| 研究生: |
林雅駿 Lin, Ya-Chun |
|---|---|
| 論文名稱: |
以微藻生質體為料源進行固定化細胞丁醇發酵結合產物同步移除以提升丁醇產量 Enhanced biobutanol fermentation with immobilized cells using microalgal biomass as feedstock integrated with in-situ product removal |
| 指導教授: |
張嘉修
Chang, Jo-Shu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 114 |
| 中文關鍵詞: | Clostridium aectobutylicum ATCC824 、Chlorella vulgaris JSC6 、生質丁醇 、微藻 、同步移除 |
| 外文關鍵詞: | Clostridium aectobutylicum ATCC824, Chlorella vulgaris JSC6, biobutanol, microalgae, in-situ product removal |
| 相關次數: | 點閱:104 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
生質燃料乃是指生物質經由轉換所獲得之能源(如生質乙醇、丁醇、生質柴油與生質氫氣),至今仍備受重視,其中第三代生質料源—微藻亦是未來綠色替代能源的焦點。本研究希冀能建立進行微藻混營培養程序結合產物同步移除之整合型微藻丁醇醱酵系統,建構一套低污染(去除放流水中丁酸與乳酸)且高效能的永續循環之程序,以生產丁醇該生質燃料為標的。
為克服丁醇對Clostridium aectobutylicum ATCC824所產生的抑制作用,在發酵過程中亦使用同步移除。在以懸浮細胞進行批次發酵中,利用油醇為溶劑進行液液萃取,再結合氮氣氣提可顯著提升葡萄糖利用率及丁醇生產量。結果可得到葡萄糖利用率、丁醇生產速率、丁醇產率、選擇性分別為99 %、0.31 g/L/h、0.39 mol butanol/mol glucose及24.7。而採用固定化技術亦可提升C. acetobutylicum 之細胞濃度,本研究亦採固定化之C. acetobutylicum細胞進行產物同步移除發酵。以液液萃取結合氣提所得之結果在葡糖糖利用率99 %、丁醇生產速率0.545 g/L/h、產率0.34 mol butanol/mol glucose及選擇性15。
利用酸水解之微藻碳水化合物(主要為葡萄糖與木糖)之可行性進行丁醇發酵亦被評估,在以C. acetobutylicum懸浮細胞進行60 g/L藻糖之批式發酵中,發酵最終結果分別為丁醇濃度10.6 g/L丁醇生產速率1.04 g/L/h 及產率0.41 mol butanol/mol glucose。且以藻糖與一般葡萄糖為料源比較其發酵結果,利用藻糖可提升丁醇濃度12%,生產速率提升20%,產率亦提升17%。
而以73.5 g/L濃縮藻糖為料源,進行固定化細胞丁醇發酵結合產物同步移除,可得發酵最終結果分別為丁醇濃度12.01 g/L丁醇生產速率0.44 g/L/h 及產率0.41 mol butanol/mol glucose及選擇性6.66。本實驗亦可作為在60 g/L藻糖濃度下,連續式丁醇發酵結合產物同步移除之前測。
由於丁醇發酵最終產物內含有揮發性有機酸,為降低發酵液COD及達成廢水循環再利用,挑選藻株C. vulgaris JSC6進行混營培養之測試,得到最佳培養條件為5%發酵液混合Basal培養基,進而生產微藻生物質濃度達6.81 g/L,藻體所累積之29%碳水化合物將可作為後續醱酵製程之料源。以微藻生質體(水解藻糖)為料源結合液液萃取與氣提之產物同步移除整合型微藻丁醇醱酵系統,可建構一套低汙染且高效能的零碳排且永續循環之程序。
Biofuels such as alcohols, biodiesel, and biohydrogen derived from biomass have received much attention due to their potential to serve as alternative renewable energy resources for energy security and sustainability. In particular, using third generation microalgal biomass as feedstock for biofuels production has recently been regarded with great interest. In this study, we focused on developing a low-pollution, sustainable and highly efficient microalgae-based bio-butanol production system with simultaneous removal of organic acids from the butanol fermentation effluent.
In situ product removal has been used to overcome the product inhibition effect of butanol on Clostridium aectobutylicum ATCC824 in batch butanol fermentation. A combination of liquid-liquid extraction using oleyl alcohol and gas stripping with nitrogen gas greatly improved the glucose utilization and butanol production in batch butanol fermentation using suspended cells. In free cell batch fermentation, the glucose utilization, butanol productivity, butanol yield and selectivity were improved to 99 %, 0.31 g/L/h, 0.39 mol butanol/mol glucose and 24.7, respectively. Immobilization of C. acetobutylicum was done to enhance the cell concentration in the reactor and immobilized cells were used in butanol fermentation integrated with in situ product removal techniques (gas stripping, liquid liquid extraction + gas stripping). Two immobilized cell batch fermentation tests were conducted, and the results of liquid-liquid extraction combined with gas stripping show that glucose utilization, butanol productivity, butanol yield and selectivity were 99 %, 0.545 g/L/h, 0.34 mol butanol/mol glucose and 15.
The feasibility of using microalgal carbohydrates as obtained by simple acid hydrolysis (primarily glucose and xylose) was evaluated in batch fermentation using suspended cells of C. acetobutylicum. The maximum butanol concentration, maximum productivity and yield with 60 g/L microalgal sugars were 10.6 g/L, 1.04 g/L/h and 0.41 mol butanol/mol glucose, respectively. The fermentation performance using microalgal sugar is better than that using commercial glucose. The maximum butanol concentration, maximum productivity and yield were improved by 12, 20, and 17%, respectively. The integrated system combining in situ product removal (liquid-liquid extraction/gas stripping) with immobilized cells using hydrolyzed microalgal biomass was conducted in batch mode. The maximum butanol concentration, maximum productivity, yield and selectivity using 73.5 g/L concentrated microalgal sugars were 12.01 g/L, 0.44 g/L/h and 0.41 mol butanol/mol glucose and 6.66. The same experimental setup can be adapted for CSTR mode of fermentation with 60 g/L microalgal sugar and in situ product removal.
Finally, to reduce the COD of the fermentation waste and to reuse the fermentation broth, Chlorella vulgaris JSC-6 was cultivated in butanol fermentation broth in mixotrophic mode of cultivation. We found that 5% fermentation broth mixed with Basal medium yielded the best biomass production (6.81 g/L). The obtained biomass containing 29% carbohydrates can further be hydrolyzed and reused as the feedstock for biobutanol fermentation.
A combination of liquid-liquid extraction and gas stripping integrated with butanol fermentation system using microalgal sugars can help achieve a low-pollution and highly-efficient microalgae-based bio-butanol production system, which is not only free of carbon dioxide emissions but is also sustainable.
Abdehagh, N., Tezel, F. H., & Thibault, J. (2014). Separation techniques in butanol production: challenges and developments. UBiomass and BioenergyU, 60, 222-246.
Aleksic, S. (2009). Butanol Production from Biomass. UYoungstown State UniversityU,
Armstrong, D. W., & Yamazaki, H. (1986). Natural flavours production: a biotechnological approach.U Trends in BiotechnologyU, 4(10), 264-268.
Asada, Y., & Miyake, J. (1999). Photobiological hydrogen production. UJournal of Bioscience and BioengineeringU, 88(1), 1-6.
Bahl, H., Andersch, W., Braun, K., & Gottschalk, G. (1982). Effect of pH and butyrate concentration on the production of acetone and butanol by Clostridium acetobutylicum grown in continuous culture.U European journal of applied microbiology and biotechnologyU, 14(1), 17-20.
Bahl, H., & Gottschalk, G. (1984). Parameters affecting solvent production by Clostridium acetobutylicum in continuous culture. UPaper presented at the Biotechnol. Bioeng. Symp.U;(United States).
Barton, W. E., & Daugulis, A. J. (1992). Evaluation of solvents for extractive butanol fermentation with Clostridium acetobutylicum and the use of poly (propylene glycol) 1200.U Applied Microbiology and BiotechnologyU, 36(5), 632-639.
Belay, N., Boopathy, R., & Voskuilen, G. (1997). Anaerobic Transformation of Furfural by Methanococcus deltae (Delta) LH. UApplied and environmental microbiologyU, 63(5), 2092-2094.
Biebl, H. (2001). Fermentation of glycerol by Clostridium pasteurianum—batch and continuous culture studies. UJournal of industrial Microbiology and Biotechnology, U27(1), 18-26.
Blank-Porat, D., Gruss-Fischer, T., Tarasenko, N., Malik, Z., Nudelman, A., & Rephaeli, A. (2007). The anticancer prodrugs of butyric acid AN-7 and AN-9, possess antiangiogenic properties. UCancer letters,U 256(1), 39-48.
Boopathy, R. (2009). Anaerobic biotransformation of furfural to furfuryl alcohol by a methanogenic archaebacterium. UInternational biodeterioration & biodegradation,U 63(8), 1070-1072.
Brosseau, J. D., Yan, J. Y., & Lo, K. V. (1986). The relationship between hydrogen gas and butanol production by Clostridium saccharoperbutylacetonicum. UBiotechnology and BioengineeringU, 28(3), 305-310.
Cai, D., Hu, S., Qin, P., & Tan, T. (2018). Separation of Butanol, Acetone, and Ethanol. In UEmerging Areas in BioengineeringU (pp. 255-285).
Canganella, F., Kuk, S.-U., Morgan, H., & Wiegel, J. (2002). Clostridium thermobutyricum: growth studies and stimulation of butyrate formation by acetate supplementation. UMicrobiological researchU, 157(2), 149-156.
Chang, F., Kim, H., Lee, B., Park, S., & Park, J. (2010). Highly efficient solvent-free catalytic hydrogenation of solid alkenes and nitro-aromatics using Pd nanoparticles entrapped in aluminum oxy-hydroxide. UTetrahedron LettersU, 51(32), 4250-4252.
Chen, C.-Y., Zhao, X.-Q., Yen, H.-W., Ho, S.-H., Cheng, C.-L., Lee, D.-J., . . . Chang, J.-S. (2013). Microalgae-based carbohydrates for biofuel production. UBiochemical Engineering Journal, U78, 1-10. doi:10.1016/j.bej.2013.03.006
Chen, M., Zhao, J., & Xia, L. (2008). Enzymatic hydrolysis of maize straw polysaccharides for the production of reducing sugars. UCarbohydrate Polymers, U71(3), 411-415.
Chen, Z.-X., & Breitman, T. R. (1994). Tributyrin: a prodrug of butyric acid for potential clinical application in differentiation therapy. UCancer Research,U 54(13), 3494-3499.
Collier-Hyams, L. S., Sitaraman, S., & Neish, A. (2006). Butyric acid, a physiologic bacterial fermentation product, represses epithelial inflammatory signaling via changes in Cul-1 neddylation. UPaper presented at the GASTROENTEROLOGYU.
Cotton, A. F., Wilkinson, G., Bochmann, M., & Murillo, C. A. (1999). Advanced inorganic chemistry: UWileyU.
Dürre, P. (2005). Handbook on clostridia: UCRC pressU.
Dürre, P. (2007). Biobutanol: an attractive biofuel. UBiotechnology journalU, 2(12), 1525-1534.
Das, D., & Veziroǧlu, T. N. (2001). Hydrogen production by biological processes: a survey of literature. UInternational journal of hydrogen energy,U 26(1), 13-28.
Dunn, S. (2002). Hydrogen futures: toward a sustainable energy system. UInternational journal of hydrogen energyU, 27(3), 235-264.
Efremenko, E. N., Nikolskaya, A. B., Lyagin, I. V., Senko, O. V., Makhlis, T. A., Stepanov, N. A., Varfolomeev, S. D. (2012). Production of biofuels from pretreated microalgae biomass by anaerobic fermentation with immobilized Clostridium acetobutylicum cells. UBioresource TechnologyU, 114, 342-348. doi:10.1016/j.biortech.2012.03.049
Ennis, B., & Maddox, I. (1989). Production of solvents (ABE fermentation) from whey permeate by continuous fermentation in a membrane bioreactor. UBioprocess EngineeringU, 4(1), 27-34.
Ezeji, T., Milne, C., Price, N. D., & Blaschek, H. P. (2010). Achievements and perspectives to overcome the poor solvent resistance in acetone and butanol-producing microorganisms. UApplied Microbiology and BiotechnologyU, 85(6), 1697-1712.
Ezeji, T., Qureshi, N., & Blaschek, H. (2003). Production of acetone, butanol and ethanol by Clostridium beijerinckii BA101 and in situ recovery by gas stripping. UWorld Journal of Microbiology and Biotechnology,U 19(6), 595-603.
Ezeji, T. C., Karcher, P. M., Qureshi, N., & Blaschek, H. P. (2005). Improving performance of a gas stripping-based recovery system to remove butanol from Clostridium beijerinckii fermentation. UBioprocess Biosyst Eng,U 27(3), 207-214. doi:10.1007/s00449-005-0403-7
Falbe, J. (2013). Carbon monoxide in organic synthesis (Vol. 10): USpringer Science & Business MediaU.
Friedl, A., Qureshi, N., & Maddox, I. S. (1991). Continuous acetone‐butanol‐ethanol (ABE) fermentation using immobilized cells of Clostridium acetobutylicum in a packed bed reactor and integration with product removal by pervaporation. UBiotechnol Bioeng,U 38(5), 518-527.
Geng, Q., & Park, C.-H. (1993). Controlled-pH batch butanol-acetone fermentation by low acid producing Clostridium acetobutylicum B18. UBiotechnology lettersU, 15(4), 421-426.
Geng, Q., Park, C.-H., & Janni, K. (1995). Uptake of organic acids by Clostridium acetobutylicum B18 under controlled pH and reduced butanol inhibition. UKorean Journal of Chemical EngineeringU, 12(3), 378-383.
Ginkel, S. V., Sung, S., & Lay, J.-J. (2001). Biohydrogen production as a function of pH and substrate concentration.U Environmental science & technologyU, 35(24), 4726-4730.
Girbal, L., Croux, C., Vasconcelos, I., & Soucaille, P. (1995). Regulation of metabolic shifts in Clostridium acetobutylicum ATCC 824. UFEMS microbiology reviewsU, 17(3), 287-297.
Gottwald, M., & Gottschalk, G. (1985). The internal pH of Clostridium acetobutylicum and its effect on the shift from acid to solvent formation.U Archives of microbiologyU, 143(1), 42-46.
Groot, W., Soedjak, H., Donck, P., Van der Lans, R., Luyben, K. C. A., & Timmer, J. (1990). Butanol recovery from fermentations by liquid-liquid extraction and membrane solvent extraction.U Bioprocess EngineeringU, 5(5), 203-216.
Grupe, H., & Gottschalk, G. (1992). Physiological events in Clostridium acetobutylicum during the shift from acidogenesis to solventogenesis in continuous culture and presentation of a model for shift induction. UApplied and environmental microbiologyU, 58(12), 3896-3902.
Gupta, S., Kirillova, M. V., da Silva, M. F. G., & Pombeiro, A. J. (2013). Highly efficient divanadium (V) pre-catalyst for mild oxidation of liquid and gaseous alkanes. UApplied Catalysis A: GeneralU, 460, 82-89.
Hüsemann, M., & Papoutsakis, E. T. (1990). Effects of propionate and acetate additions on solvent production in batch cultures of Clostridium acetobutylicum. UApplied and environmental microbiologyU, 56(5), 1497-1500.
Hallenbeck, P. C., & Benemann, J. R. (2002). Biological hydrogen production; fundamentals and limiting processes. UInternational journal of hydrogen energyU, 27(11-12), 1185-1193.
Hamer, H. M., Jonkers, D., Venema, K., Vanhoutvin, S., Troost, F., & Brummer, R. J. (2008). The role of butyrate on colonic function. UAlimentary pharmacology & therapeuticsU, 27(2), 104-119.
Hartmanis, M. G., & Gatenbeck, S. (1984). Intermediary metabolism in Clostridium acetobutylicum: levels of enzymes involved in the formation of acetate and butyrate. UApplied and environmental microbiologyU, 47(6), 1277-1283.
Himmel, M. E., Ding, S.-Y., Johnson, D. K., Adney, W. S., Nimlos, M. R., Brady, J. W., & Foust, T. D. (2007). Biomass recalcitrance: engineering plants and enzymes for biofuels production. UscienceU, 315(5813), 804-807.
Ho, S.-H., Huang, S.-W., Chen, C.-Y., Hasunuma, T., Kondo, A., & Chang, J.-S. (2013). Bioethanol production using carbohydrate-rich microalgae biomass as feedstock. UBioresour TechnolU, 135, 191-198.
Ho, S. H., Huang, S. W., Chen, C. Y., Hasunuma, T., Kondo, A., & Chang, J. S. (2013). Bioethanol production using carbohydrate-rich microalgae biomass as feedstock. UBioresour TechnolU, 135, 191-198. doi:10.1016/j.biortech.2012.10.015
Hofstad, T. (2006). The genus fusobacterium. UThe prokaryotesU (pp. 1016-1027): Springer.
Huang, W.-C., Ramey, D. E., & Yang, S.-T. (2004). Continuous production of butanol by Clostridium acetobutylicum immobilized in a fibrous bed bioreactor. Paper presented at the UProceedings of the Twenty-Fifth Symposium on Biotechnology for Fuels and ChemicalsU Held May 4–7, 2003, in Breckenridge, CO.
Inoue, A., & Horikoshi, K. (1991). Estimation of solvent-tolerance of bacteria by the solvent parameter log P. UJournal of Fermentation and Bioengineering,U 71(3), 194-196.
Jang, Y. S., Malaviya, A., Cho, C., Lee, J., & Lee, S. Y. (2012). Butanol production from renewable biomass by clostridia.U Bioresour TechnolU, 123, 653-663. doi:10.1016/j.biortech.2012.07.104
Jin, C., Yao, M., Liu, H., Chia-fon, F. L., & Ji, J. (2011). Progress in the production and application of n-butanol as a biofuel. Renewable and Sustainable Energy Reviews, 15(8), 4080-4106.
Jo, J. H., Lee, D. S., & Park, J. M. (2008). The effects of pH on carbon material and energy balances in hydrogen-producing Clostridium tyrobutyricum JM1. UBioresour TechnolU, 99(17), 8485-8491.
Junelles, A., Janati-Idrissi, R., Petitdemange, H., & Gay, R. (1988). Iron effect on acetone-butanol fermentation. UCurrent MicrobiologyU, 17(5), 299-303.
Jurgens, G., Survase, S., Berezina, O., Sklavounos, E., Linnekoski, J., Kurkijarvi, A., Granstrom, T. (2012). Butanol production from lignocellulosics. UBiotechnol LettU, 34(8), 1415-1434. doi:10.1007/s10529-012-0926-3
Kashket, E. R., & Cao, Z.-Y. (1993). Isolation of a degeneration-resistant mutant of Clostridium acetobutylicum NCIMB 8052. UApplied and environmental microbiologyU, 59(12), 4198-4202.
Kim, B. H., Bellows, P., Datta, R., & Zeikus, J. (1984). Control of carbon and electron flow in Clostridium acetobutylicum fermentations: utilization of carbon monoxide to inhibit hydrogen production and to enhance butanol yields. UApplied and environmental microbiologyU, 48(4), 764-770.
Knoshaug, E. P., & Zhang, M. (2009). Butanol tolerance in a selection of microorganisms. UAppl Biochem BiotechnolU, 153(1-3), 13-20.
Kong, Q., He, G., Chen, F., & Ruan, H. (2006). Studies on a kinetic model for butyric acid bioproduction by Clostridium butyricum. ULetters in applied microbiologyU, 43(1), 71-77.
Kraemer, K., Harwardt, A., Bronneberg, R., & Marquardt, W. (2011). Separation of butanol from acetone–butanol–ethanol fermentation by a hybrid extraction–distillation process. UComputers & Chemical Engineering,U 35(5), 949-963.
Kumar, P., Barrett, D. M., Delwiche, M. J., & Stroeve, P. (2009). Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. UIndustrial & Engineering Chemistry ResearchU, 48(8), 3713-3729.
Lee, S.-M., Cho, M. O., Park, C. H., Chung, Y.-C., Kim, J. H., Sang, B.-I., & Um, Y. (2008). Continuous butanol production using suspended and immobilized Clostridium beijerinckii NCIMB8052 with supplementary butyrate. UEnergy & FuelsU, 22(5), 3459-3464.
Lee, S. Y., Park, J. H., Jang, S. H., Nielsen, L. K., Kim, J., & Jung, K. S. (2008). Fermentative butanol production by Clostridia. UBiotechnol BioengU, 101(2), 209-228. doi:10.1002/bit.22003
Lefranc, L., & Cie, E. (1923). A process for the manufacture of butyric acid and other fatty acids with recovery of the gases of fermentation. Br. Pat, 186, 572.
Li, S. Y., Srivastava, R., Suib, S. L., Li, Y., & Parnas, R. S. (2011). Performance of batch, fed-batch, and continuous A-B-E fermentation with pH-control. UBioresour TechnolU, 102(5), 4241-4250.
Lin, C.-Y., & Lay, C. (2004). Effects of carbonate and phosphate concentrations on hydrogen production using anaerobic sewage sludge microflora. UInternational journal of hydrogen energyU, 29(3), 275-281.
Liu, C.-H., Chang, C.-Y., Liao, Q., Zhu, X., & Chang, J.-S. (2013). Photoheterotrophic growth of Chlorella vulgaris ESP6 on organic acids from dark hydrogen fermentation effluents. UBioresour TechnolU, 145, 331-336.
Lodi, G., & Pellegrini, L. A. (2016). Recovery of Butanol from ABE Fermentation Broth by Gas Stripping. UCHEMICAL ENGINEERINGU, 49.
Lu, C., Zhao, J., Yang, S. T., & Wei, D. (2012). Fed-batch fermentation for n-butanol production from cassava bagasse hydrolysate in a fibrous bed bioreactor with continuous gas stripping. UBioresour TechnolU, 104, 380-387.
Lu, K.-M., & Li, S.-Y. (2014). An integrated in situ extraction-gas stripping process for Acetone–Butanol–Ethanol (ABE) fermentation. UJournal of the Taiwan Institute of Chemical EngineersU, 45(5), 2106-2110.
Lu, W., Lu, G., Guo, Y., Guo, Y., & Wang, Y. (2003). Gas-phase hydrogenation of maleic anhydride to butyric acid over Cu/TiO2/γ-Al2O3 catalyst promoted by Pd. UCatalysis CommunicationsU, 4(4), 177-181.
Lutke-Eversloh, T., & Bahl, H. (2011). Metabolic engineering of Clostridium acetobutylicum: recent advances to improve butanol production. UCurr Opin BiotechnolU, 22(5), 634-647.
Maiti, S., Brar, S., Verma, M., Soccol, C., & Maiti, D. (2017). Butyric Acid: A Platform Chemical for Biofuel and High-Value Biochemicals. UPlatform Chemical BiorefineryU (pp. 119-132): Elsevier.
Mariano, A. P., Costa, C. B. B., de Angelis, D. d. F., Maugeri Filho, F., Atala, D. I. P., Maciel, M. R. W., & Maciel Filho, R. (2009). Optimization strategies based on sequential quadratic programming applied for a fermentation process for butanol production.U Appl Biochem BiotechnolU, 159(2), 366.
Meyer, C. L., Roos, J. W., & Papoutsakis, E. T. (1986). Carbon monoxide gasing leads to alcohol production and butyrate uptake without acetone formation in continuous cultures of Clostridium acetobutylicum. UApplied Microbiology and BiotechnologyU, 24(2), 159-167.
Michel-Savin, D., Marchal, R., & Vandecasteele, J. (1990). Control of the selectivity of butyric acid production and improvement of fermentation performance with Clostridium tyrobutyricum. UApplied Microbiology and BiotechnologyU, 32(4), 387-392.
Momirlan, M., & Veziroǧlu, T. (1999). Recent directions of world hydrogen production. URenewable and Sustainable Energy ReviewsU, 3(2-3), 219-231.
Monot, F., Engasser, J.-M., & Petitdemange, H. (1984). Influence of pH and undissociated butyric acid on the production of acetone and butanol in batch cultures of Clostridium acetobutylicum. UApplied Microbiology and BiotechnologyU, 19(6), 422-426.
Mu, Y., Yu, H.-Q., & Wang, G. (2007). A kinetic approach to anaerobic hydrogen-producing process. UWater researchU, 41(5), 1152-1160.
Park, C.-H., Geng, Q., & Rogers, P. (1993). Characteristics of butanol fermentation by a low-acid-producing Clostridium acetobutylicum B18. UApplied Microbiology and BiotechnologyU, 39(2), 148-154.
Peguin, S., & Soucaille, P. (1995). Modulation of carbon and electron flow in Clostridium acetobutylicum by iron limitation and methyl viologen addition. UApplied and environmental microbiologyU, 61(1), 403-405.
Playne, M. (1985). Propionic and butyric acids. UComprehensive biotechnology,U 3, 731-759.
Pouillart, P. R. (1998). Role of butyric acid and its derivatives in the treatment of colorectal cancer and hemoglobinopathies.U Life sciencesU, 63(20), 1739-1760.
Qureshi, N., & Blaschek, H. (2001). Recovery of butanol from fermentation broth by gas stripping. URenewable EnergyU, 22(4), 557-564.
Qureshi, N., & Ezeji, T. C. (2008). Butanol, ‘a superior biofuel’ production from agricultural residues (renewable biomass): recent progress in technology. UBiofuels, Bioproducts and BiorefiningU, 2(4), 319-330.
Qureshi, N., Paterson, A., & Maddox, I. (1988). Model for continuous production of solvents from whey permeate in a packed bed reactor using cells of Clostridium acetobutylicum immobilized by adsorption onto bonechar. UApplied Microbiology and BiotechnologyU, 29(4), 323-328.
Rao, G., & Mutharasan, R. (1987). Altered electron flow in continuous cultures of Clostridium acetobutylicum induced by viologen dyes. UApplied and environmental microbiologyU, 53(6), 1232-1235.
Rawat, I., Kumar, R. R., Mutanda, T., & Bux, F. (2011). Dual role of microalgae: phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. UApplied EnergyU, 88(10), 3411-3424.
Rephaeli, A., Zhuk, R., & Nudelman, A. (2000). Prodrugs of butyric acid from bench to bedside: synthetic design, mechanisms of action, and clinical applications. UDrug Development ResearchU, 50(3‐4), 379-391.
Rogers, P., Chen, J.-S., & Zidwick, M. J. (2006). Organic acid and solvent production. UThe prokaryotesU (pp. 511-755): Springer.
Rubinow , S. I. (2003). Introduction to mathematical biology: Dover Publications; 1 edition.
Saint-Amans, S., & Soucaille, P. (1995). Carbon and electron flow in Clostridium butyricum grown in chemostat culture on glucose-glycerol mixtures. UBiotechnology lettersU, 17(2), 211-216.
Sauer, E. (1992). Carboxylic Acids, Economic Aspects. UKirk-Othmer encyclopedia of chemical technologyU.
Schrader, J. (2007). Microbial flavour production. UFlavours and fragrancesU (pp. 507-574): Springer.
Shoko, E., McLellan, B., Dicks, A., & Da Costa, J. D. (2006). Hydrogen from coal: production and utilisation technologies. UInternational Journal of Coal GeologyU, 65(3-4), 213-222.
Soni, B., & Jain, M. (1997). Influence of pH on butyrate uptake and solvent fermentation by a mutant strain of Clostridium acetobutylicum. UBioprocess EngineeringU, 17(6), 329-334.
Soni, B., Kapp, C., Goma, G., & Soucaille, P. (1992). Solvent production from starch: effect of pH on α-amylase and glucoamylase localization and synthesis in synthetic medium. UApplied Microbiology and BiotechnologyU, 37(5), 539-543.
Stiegel, G. J., & Ramezan, M. (2006). Hydrogen from coal gasification: An economical pathway to a sustainable energy future. UInternational Journal of Coal GeologyU, 65(3-4), 173-190.
Sutton, J., Dhanoa, M., Morant, S., France, J., Napper, D., & Schuller, E. (2003). Rates of production of acetate, propionate, and butyrate in the rumen of lactating dairy cows given normal and low-roughage diets.U Journal of dairy ScienceU, 86(11), 3620-3633.
Tashiro, Y., Shinto, H., Hayashi, M., Baba, S.-i., Kobayashi, G., & Sonomoto, K. (2007). Novel high-efficient butanol production from butyrate by non-growing Clostridium saccharoperbutylacetonicum N1-4 (ATCC 13564) with methyl viologen. UJournal of Bioscience and BioengineeringU, 104(3), 238-240.
Tashiro, Y., & Sonomoto, K. (2010). Advances in butanol production by clostridia. UCurrent research, technology and education topics in applied microbiology and microbial biotechnologyU, 2, 1383-1394.
Tashiro, Y., Takeda, K., Kobayashi, G., Sonomoto, K., Ishizaki, A., & Yoshino, S. (2004). High butanol production by Clostridium saccharoperbutylacetonicum N1-4 in fed-batch culture with pH-stat continuous butyric acid and glucose feeding method. UJournal of Bioscience and BioengineeringU, 98(4), 263-268.
Tsai, T.-Y. (2014).”以農業廢棄物及微藻生質體為料源進行固定化細胞丁醇醱酵並結合薄膜蒸餾法進行產物同步移除以提升丁醇產量.”U成功大學化學工程系學位論文U:1-163
Van Andel, J., Zoutberg, G., Crabbendam, P., & Breure, A. (1985). Glucose fermentation by Clostridium butyricum grown under a self generated gas atmosphere in chemostat culture. UApplied Microbiology and BiotechnologyU, 23(1), 21-26.
Vane, L. M. (2008). Separation technologies for the recovery and dehydration of alcohols from fermentation broths. UBiofuels, Bioproducts and BiorefiningU, 2(6), 553-588.
Wang, T., Xiao, C.-X., Yan, L., Xu, L., Luo, J., Shou, H., Liu, H. (2007). Aqueous-phase aerobic oxidation of alcohols by soluble Pt nanoclusters in the absence of base. UChemical CommunicationsU(42), 4375-4377.
Wang, Y., Guo, W. Q., Chang, J. S., & Ren, N. Q. (2013). Butanol Production Using Carbohydrate-Enriched Chlorella vulgaris as Feedstock. UAdvanced Materials ResearchU, 830, 122-125. doi:10.4028/www.scientific.net/AMR.830.122
Wang, Y. R., Chiang, Y. S., Chuang, P. J., Chao, Y. P., & Li, S. Y. (2016). Direct in situ butanol recovery inside the packed bed during continuous acetone-butanol-ethanol (ABE) fermentation. UApplied Microbiology and BiotechnologyU, 100(17), 7449-7456.
Welch, R. W., Clark, S. W., Bennett, G. N., & Rudolph, F. B. (1992). Effects of rifampicin and chloramphenicol on product and enzyme levels of the acid-and solvent-producing pathways of Clostridium acetobutylicum (ATCC 824). UEnzyme and microbial technologyU, 14(4), 277-283.
Williams, E. A., Coxhead, J. M., & Mathers, J. C. (2003). Anti-cancer effects of butyrate: use of micro-array technology to investigate mechanisms. UProceedings of the Nutrition SocietyU, 62(1), 107-115.
Wu, J. (2006). Biohydrogen production using starch as the carbon substrate. UMaster's thesis Department of Chemical Engineering, National Cheng Kung UniversityU, Tainan, Taiwan.
Xue, C., Liu, F., Xu, M., Zhao, J., Chen, L., Ren, J., Yang, S. T. (2016). A novel in situ gas stripping‐pervaporation process integrated with acetone‐butanol‐ethanol fermentation for hyper n‐butanol production. UBiotechnology and BioengineeringU, 113(1), 120-129.
Xue, C., Zhao, J., Lu, C., Yang, S. T., Bai, F., & Tang, I. C. (2012). High‐titer n‐butanol production by clostridium acetobutylicum JB200 in fed‐batch fermentation with intermittent gas stripping. UBiotechnology and BioengineeringU, 109(11), 2746-2756.
Yang, X., Tang, S., Lu, T., Chen, C., Zhou, L., Su, Y., & Xu, J. (2013). Sulfonic acid resin–catalyzed oxidation of aldehydes to carboxylic acids by hydrogen peroxide. USynthetic CommunicationsU, 43(7), 979-985.
Yazdani, S. S., & Gonzalez, R. (2007). Anaerobic fermentation of glycerol: a path to economic viability for the biofuels industry. UCurrent Opinion in BiotechnologyU, 18(3), 213-219.
Yen, H.-W., Li, R.-J., & Ma, T.-W. (2011). The development process for a continuous acetone–butanol–ethanol (ABE) fermentation by immobilized Clostridium acetobutylicum. UJournal of the Taiwan Institute of Chemical EngineersU, 42(6), 902-907.
Yerushalmi, L., Volesky, B., & Szczesny, T. (1985). Effect of increased hydrogen partial pressure on the acetone-butanol fermentation by Clostridium acetobutylicum. UApplied Microbiology and BiotechnologyU, 22(2), 103-107.
Zhang, C., Yang, H., Yang, F., & Ma, Y. (2009). Current progress on butyric acid production by fermentation. UCurrent MicrobiologyU, 59(6), 656-663.
Zhang, Y., Han, B., & Ezeji, T. C. (2012). Biotransformation of furfural and 5-hydroxymethyl furfural (HMF) by Clostridium acetobutylicum ATCC 824 during butanol fermentation. UNew BiotechnologyU, 29(3), 345-351.
Zheng, Y. N., Li, L. Z., Xian, M., Ma, Y. J., Yang, J. M., Xu, X., & He, D. Z. (2009). Problems with the microbial production of butanol. UJournal of Industrial Microbiology and BiotechnologyU, 36(9), 1127-1138.
Zhu, Y., & Yang, S.-T. (2004). Effect of pH on metabolic pathway shift in fermentation of xylose by Clostridium tyrobutyricum. UJournal of BiotechnologyU, 110(2), 143-157.
Zigova, J., & Šturdík, E. (2000). Advances in biotechnological production of butyric acid.U Journal of industrial Microbiology and BiotechnologyU, 24(3), 153-160.
Zverlov, V., Berezina, O., Velikodvorskaya, G., & Schwarz, W. (2006). Bacterial acetone and butanol production by industrial fermentation in the Soviet Union: use of hydrolyzed agricultural waste for biorefinery. UApplied Microbiology and BiotechnologyU, 71(5), 587-597.
Zwietering, M., Jongenburger, I., Rombouts, F., & Van't Riet, K. (1990). Modeling of the bacterial growth curve. UApplied and environmental microbiologyU, 56(6), 1875-1881.
校內:立即公開