簡易檢索 / 詳目顯示

研究生: 裴翊寧
Pei, Yi-Ning
論文名稱: 鉛酸電池負極摻雜元素設計及其對電化學特性的影響
Dopant Design for Anodes and the Doping Effect on the Electrochemical Characteristics in Lead-acid Batteries
指導教授: 林士剛
Lin, Shih-Kang
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 58
中文關鍵詞: 鉛酸電池金屬添加劑第一原理計算
外文關鍵詞: lead-acid batteries, expanders, metal additives, ab-initio calculation, band gap
相關次數: 點閱:43下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 酸電池自從商品化以來,產品技術的發展已經非常純熟,也因為其具有低成本、高穩定性及可回收利用性等優點,目前仍占據著世界電池市場的最大額,而其主要的應用集中在大型交通工具上的動力電池;汽機車啟動、照明用電池(starting, lighting, ignition, SLI);以及用於不斷電系統(Uninterruptible Power Supply, UPS)與儲能系統的工業備用電池,其中,用於儲能設備及UPS之固定式鉛酸電池,近年來在IT產業帶動下逐漸成長。
    然而,即使鉛蓄電池佔二次電池市場一半以上的比重,但其技術仍存在需要解決的瓶頸,目前最主要的問題是正極極板劣化及負極極板硫酸化,本研究主要聚焦於後者,即因為放電產物PbSO4之絕緣性造成反應之不可逆性,進而使電容量下降,影響電池使用壽命,目前最常被是用來解決此問題的方法是藉由在鉛膏或電解液中以加入添加劑的方式來增加反應的可逆性,而最常見的添加劑為碳、硫酸鋇(BaSO4)及木質纖維素三種。
    近年來,越來越多人討論的即為金屬添加劑,但目前尚未有完整的研究,因此,相對於實驗方法耗盡大量金錢、時間與人力成本,本研究使用第一原理計算(Ab initio calculation)的方法搭配實驗驗證來探討添加金屬添加劑對鉛酸電池的影響為何。本研究第一部分為第一原理計算,首先建構出PbSO4之原子級模型,結構優化計算後與實驗結果比較,接著開始摻雜後選金屬,藉由摻雜後的模型進行態密度及電荷密度差的分析,篩選出最適合的摻雜金屬。
    第二部分則為電化學實驗的驗證,首先,藉由全電池循環伏安法分析,SEM、EDS與XRD分析,比較添加前後並確認其機制,再者,藉由2V單一模組裝置的電化學分析進行不同添加量之比較。

    Though lead-acid battery is an old system, there are two main aging processes lead to gradual loss of performance. One is active mass degradation and loss of adherence to the grid in positive plate; the other is irreversible formation of lead sulfate (PbSO4) in the active mass in negative plate. Here, we will focus on solving the latter aging problem. In recent years, the effect of various metal ions on electrochemical behavior in sulfuric acid has been investigated. However, people have few understanding on the mechanism. In this work, the doped model for PbSO4 is built. The DOS and Bader charge analysis of all dopant were performed by ab initio calculations. Based on all the calculation results, we choose our best candidate. Then, the addition effect of our target ions on electrochemical behavior of negative plate and positive plate in sulfuric acid solution has been investigated, respectively. The cyclic voltammograms, SEM-EDS and XRD results help us to realize the mechanism and the doping effect on the addition of metal additives in Lead-acid batteries

    摘要 I Abstract II 誌謝 XII 目錄 XIII 表目錄 XV 圖目錄 XVI 第一章 前言 1 第二章 文獻回顧 3 2.1 鉛酸電池基本原理 3 2.2 鉛酸電池結構 5 2.3 面臨問題 10 2.4 添加劑種類 11 第三章 實驗方法 19 3.1 第一原理計算 19 3.2 密度泛函理論 19 3.2.1 Hohenberg-Kohn定理 20 3.2.2 Kohn-Sham定理 20 3.3 交換關聯函數 22 3.4 LDA+U與GGA+U方法 22 3.5 VASP軟體的參數設定 23 3.6 半電池裝置 25 3.7 全電池裝置 25 第四章 結果與討論 27 4.1 理論計算結果 28 4.1.1 塊材模型建立與計算 28 4.1.2 態密度分析 30 4.1.3 電荷密度差分析 36 4.2 實驗結果 38 4.2.1 半電池結果 38 4.2.2 全電池結果 41 4.2.3 2V單一模組實驗結果 49 第五章 結論 54 第六章 參考文獻 55

    1. Goodenough, J.B. and Y. Kim, Challenges for Rechargeable Batteries†.Chemistry of Materials, 2010. 22(3): p. 587-603.
    2. Kresse, G. and J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational materials science, 1996. 6(1): p. 15-50.
    3. Kresse, G. and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical review B, 1996. 54(16): p. 11169.
    4. Momma, K. and F. Izumi, VESTA: a three-dimensional visualization system for electronic and structural analysis. Journal of Applied Crystallography, 2008. 41(3): p. 653-658
    5. Yang, W. and P.W. Ayers, Density-functional theory, in Computational Medicinal Chemistry for Drug Discovery. 2003, CRC Press. p. 103-132.
    6. Kohn, W., Nobel Lecture: Electronic structure of matter—wave functions and density functionals. Reviews of Modern Physics, 1999. 71(5): p. 1253.
    7. Hohenberg, P. and W. Kohn, Inhomogeneous electron gas. Physical review, 1964.
    136(3B): p. B864.
    8. Kohn, W. and L.J. Sham, Self-consistent equations including exchange and correlation effects. Physical review, 1965. 140(4A): p. A1133.
    9. Oliveira, A.F., et al., Density-functional based tight-binding: an approximate DFT method. Journal of the Brazilian Chemical Society, 2009. 20(7): p. 1193-1205.
    10. Becke, A.D., Density-functional exchange-energy approximation with correct asymptotic behavior. Physical review A, 1988. 38(6): p. 3098.
    11. Ceperley, D.M. and B. Alder, Ground state of the electron gas by a stochastic method. Physical Review Letters, 1980. 45(7): p. 566.
    12. Lee, I.-H. and R.M. Martin, Applications of the generalized-gradient approximation to atoms, clusters, and solids. Physical Review B, 1997. 56(12): p. 7197.
    13. Perdew, J.P. and W. Yue, Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation. Physical review B, 1986. 33(12): p. 8800.
    14. Jain, A., et al., Formation enthalpies by mixing GGA and GGA+ U calculations.
    Physical Review B, 2011. 84(4): p. 045115.
    15. Zhou, F., et al., First-principles prediction of redox potentials in transition-metal compounds with LDA+ U. Physical Review B, 2004. 70(23): p. 235121.
    16. Wang, L., T. Maxisch, and G. Ceder, Oxidation energies of transition metal oxides within the GGA+ U framework. Physical Review B, 2006. 73(19): p. 195107.
    17. Schwerdtfeger, P., The pseudopotential approximation in electronic structure theory. ChemPhysChem, 2011. 12(17): p. 3143-3155.
    18.
    19. Oliveira, A.F., et al., Density-functional based tight-binding: an approximate DFT method. Journal of the Brazilian Chemical Society, 2009. 20(7): p. 1193-1205.
    20. Becke, A.D., Density-functional exchange-energy approximation with correct asymptotic behavior. Physical review A, 1988. 38(6): p. 3098.
    21. Ceperley, D.M. and B. Alder, Ground state of the electron gas by a stochastic method. Physical Review Letters, 1980. 45(7): p. 566.
    22. Lee, I.-H. and R.M. Martin, Applications of the generalized-gradient approximation to atoms, clusters, and solids. Physical Review B, 1997. 56(12): p. 7197.
    23. Perdew, J.P. and W. Yue, Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation. Physical review B, 1986. 33(12): p. 8800.
    24. Jain, A., et al., Formation enthalpies by mixing GGA and GGA+ U calculations.
    Physical Review B, 2011. 84(4): p. 045115.
    25. Zhou, F., et al., First-principles prediction of redox potentials in transition-metal compounds with LDA+ U. Physical Review B, 2004. 70(23): p. 235121.
    26. Wang, L., T. Maxisch, and G. Ceder, Oxidation energies of transition metal oxides within the GGA+ U framework. Physical Review B, 2006. 73(19): p. 195107.
    27. Schwerdtfeger, P., The pseudopotential approximation in electronic structure theory. ChemPhysChem, 2011. 12(17): p. 3143-3155.
    28. J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple. Physical review letters, 1996. 77(18): p. 3865.
    29. M. Ménétrier, D. Carlier, M. Blangero, and C. Delmas, On “really Yang, W. and P.W. Ayers, Density-functional theory, in Computational Medicinal Chemistry for Drug Discovery. 2003, CRC Press. p. 103-132.
    30. Kohn, W., Nobel Lecture: Electronic structure of matter—wave functions and density functionals. Reviews of Modern Physics, 1999. 71(5): p. 1253.
    31. Hohenberg, P. and W. Kohn, Inhomogeneous electron gas. Physical review, 1964.
    136(3B): p. B864.
    32. Kohn, W. and L.J. Sham, Self-consistent equations including exchange and correlation effects. Physical review, 1965. 140(4A): p. A1133.
    33. Oliveira, A.F., et al., Density-functional based tight-binding: an approximate DFT method. Journal of the Brazilian Chemical Society, 2009. 20(7): p. 1193-1205.
    34. Becke, A.D., Density-functional exchange-energy approximation with correct asymptotic behavior. Physical review A, 1988. 38(6): p. 3098.
    35. Ceperley, D.M. and B. Alder, Ground state of the electron gas by a stochastic method. Physical Review Letters, 1980. 45(7): p. 566.
    36. Lee, I.-H. and R.M. Martin, Applications of the generalized-gradient approximation to atoms, clusters, and solids. Physical Review B, 1997. 56(12): p. 7197.
    37. Perdew, J.P. and W. Yue, Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation. Physical review B, 1986. 33(12): p. 8800.
    38. Jain, A., et al., Formation enthalpies by mixing GGA and GGA+ U calculations.Physical Review B, 2011. 84(4): p. 045115.
    39. Zhou, F., et al., First-principles prediction of redox potentials in transition-metal compounds with LDA+ U. Physical Review B, 2004. 70(23): p. 235121.
    40. Wang, L., T. Maxisch, and G. Ceder, Oxidation energies of transition metal oxides within the GGA+ U framework. Physical Review B, 2006. 73(19): p. 195107.
    41. Schwerdtfeger, P., The pseudopotential approximation in electronic structure theory. ChemPhysChem, 2011. 12(17): p. 3143-3155.
    42. Hohenberg, P. and W. Kohn, Inhomogeneous electron gas. Physical review, 1964.

    無法下載圖示 校內:2024-08-15公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE