簡易檢索 / 詳目顯示

研究生: 王智國
Wang, Zhi-Guo
論文名稱: IC封裝EMC材料後熟化製程黏彈模型的建立
Modeling the Viscoelastic Properties of Epoxy Molding Compound during Post Mold Cure in IC Packaging
指導教授: 黃聖杰
Hwang, Sheng-Jye
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 118
中文關鍵詞: 轉變因子黏彈性EMC
外文關鍵詞: viscoelastic, shift factor, EMC
相關次數: 點閱:59下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 環氧樹脂(epoxy molding compound, EMC)普遍使用在電子封裝產品中,因此EMC的相關研究顯得相當重要。而封裝製程中的封膠製程後的翹曲量ㄧ直都是封裝工程師的困擾。由EMC-Cu與EMC-Si雙層板材料的翹曲實驗與模擬結果顯示:高模溫會導致較大的翹曲量,模壓對於翹曲量的影響則較不明顯。模擬的原理是利用EMC的P-V-T-C特性(即模壓、體積、模溫、熟化度之間的關係)。未加壓的後熟化實驗與模擬結果顯示:後熟化製程可減低翹曲量。模擬的原理是利用玻璃轉化溫度(Tg)因後熟化製程而改變的現象。
    長時間、高溫的製程環境(後熟化製程)之下,塑膠封裝材料EMC會有黏彈性質的產生,所以在進行後熟化分析時,有必要將EMC材料考慮成黏彈性材料。但EMC材料在不同熟化度下的黏彈模型目前並沒有,因此,本論文最重要的目標即在建立包含熟化度的封裝材料黏彈模型。
    在經由DMA的實驗之後,確定EMC材料的廣義麥斯威爾模型及WLF公式。而透過在常溫之下、對於不同熟化度材料的模數測量可得到熟化度與熟化度轉變因子之間的關係式。
    WLF公式用來確定溫度 與溫度轉變因子 之間的關係。而上述熟化度與熟化度轉變因子的關係式用來確定熟化度 與熟化度轉變因子 之間的關係。這兩種關係式決定了與溫度及熟化度相關的轉變因子。因此,藉著這兩個關係式可以確定任何熟化度及溫度之下的鬆弛模數。

    Epoxy molding compound (EMC) is a common material in electronic packages. Warpage after encapsulating in packaging process is always a problem to engineers. The experimental and simulation results of warpage of EMC-Cu and EMC-Si bi-laminates revealed that higher mold temperature caused larger warpage, and the packaging pressure effect upon warpage was less dominant. The simulation was based on P-V-T-C properties of EMC (, i.e. the relation between packing pressure, volume shrinkage, mold temperature and degree of cure).
    The experimental and simulation results of bi-laminates during non-pressed post mold cure (PMC) revealed that PMC could reduce the warpage. The simulation was based on the phenomenon that Tg changes during PMC.
    Under high-temperature for a long time such as PMC, EMC can behave like a viscoelastic material. Therefore viscoelasticity should be considered during the post mold cure process. Due to the lack of cure-dependent viscoelastic models, the objective of this thesis is therefore to construct a viscoelastic model with degree of cure as one of parameters.
    By dynamic mechanical analyzer (DMA) testing, the generalized Maxwell's model and Williams-Ladel-Ferry (WLF) equation of Hitachi 9200 compound were identified. By the measuring the loss and storage moduli of differently cured polymer at room temperature, the equation relating the degree of cure to cure shift factor was also proposed.
    WLF equation defines the relation between temperature and temperature shift factor(aT) while the forementioned shift equation defines the relation between degree of cure and cure shift factor(aC). These two relating equations define two kinds of shift factors. With these two relating equations, the relaxation modulus for any degree of cure and temperature can be defined.

    中文摘要…………………………………………………… I Abstract………………………………………………… III 誌謝………………………………………………………… V 目錄……………………………………………………… VII 表目錄……………………………………………………… X 圖目錄………………………………………………………XI 符號說明………………………………………………… XIV 第一章 緒論 1-1 前言…………………………………………………… 1 1-2 封裝材料簡介………………………………………… 2 1-3 IC封裝製程簡介……………………………………… 4 1-4 封裝產品的缺陷……………………………………… 7 1-5 文獻回顧……………………………………………… 8 1-6 本文架構………………………………………………20 第二章 理論基礎 2-1 環氧樹脂熟化反應動力式與P-V-T-C狀態方程式… 21 2-2 熟化收縮模式與彈性分析 ………………………… 24 2-3 黏彈模型………………………………………………30 2-3-1 穩態黏彈模型………………………………………30 2-3-2 黏彈分析……………………………………………33 2-3-3 動態機械分析原理…………………………………37 2-3-4 主曲線的生成………………………………………39 第三章 儀器設備與實驗 3-1 翹曲量實驗……………………………………………45 3-1-1翹曲量實驗設備試片製作 …………………………45 3-1-2翹曲量量測設備…………………………………… 47 3-1-3 翹曲量實驗步驟……………………………………47 3-2 後熟化對翹曲量的影響………………………………48 3-2-1 後熟化實驗步驟……………………………………49 3-3 試片製作………………………………………………49 3-4 DMA實驗設備 …………………………………………51 3-5 DMA實驗 ………………………………………………52 第四章 翹曲量模擬分析 4-1 模流分析………………………………………………55 4-2 翹曲分析………………………………………………58 4-3 模擬與實驗結果………………………………………59 4-4 其它實驗結果…………………………………………70 第五章 實驗結果與黏彈模型建立 5-1 主曲線的生成…………………………………………72 5-2 曲線嵌合與WLF公式…………………………………75 5-3 aC轉移因子……………………………………………78 第六章 結論 6-1 結論……………………………………………………84 6-2 實驗改進………………………………………………86 參考文獻……………………………………………………88 附錄…………………………………………………………94 索引……………………………………………………… 113 自述……………………………………………………… 118

    [1] Sindee L. Simon, Gregory B. McKenna and Olivier Sindt, “Modeling the Evolution of the Dynamic Mechanical Properties of a Commercial Epoxy During Cure after Gelation,” Journal of Applied Polymer Science, Vol. 76, 495-508 (2000).
    [2] K. M. B. Jansen, L. Wang, D. C. Yang, C. van ’t Hof, L. J. Ernst, H. J. L. Bressers and G. Q. Zhang, “ Constitutive Modeling of Moulding Compounds,” Proceeding of Electronic Components and Technology Conference, pp890-894 (2004).
    [3] D. G. Yang, K. M. B. Jansen, L. J. Ernst, G. Q. Zhang, W. D. van Driel, H. J. L. Bressers, X. J. Fan, “ Prediction of Process-Induced Warpage of IC Packages Encapsulated with Thermosetting Polymers,” Proceeding of Electronic Components and Technology Conference, pp98-105 (2004).
    [4] Daniel J. O’Brien, Patrick T. Mather, and Scott R. White, “Viscoelastic Properties of Epoxy Resin during Cure,” Journal of Composite Materials, Vol. 35, No. 10 (2001).
    [5] S. R. White and A. B. Hartman, “Effect of Cure State on Stress Relaxation in 3501-6 Epoxy Resin,” Transactions of the ASME, Vol. 119, pp. 262-265 (1997).
    [6] Yeong K. Kim and Scott R. White, “Stress Relaxation Behavior of 3501-6 Epoxy Resin During Cure,” Polymer Engineering and Science, Vol. 36, No. 23, pp. 2852-2862 (1996).
    [7] M. S. Kiasat, G. Q. Zhang, L. J. Ernst, and G. Wisse, “ Creep Behavior of a Molding Compound and Its Effect on Packaging Process Stresses,” Proceeding of Electronic Components and Technology Conference (2001).
    [8] L. J. Ernst, G. Q. Zhang, K. M. B. Jansen, and H. J.L. Bressers, “ Time- and Temperature- Dependent Thermo-Mechanical Modeling of a Packaging Molding Compound and Its Effect on Packaging Process Stresses,” Journal of Electronic Packaging, Vol. 125, pp539-548 (2003).
    [9] Zhuqing Zhang, Lianhua Fan, Suresh K. Sitaraman, and C. P. Wong, “ Four-Laser Bending Beam Measurements and FEM Modeling of Underfill Induced Wafer Warpage,” Proceeding of Electronic Components and Technology Conference, pp.747-753 (2004).
    [10] Vernal H. Kenner, Brian D. Harper, and Vladmiir Y. Itkin,
    "Stress Relaxation in Molding Compounds,” Journal of Material, Vol. 26, No. 7, pp. 821-826 (1997).
    [11] Mikyoung Lee, Michael Pecht, Xingjia Huang and S. W. Ricky Lee, "Stress Relaxation in Plastic Molding Compounds,” International Symposium on Electronic Material and Packaging, pp37-42 (2002).
    [12] Yang Rao, S. H. Shi, and C. P. Wong, “An Improved Methodology for Determining Temperature Dependent Moduli of Underfill Encapsulants,” IEEE Transaction on Components and Packaging Technology, Vol. 23, No. 3 (Sep 2000).
    [13] Robert Sekula, Piotr Saj, Tomasz Nowak, Karol Kaczmarek, Kimmo Forsman, Aimo Rautiainen, and Josef Grindling, “3-D Modeling Reactive Molding Processes: From Tool Development to Industrial Application,” Advances in Polymer Technology, Vol. 22, No. 1, pp.42-55 (2003).
    [14] Hongkyeong Kim and Kookheon Char, “Dielectric Changes During the Curing of Epoxy Resin Based on the Diglycidyl Ether of Bisphenol A(DGEBA) with Diamine,” Bulletin Korean Chemical Society, Vol. 20, No. 11, pp.1329-1334 (1999).
    [15] Nicolas Sbirrazzuoli and Sergey Vyazovkin, “Learning About Epoxy Cure Mechanisms from Iso-conversional Analysis of DSC Data,” Journal of Thermochimica Acta, Vol. 388, pp. 289-298 (2002).
    [16] J. Macan, H. Ivankovi’c, M. Ivankovi’c, and H.J. Mencer, “Study of Kinetics of Epoxy-silica Organic-inorganic Hybrid Materials,” Journal of Thermochimica Acta, Vol. 414, pp. 219-225 (2004).
    [17] L. J. Ernst, C. van’t Hof, D. G. Yang, M. S. Kiasat, G. Q. Zhang, H. J. L. Bressers, J. F. J. Caers, A. W. J. den Boer, and J. Janssen, ”Mechanical Modeling and Characterization of the Curing Process of Under fill Materials,” Journal of Electronic Packaging, Vol. 124, pp.97-105 (2002).
    [18] 蘇銘勝, “電子構裝材料在注模後烘烤中熱機械性質與數學模式之研究,” 國立成功大學工程科學研究所碩士論文(2003.7)。
    [19] 郭建志, “IC封裝後熟化製程材料參數數學模型之建立,” 國立成功大學機械工程研究所碩士論文(2004.6)。
    [20] Spencer Chew, “ Thermal and Viscoelastic Characterization of Transfer-Molded Epoxy Encapsulant during Simulated Post-Mold Cure,” Proceeding of Electronic Components and Technology Conference, pp. 1032-1038 (1996).
    [21] X. R. Zhang, John H. L. Pang, X. Q. Shi and Z. P. Wang, “On the Moduli of Viscoelastic Materials,” Proceeding of Electronic Components and Technology Conference, pp. 318-322 (2002).
    [22] Rushad F. Eduljee, John W. Gillespie, Jr., and Roy L. McCullough, “Residual Stress Development in Neat Poly(etheretherketone),” Polymer Engineering and Science, Vol. 34, No. 6 (Mar 1994).
    [23] S. Yi and K. Y. Sze, “Cooling Rate Effect on Post Cure Stresses in Molded Plastic IC Packages,” Journal of Electronic Packaging, Vol. 120, pp. 385-390 (1998).
    [24] Gerard Kelly, Colin Lyden, William Lawton, John Barrett, Alireza Saboui, Heinz Pape, and Henk J. B. Peters, “Importance of Molding Compound Chemical Shrinkage in the Stress and Warpage Analysis of PQFP’s,” IEEE Transactions on Components, Packaging, and Manufacturing Technology-Part B, Vol. 19, No. 2, pp. 296-300 (1996).
    [25] Kiyoshi Miyake, Tsukasa, Yoshida, Hyung Gil Baik, and Sang Wook Park, “Viscoelastic Warpage Analysis of Surface Mount Package,” Journal of Electronic Packaging, Vol. 123, pp. 101-104 (2001).
    [26] M. Y. Tsai, C. T. Wang, C. H. Hsu and Y. N. Chen, “The Effect of Epoxy Molding Compound Encapsulation on Thermal Deformations and Residual Stresses of Plastic IC Packages During Manufacturing Process,” Private Communication (2004).
    [27] Ken Oota and Masumi Saka, “Cure Shrinkage Analysis of Epoxy Molding Compound,” Polymer Engineering and Science, Vol. 41, No.8, pp. 1373-1379 (2001).
    [28] 洪立群, “IC封裝元件翹曲分析之研究,” 國立成功大學機械工程研究所博士論文(2004.7)。
    [29] Ben-Je Lwo, Ching-Hsing Kao, Tung-Sheng Chen, and Yao-Shing Chen, “On the Study of Piezoresistive Stress Sensors for Microelectronic Packaging,” Transactions of the ASME, Vol. 124, pp. 22-26 (2002).
    [30] Ben-Je Lwo, Tung-Sheng Chen, Ching-Hsing Kao, and Yu-Lin Lin, “In-Plane Packaging Stress Measurements Through Piezoresistive Sensors,” Journal of Electronic Packaging, Vol. 124, pp. 115-121 (2002).
    [31] Ben-Je Lwo and Shen-Yu Wu, “Calibrate Piezoresistive Stress Sensors Through the Assembled Structure,” Journal of Electronic Packaging, Vol. 125, pp. 289-293 (2003).
    [32] E. Suhir, “Stresses in Bi-Metal Thermostat,” Journal of Applied Mechanics, Vol. 53, pp. 657-660 (1986).
    [33] Barrie S. H. Royce, “Differential Thermal Expansion in Microelectronic Systems,” IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Vol. 11, No. 4, pp. 454-463 (1988).
    [34] Kang Ping Wang, Yonggang Young Huang, Abhijit Chandra, and Kai Xiong Hu, “Interfacial Shear Stress, Peeling Stress, and Die Cracking Stress in Trilayer Electronic Assemblies,” IEEE Transaction on Components and Packaging Technologies, Vol. 23, No. 2, pp. 309-316 (2002).
    [35] Minjin Ko and Myungwhan Kim, “Effect of Postmold Curing on Plastic IC Package Reliability,” Journal of Applied Polymer Science, Vol. 69, pp. 2187-2193 (1998).
    [36] Manfred Mengel, Joachim Mahler, and Wolfgang Schober, “Effect of Post-Mold Curing on Package Reliability,” Journal of Reinforced Plastics and Composites, Vol. 23, No. 16, pp. 1755-1765 (2004).
    [37] H. Leaderman, Elastic and Creep Properties of Filamentous Materials and Other High Polymers, Textile Foundation, Washington, D. C., (1998).
    [38] 黃雯玲, “覆晶構裝中錫球受黏彈性充填材料影響之最佳化探討,” 國立成功大學工程科學研究所碩士論文(2000.6)。
    [39] 胡德, 高分子物理與機械性質, 渤海堂文化事業有限公司, 台北, (2000.6)。

    下載圖示 校內:立即公開
    校外:2006-08-08公開
    QR CODE