RHF process conditions, material mixture ratio and the addictives.

    摘要.........................................................................................................................................i Abstract..................................................................................................................................ii 致謝.......................................................................................................................................iv 目錄.......................................................................................................................................v 表目錄..................................................................................................................................vii 圖目錄.................................................................................................................................viii 第一章 緒論..........................................................................................................................1 1.1 研究背景.................................................................................................................1 1.2 研究內容與目的.....................................................................................................4 第二章 文獻回顧..................................................................................................................7 2.1 生質炭文獻回顧.....................................................................................................7 2.1.1 生質炭物化性質分析..................................................................................7 2.1.2 生質炭製備技術介紹..................................................................................9 2.1.3 生質炭應用於鋼鐵冶煉製程分析............................................................10 2.2 碳熱還原理論基礎...............................................................................................14 2.2.1 碳熱還原反應現象解析............................................................................15 2.2.2 碳熱還原反應熱力學................................................................................19 2.2.3 碳熱還原反應動力學................................................................................20 第三章 研究方法................................................................................................................33 3.1 實驗原料...............................................................................................................33 3.1.1 鐵礦............................................................................................................33 3.1.2 助熔劑........................................................................................................34 3.1.3 黏結劑........................................................................................................34 3.1.4 細焦炭........................................................................................................35 3.1.5 生質炭........................................................................................................35 3.2 實驗設備...............................................................................................................35 3.2.1 原料前處理設備........................................................................................35 3.2.2 配料成型設備............................................................................................36 3.2.3 加熱/冷卻系統設備...................................................................................36 3.2.4 產品後處理設備........................................................................................37 3.3 實驗分析方法.......................................................................................................37 3.3.1 原料分析方法............................................................................................37 3.3.2 產品分析方法............................................................................................40 3.4 實驗步驟 ..............................................................................................................42 3.4.1 原料前處理步驟........................................................................................42 3.4.2 配料成型步驟............................................................................................43 3.4.3 碳熱還原試驗步驟....................................................................................44 第四章 結果與討論............................................................................................................56 4.1 原料物化性質分析...............................................................................................56 4.1.1 實用分析及元素分析................................................................................56 4.1.2 灰份成分分析............................................................................................56 4.1.3 粒度分析與體密度量測............................................................................57 4.2 碳熱還原實驗.......................................................................................................57 4.2.1 還原劑種類對鐵礦還原反應的影響........................................................57 4.2.2 預熱過程對鐵礦還原反應的影響............................................................61 4.2.3 改變B2對鐵礦還原反應的影響..............................................................63 第五章 結論與建議............................................................................................................82 5.1 結論.......................................................................................................................82 5.2 未來研究方向.......................................................................................................83 第六章 參考文獻................................................................................................................84 附錄......................................................................................................................................91

    [1] 陳維新編撰,“生質物與生質能”,高立圖書有限公司,2008年9月
    [2] IEA/OECD, “Key World Energy Statistics”, p 48-57, 2009
    [3] 蔡春鴻,“核能發展展望”,行政院原子能委員會,2009年
    [4] J. P. Birat編撰,“後京都(議定書)時代的鋼鐵工業與CO2排放問題”,中國鋼鐵年會論文集,2005年
    [5] R. C. Gupta, “Wood Char as Sustainable Reduction for Ironmaking in the 21st Centry”, Mineral Processing and Extractive Metallurgy Review, Vol. 24, p 203-231, 2003
    [6] M. Kumar and R. C. Gupta, “Industrial Uses of Wood Char”, Part A: Recovery, Utilization, and Environmental Effects, Vol. 20, p 575-589, 1998
    [7] Jaap Kiel, “Fuel Storage, Handling and Preparation and System Analysis for Biomass Combustion Technologies”, IEA Bioenergy Task 32 workshop, Berlin, 2007
    [8] Vladimir Strezov, “Iron Ore Reduction Using Sawdust: Experimental Analysis and Kinetic Modelling”, Renewable Energy, Vol. 31, p 1892-1905, 2006
    [9] W. T. Tsai, Y. H. Chou, Y. M. Chang, “Progress in Energy Utilization from Agrowastes in Taiwan”, Renewable and Sustainable Energy Reviews, Vol. 8, p 461-481, 2004
    [10] Marcos Alexandre Teixeira, “Babassu-A New Approach for an Ancient Brazilian Biomass”, Biomass and Bioenergy, Vol. 32, p 857-864, 2008
    [11] F. G. Emmerich and C. A. Luengo, “Babassu Charcoal: A Sulfurless Renewable Thermo-Reducing Feedstock for Steelmaking”, Biomass and Bioenergy, Vol. 10, No. 1, p 4144, 1996
    [12] Shigeru Ueda, Kentaro Watanabe, Kazunari Yanagiya, Ryo Inoue and Tatsuro Ariyama, “Optimization of Biomass Utilization for Reducing CO2 in Ironmaking Process”, Proceedings of the 5th International Congress on the Science and Technology of Ironmaking, p 597-603, 2009
    [13] 黃耀富編撰,“可再生之環保材料”,嘉義大學專題演講,2009年2月
    [14] 陳春木編撰,“稻殼木炭機之設計及特性研究”,成功大學碩士論文,1978年
    [15] 韓雄文編撰,“利用碳化稻殼製備超微粒SiC粉體之系統研究”,成功大學博士論文,1998年
    [16] M. Antal, S. Allen, X. Dai, B. Shimizu, M. Grnlin, “Attainment of the Theoretical Yield of Carbon from Biomass”, Industrial & Engineering Chemistry Research, Vol. 39, p 4024-4031, 2000
    [17] M. Antal, E. Croiset, X. Dai, C . Dealmeida, W. Mok, N. Norberg, J. Richard, M. Mathoub, “High-yield Biomass Charcoal”, Energy Fuels, Vol. 10, p 652-667, 1996
    [18] 林正乾編撰,“結合清潔發展機制促成台灣煉鐵業擴產之研究”,工業污染與防治第96期,2005年10月
    [19] 陳帝鴻編撰,“廢棄稻穀變黃金”,工業技術與資訊第215期,2009年9月
    [20] Eisele, Timothy C. Kawatra, Surendra Komar, “Production of Iron Using Environmentally-benign Renewable or Recycled Reducing Agents”, United States Patent 7632330, 2007
    [21] R. J. Fruehan, “Sustainable Steelmaking Using Biomass and Waste Oxides”, AISI/DOE Technology Roadmap Program Final Report, 2004
    [22] R. J. Fruehan, “The Rate of Reduction of Iron Oxides by Carbon”, Metallurgical and Materials Transactions B, Vol. 10, p 279-286, 1977
    [23] S. Halder and R. J. Fruehan, “Reduction of Iron-Oxide-Carbon Composites: Part I. Estimation of the Rate Constants,” Metallurgical and Materials Transactions B, Vol. 39, No. 6, p 784-795, 2008
    [24] S. Halder and R. J. Fruehan, “Reduction of Iron-Oxide-Carbon Composites: Part II. Rates of Reduction of Composite Pellets in a Rotary Hearth Furnace Simulator,” Metallurgical and Materials Transactions B, Vol. 39, No. 6, p 796-808, 2008
    [25] S. Halder and R. J. Fruehan, “Reduction of Iron-Oxide-Carbon Composites: Part III. Shrinkage of Composite Pellets during Reduction,” Metallurgical and Materials Transactions B, Vol. 39, No. 6, p 809-817, 2008
    [26] I. Sohn and R. J. Fruehan, “The Reduction of Iron Oxides by Volatiles in a Rotary Hearth Furnace Process: Part I. The Role and Kinetics of Volatile Reduction,” Metallurgical and Materials Transactions B, Vol. 36, No. 5, p 605-612, 2005
    [27] I. Sohn and R. J. Fruehan, “The Reduction of Iron Oxides by Volatiles in a Rotary Hearth Furnace Process: Part II. The Reduction of Iron Oxide/Carbon Composites,” Metallurgical and Materials Transactions B, Vol. 37, No. 2, p 223-229, 2006
    [28] I. Sohn and R. J. Fruehan, “The Reduction of Iron Oxides by Volatiles in a Rotary Hearth Furnace Process: Part III. The Simulation of Volatile Reduction in a Multi-Layer Rotary Hearth Furnace Process,” Metallurgical and Materials Transactions B, Vol. 37, No. 2, p 231-238, 2006
    [29] O. M. Fortini and R. J. Fruehan, “Rate of Reduction of Ore-Carbon Composites: Part I: Determination of Intrinsic Rate Constants,” Metallurgical and Materials Transactions B, Vol. 36, No. 6, p 865-872, 2005
    [30] O. M. Fortini and R. J. Fruehan, “Rate of Reduction of Ore-Carbon Composites: Part II: Modeling of Reduction in Extended Composites,” Metallurgical and Materials Transactions B, Vol. 36, No. 6, p 709-717, 2005
    [31] K. Meyer, “Pelletizing of Iron Ores”, Springer-Verlag, Berlin, p 292, 1980
    [32] R. C. Gupta and J. P. Gautam, “The Effect of Additives and Reductants on the Strength of Reduced Iron Ore Pellet”, Transactions ISIJ International, Vol. 43, p 1913, 2003
    [33] R. C. Gupta, J. P. Gautam, and S. Mohan, “Water Hyacinth Char Addition in Iron Ore Pellet: An Exploratory Study”, Transactions ISIJ International, Vol. 43, p 259, 2003
    [34] R. C. Gupta and S. N. Misra, “Composite Pre-Reduced Pellet Quality as Affected by Reductant Reactivity”, Transactions ISIJ International, Vol. 41, S9-S12, 2001
    [35] C. Takano and M. B. Mourao, “Comparison of High Temperature Reducing Pellets Produced from Sintering Plant ”, Transactions ISIJ International, Vol. 41, p S22, 2001
    [36] K. Shoichi, I. Shuzo, K. Dr.Isao, T.Osamu, T. Koji, “ITmk3-Process”, Kobe Steel Engineering Reports, Vol. 60, No.1, p 29-35, 2010
    [37] 根上 多久也編撰,“ITmk3——新千年的先進煉鐵工藝”,國外金屬礦山,第27卷第1期,2002年
    [38] 德田耕司、小林動、全榮編撰,“新煉鐵法的開發”,鞍鋼技術第3期,2008年
    [39] 張海峰編撰,“高鹼度內配碳團塊高溫直接還原制備鐵粒技術”,武漢科技大學碩士論文,2006年
    [40] 薛正良、楊疊、周利剛及李瑩瑩編撰,“Wcomet直接還原法渣鐵分離影響因素研究”,武漢科技大學學報,2009年2月
    [41] A. R. Boccaccini and B. Hamann, “Review in situ High-temperature Optical Microscopy”, Journal of Material Science, Vol. 34, p 5419-5436, 1999
    [42] H. C. Chuang, W. S. Hwang, and S. H. Liu, “Effects of Basicity and FeO Content on the Softening and Melting Temperatures of the CaO-SiO2-MgO-Al2O3 Slag System ”, Materials Transactions, JIM, Vol. 6, p 1448, 2009
    [43] 徐萌、張建良、孔令壇及萬天驥編撰,“含碳球團的還原熔分過程和顯微分析”,中國鋼鐵年會論文集,2007年
    [44] 徐萌編撰,“轉底爐煤基熱風熔融煉鐵工藝的基礎性研究”,北京科技大學博士論文,2006年
    [45] Rene Stoltz, “State of the Art Technology to Recover Metals from EAF/BF/BOF Dustand Sludge”, International conference on Process Innovation & Cost Optimisation in Iron & Steel Making, 2010
    [46] 黃清連、吳裕慶,“鋅之冶煉法與資源再生”,礦冶,第53卷第4期,2009年
    [47] 常致泰、孫治民、洪景峰、徐永欣、簡榮村及王志欽編撰,“綠色生產新製程-RMTP”,技術與訓練,第34卷第3期,2009年9月
    [48] 蔡辛慈編撰,“新煉鐵製程法之介紹”,化工技術,第12卷第12期,2004年
    [49] W. K. Lu, “The Search for a New Ironmaking Process Towards Sustainable Development”, Global Climate and Energy Project “Industry” Workshop, Stanford University, 2008
    [50] 李建雲等人譯,“新日鐵君津廠綜合利用固體廢料的旋轉床爐技術”,萊鋼科技,2008年6月
    [51] O. M. Fortini, “Renewable Energy Steelmaking on a New Process for Ironmaking”, Ph. D. Dissertation Dept. of MSE, Carnetie Mellon University, 2004
    [52] 汪志家等人編撰,“旋轉床爐生產直接還原鐵用於煉鋼的設想”,鞍鋼技術第3期,1994年
    [53] 郭玉華、齊淵洪、王海峰及周繼程等編撰,“發展我國轉底爐工藝須合理解決的關鍵技術”,煉鐵,第28卷第4期,2009年8月
    [54] 朱榮、任江濤、劉綱、萬天驥及徐萌等編撰,“旋轉床爐工藝的發展與實踐”,第27卷第1期,2008年2月
    [55] 田中英年編撰,“最近の新製鉄法の動向と今後の展望”,西山記念技術講座,2008年
    [56] 劉世賢編撰,“一貫鋼廠固雜料碳熱還原反應特性探討”,技術與訓練,第31卷第2期,2006年6月
    [57] 劉世賢編撰,“鋼廠固雜料碳熱還原特性及製程介紹”,工程,第80 卷第3期,2007年6月
    [58] 黃春進譯,“生產煤基的新一代旋轉床爐技術”,世界鋼鐵第3期,2000年
    [59] 劉世賢、洪德賢及蔡辛慈編撰,“電弧爐碳熱還原之探討”,礦冶,第39卷第4期,1995年
    [60] 遊錦洲,“新煤基直接還原理論與工藝研究”,東北大學博士論文,1999年
    [61] M. S. Chen, C. I. Lin, S. H. Liu, “On the Reduction of Iron Ore with Coal-The Effects of Reactant Source, Catalyst and Flux on the Reaction Kinetics”, Journal of the Chinese Institute of Chemical Engineers, Vol. 23, No. 2, p 103-110, 1992
    [62] E.Donskoi, R. I. Olivares, D. L. S. Mcelwain and L. J. Wibberley, “Experimental Study of Coal Based Direct Reduction in Iron Ore/coal Composite Pellets in a One Layer Bed Under Nonisothermal, Asymmetric Heating”, Ironmaking and Steelmaking, Vol. 33, No. 1, p 24-28, 2006.
    [63] F. Dahl, J. Brandberg and D. Sichen, “ Characterization of Melting of Some Slags in the Al2O3–CaO–MgO–SiO2 Quaternary System”, Transactions ISIJ International, Vol. 46, p 614, 2006
    [64] H. C. Chuang, W. S. Hwang, and S. H. Liu, “Effects of Graphite, SiO2 and Fe2O3 on the Crushing Strength of Direct Reduced Iron from the Carbothermic Reduction of Residual Materials”, Materials Transactions, JIM, Vol. 51, p 488, 2010
    [65] Osborn, E. F. and Muan A., “CaO-FeOn-SiO2,” Slag Atlas, ed. Verein Deutscher Eisenhüttenleute, Verlag Stahleisen GmbH, Düsseldorf, p 126, 1995
    [66] A. Muan and E. F. Osborn,“製鉄製鋼における酸化物の相平衡”,技報堂,1971年
    [67] 孔令壇、任大寧等編撰,“旋轉床爐冶煉珠鐵新工藝”,第七屆中國鋼鐵年會論文集,2009年
    [68] 張友平、周渝生等編撰,“轉底爐工藝生產海綿鐵關鍵技術探討”,首屆寶鋼冶金廢棄資源綜合利用技術論壇,2006年

    下載圖示 校內:2015-08-11公開
    校外:2015-08-11公開
    QR CODE