簡易檢索 / 詳目顯示

研究生: 蘇友志
Su, Yo-Chih
論文名稱: 含黏彈支承轉子軸承系統之動態分析
Dynamic Analysis of Rotor-Bearing System with Viscoelastic Supports
指導教授: 崔兆棠
Choi, Siu-Tong
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 54
中文關鍵詞: 有限元素法轉子軸承系統黏彈支承
外文關鍵詞: Finite Element Method, Rotor-Bearing System, Viscoelastic Supports
相關次數: 點閱:108下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以有限元素法來分析含黏彈支承之轉子軸承系統的動態響應。系統的轉軸模擬為Timoshenko樑,即考慮轉軸之旋轉慣性(rotary inertia)及剪應變效應;假設轉盤為剛體,並考慮質量偏心及陀螺效應(gyroscopic effect) ;軸承以線性彈簧及阻尼器來模擬;支承則以黏彈支承來模擬。本文探討不同的黏彈支承勁度係數與損耗因子(loss factor),對系統自然頻率及穩態響應的影響。數值結果顯示,當黏彈支承的損耗因子增加,系統的穩態響應隨之降低,且系統之自然頻率隨之增加;當黏彈支承的勁度係數增加,系統的自然頻率隨之增加。

    Dynamic response of a rotor-bearing system with viscoelastic supports is analyzed by the finite element method in this thesis. Rotating shaft of the system is modeled as Timoshenko beam, which includes the effects of rotary inertia and shear deformation. Disk is considered to be rigid with its mass eccentricity and gyroscopic effect taken into account. Bearings are considered to be linear and modeled as spring-damper sets. Supports are considered to be viscoelastic supports. The effects of stiffness coefficient and loss factor of viscoelastic support on the resonance frequency and steady-state response of the system are investigated. Numerical results of this research show that when either the loss factor or the stiffness coefficient of viscoelastic support increases, the natural frequencies of the system increase and the steady-state response decreases.

    摘要 i ABSTRACT ii 誌謝 iii 表目錄 vii 圖目錄 viii 符號說明 x 第一章 緒論 1 1-1前言 1 1-2文獻回顧 2 1-3本文研究 4 第二章 運動方程式推導 6 2-1座標系統 6 2-2運動方程式 6 2-2-1轉盤 6 2-2-2轉軸 8 2-2-3軸承 10 2-2-4系統運動方程式 11 2-3動態特性分析 12 2-3-1旋振速率分析 12 2-3-2穩態響應分析 13 第三章 黏彈支承 15 3-1黏彈支承 15 3-1-1模型建立 15 3-1-2黏彈支承之方程式 18 3-1-3穩態響應分析 19 第四章 數值模擬結果與討論 21 4-1程式驗證 21 4-1-1軸承勁度之影響 22 4-2含黏彈支承之單轉盤轉子系統 23 4-2-1比較黏彈支承與剛性支承之轉子軸承系統的穩態響應 23 4-2-2損耗因子之影響 24 4-2-3勁度係數之影響 24 4-2-4勁度係數與損耗因子共同之影響 25 4-3含黏彈支承之雙轉盤轉子系統 25 第五章 結論 27 參考文獻 29 附錄一 32 附錄二 33

    [1] Ruhl, R. L., and Booker, J. F., “A Finite Element Model For Distributed Parameter Turborotor System,” ASME Journal of Engineering for Industry, Vol. 94, 1972, pp. 126-132.
    [2] Nelson, H. D., and McVaugh, J. M., “The Dynamics of Rotor-Bearing Systems Using Finite Elements,” ASME Journal of Engineering for Industry, Vol. 98, 1976, pp. 593-600.
    [3] Nelson, H. D., “A Finite Rotating Shaft Element Using Timoshenko Beam Theory,” ASME Journal of Mechanical Design, Vol. 102, 1980, pp. 793-803.
    [4] Dym, C. L., and Shames, I. H., Solid Mechanics–A Variational Approach, McGraw-Hill, New York, 1973.
    [5] Eshleman, R. L., and Eubanks, R. A., “On the Critical Speeds of a Continuous Rotor,” ASME, Journal of Engineering for Industry, Vol. 91, 1969, pp. 1180-1188.
    [6] Greenhill, L. M., Bickford, W. B., and Nelson, H. D., “A Conical Beam Finite Element for Rotor Dynamic Analysis,” ASME Journal of Vibration, Acoustics, Stress, Reliability in Design, Vol. 107, 1985, pp. 421-430.
    [7] Adams, M. L., “Nonlinear Dynamics of Flexible Multi-Bearing Rotors,” Journal of Sound and Vibration, Vol. 71, 1980, pp. 129-144.
    [8] Hassenpflug, H. L., Flack, R. D., and Gunter E. J., “Influence of Acceleration on the Critical Speed of a Jeffcott Rotor,” ASME Journal of Engineering for Power, Vol. 103, 1981, pp. 108-113.
    [9] Lee, A. C., and Kang Y., “Transient Analysis of an Asymmetric Rotor-Bearing System during Acceleration,” ASME Journal of Engineering for Industry, Vol. 114, 1992, pp. 465-475.
    [10] Ozgüven, N. H., and Ozkan, L. Z., “Whirl Speeds and Unbalance Response of Multi-bearing Rotors Using Finite Elements,” ASME Journal of Vibration and Acoustics, Vol. 106, 1984, pp. 72-79.
    [11] Leaderman, H., and Marvin, R. S., “Dynamic Compliance, Dynamic Modulus, and Equivalent Voigt and Maxwell Models for Polyisobutylene,” Journal of Applied Physics, Vol. 24, 1953, pp. 812-813.
    [12] Bland, D. R., and Lee, E. H., “On the Determination of a Viscoelastic Model for Stress Analysis of Plastics,” ASME Journal of Applied Mechanics, Vol. 23, 1956, pp. 416-420.
    [13] Ungar, E. E., and Kerwin, E. M., “Loss Factors of Viscoelastic Systems in Terms of Energy Concepts,” Journal of the Acoustical Society of America, Vol. 34, 1962, pp. 954-957.
    [14] Kapur, A. D., Nakra, B. C., and Chawla, D. R., “Shock Response of Viscoelastic Damped Beams,” Journal of Sound and Vibration, Vol. 55, 1977, pp. 351-362.
    [15] Jones, D. I. G., Handbook of Viscoelastic Vibration Damping, John Wiley and Sons, New York, 1988.
    [16] Kulkarni, P., Pannu, S., and Nakra, B. C., “Unbalance Response and Stability of a Rotating System with Viscoelastically Supported Bearings,” Mechanism and Machine Theory, Vol. 28, 1993, pp. 427-436.
    [17] Lakes, R., Viscoelastic Materials, Cambridge University Press, New York, 2009.
    [18] 黃忠立, 轉子-軸承系統在多臨界轉速限制下之輕化設計, 國立成功大學航空太空工程研究所碩士論文, 1987.
    [19] 阮競揚, 含橫向裂縫的轉子軸承系統之動態特性分析, 國立成功大學航空太空工程研究所碩士論文, 1997.

    下載圖示 校內:2014-09-05公開
    校外:2014-09-05公開
    QR CODE