| 研究生: |
許志宇 Hsu, Chih-Yu |
|---|---|
| 論文名稱: |
苗栗出磺坑背斜晚中新世至早上新世地層破裂面特性研究及二氧化碳封存之應用 A study of fracture characteristics on the Upper Miocene to Lower Pliocene strata of the Chuhuangkeng Anticline and its application to CO2 sequestration |
| 指導教授: |
林慶偉
Lin, Ching-Weei |
| 共同指導教授: |
魏聲焜
Wey, Sheng-Kuen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 地球科學系 Department of Earth Sciences |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 100 |
| 中文關鍵詞: | 出磺坑背斜 、鐵砧山背斜 、褶皺相關破裂 、二氧化碳地質封存 |
| 外文關鍵詞: | Chuhuangkeng Anticline, Tiehchanshan Anticline, fold-related fracture, CO2 sequestration |
| 相關次數: | 點閱:66 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
本研究目的在於了解出磺坑背斜中褶皺相關破裂的型式。由野外調查結果,建立破裂面與區域構造間的相關性,提供未來於鐵砧山背斜進行二氧化碳地質封存時的模擬資料。
依據野外的觀察,錦水頁岩破裂面長度小於1公尺,裂縫開口寬度介於0.1-0.25mm,在岩層中幾乎不存在有滲水情形。在桂竹林層中,破裂面長度介於3-10公尺,裂縫開口寬度介於0.25-2.5mm,在岩層中常見有滲水情形存在。由地層與破裂面之間位態的關係,破裂面多屬於褶皺構造之破裂面,依據Stearns 對於褶皺相關破裂面的分類,應屬於type A形的破裂面為主。
在構造地層學的範疇中,破裂面密度會受到岩層厚度以及構造位置所影響。在桂竹林層中,破裂面密度隨著岩層厚度增加而遞減。在距離出磺坑背斜軸1500公尺的距離,破裂面密度也會逐漸遞減。將本研究於出磺坑背斜所得知結果應用至鄰近的鐵砧山背斜中,出磺坑背斜翼部所量得之破裂面密度可以做為鐵砧山背斜的背景值,而在鐵砧山背斜接近軸部的破裂面密度則應會有較高的數值。
Abstract
The main purpose of this study is to understand the fold-related fractures in the Chuhuangkeng Anticline. Based on the field observation, the genetic relation between the occurrence of fracture and the regional structures is established. The study results will be used in the simulation of CO2 sequestration in the Tiehchanshan Anticline in near future. Based on field observation, fractures with length less than 1 m and opening space 0.1-0.25 mm can be seen in the Chinshui Shale, but no seepage can be found in most of them. In the Kueichulin Formation, fractures with a length 3-10 m and opening space 0.25-2.5 mm are commonly observed. Additionally, seepage along fractures is also commonly seen in the Kueichulin Formation. According to the orientation of bedding plane and fractures, most fractures we saw in the field are fold related, and they are mainly attributed to type A fractures followed Stearns’ classification.
For the structural stratigraphy study, the fracture densities are affected by the bedding thickness and the distance from location of structures. The fracture densities decrease gradually while bedding thickness increase in the Kueichulin Formation. Within 1500 meters counted from the axis of Chuhungkeng Anticline, the fracture density also decrease gradually. Applying the study results of the Chuhungkeng Anticline to the nearby Tiehchanshan Anticline, the fracture density at limbs on the Chuhuangkeng anticline can be treated as background data in the Tiehchanshan Anticline. However, fracture density is expected greater in area near by the fold axis of the Tiehchanshan Anticline.
參考文獻
英文部分
Bellahsen, N., Fiore, P. and Pollard, D. D. ( 2006), The role of fractures in the structural interpretation of Sheep Mountain Anticline, Wyoming. Journal of Structural Geology 28, 850–67.
Cooper, S., Goodwin, L., Lorenz, J. (2006), Fracture and fault patterns associated with basement-cored anticlines: The example of Teapot Dome, Wyoming, AAPG Bulletin, V. 90, No 12
Davids, G.H. (1984),Structural Geology of rock and regions. John Wiley and Sons InC. 492pp.
Dunn, D.E., LaFountain, L.J., and R.E. Jackson (1973), Porosity Dependence and Mechanism of Brittle Fracture in Sandstones, Journal Geop. Res., vol. 78, p. 2403.
Friedman, M. (1969), Structural analysis of fractures in cores from the Saticoy Field, Ventura Co., California. AAPG Bulletin 53, 367–389.
Gallagher, J.J., Friedman, M., Handing, J., Sowers, G.M., (1974), Experimental studies relating to microfracture in sandstone. Tectonophysics, 21: 203 247.
Griggs, D. T. and J. W. Handin. (1960),Observations on fracture and a hypothesis of earthquakes. GeoL. Soc. America Mem. 79: 347-364.
Gross, M. R., Fischer, M. P., Engelder, T. and Greenfield, R. J. (1995), Factors controlling joint spacing in interbedded sedimentary rocks: integrating numerical models with field observations from the Monterey Formation, USA. From Ameen, M. S. (ed.), 1995, Fractography: fracture topography as a tool in fracture mechanics and stress analysis. Geological Society Special Publication no. 92, 215-233
Handin, J., Hager, R.V., Jr., Friedman, M., and J.N. Feather, (1963) Experimental Deformation of Sedimentary Rocks Under Confining Pressure: Pore Pressure Tests, American Association of Petroleum Geology, Bulletin, vol. 47, no. 5, pp. 717–755.
Hodgson, R.A. (1961), Regional study of jointing in comb ridge-navajo mountain area, Arizona and Utah. Fracture-Controlled Production, AAPG Bull., v21, p79-116.
Hoshino, K. (1974), “Effect of Porosity on the Strength of the Clastic Sedimentary Rocks,” in Advances in Rock Mechanics, Proc. 3rd Int. Soc. Rock Mech., Denver, Colorado, vol. 11, Part A, pp. 511–516.
Huang, Q and Angelier, J. (1989), Fracture spacing and its relation to bed thickness. Geological Magazine 126, 355-62.
Hubbert, M. K. and Willis, D. G. (1955), Important Fractured Reservoirs in the United States: 45th World Pet. Cong. Proc., Sec. I/a-1, p. 58-81.
Hubbert, M.K., and Willis D.G. (1955), Important Fractured Reservoirs in the United States, 45th World Pet. Cong. Proc., Section I/A-1, pp. 58–81.
Lorenz, J. C. (1997), Natural fractures and in-situ stresses in the Teapot Dome: Proposal for development of an analog to Rocky Mountain anticlines: Wyoming Geological Association 48th Annual Field Conference Technical Abstracts, Casper, Wyoming, p. 5– 6.
Martin L E Guiton, William Sassi, Yves M Leroy, Bertrand D M Gauthier, (2003), Mechanical constraints on the chronology of fracture activation in folded Devonian sandstone of the western Moroccan Anti-Atlas .Journal of Structural Geology, vol. 25, issue 8, pp. 1317-1330
McQuillan, H. (1973), Small-Scale Fracture Density in Asmari Formation of Southwest Iran and Its Relation to Bed Thickness and Structural Setting, American Association of Petroleum Geology Bulletin, vol. 47, no. 12, pp. 2367–2385.
Mynatt I., S. Seyum, D. D. Pollard, (2009), Fracture initiation, development and reactivation in folded sedimentary rocks at Raplee Ridge, UT, Journal of Structural Geology
Narr, W. and Suppe, J. (1991), Joint spacing in sedimentary rocks. Journal of Structural Geology 13, 1037 1048.
Nelson, R.A. (2001), Geologic Analysis of Naturally Fractured Reservoirs, SECOND EDITION. Gulf Professional Publishing, U.S.A. 332 Pages.
Price, N.J. (1966), Fault and Joint Development in Brittle and Semi-Brittle Rock, Pergamon Press, London, 176 p.
Price, N.J., Cosgrove, J.W. (1990), Analysis of Geological Structures. Cambridge University Press, Cambridge. 502pp.
Ramez, M.R.H., and Mosalamy, F.H. (1969), “The Deformed Nature of Various Size Fractions of Some Clastic Sands,” Journal of Sedimentary Petrology, vol. 39, no. 3, pp. 1181–1197.
Stearns, D.W. (1968a), Fracture as a Mechanism of Flow in Naturally Deformed Layered Rock, in Kink Bands and Brittle Deformation, A.J. Baer and D.K. Norris, Eds., Geol. Surv. Can., Paper 68-52, pp. 79–95.
Stearns, D.W. (1968b), “Certain Aspects of Fracture in Naturally Deformed Rocks”, in NSF Advanced Science Seminar in Rock Mechanics, R. E. Rieker, Ed., Special Report, Air Force Cambridge Research Laboratories, Bedford, Massachusetts, AD 6693751, pp. 97–118.
Stearns, D.W. , Friedman, M. (1972), Reservoirs in fractured rocks. American Association of Petroleum Geologists Memoir 16, 82–100.
Underwood, C.A., M.L. Cooke, J.A. Simo, and M.A. Muldoon, (2003). Stratigraphic controls on vertical fracture patterns in Silurian dolomite, Northeastern Wisconsin. Bulletin of the American Association of Petroleum Geologists 87, no. 1: 121–142.
Wennberg, O.P., Azizzadeh, M., Aqrawi, A.A.M., Blanc, E., Brockbank, P., Lyslo, K.B., Pickard, N., Salem, L.D., and Svånå, T. (2007), The Khaviz Anticline: an outcrop analogue to giant fractured Asmari Formation reservoirs in SW Iran. In: Lonergan, L., Jolly, J.H., Rawnsley, K., and Sanderson, D.J., Fractured reservoirs. Geological Society, London, Special Publications, 270, 23-4
Wu, H. and Pollard, D. D. (1995), An experimenta1 study of the re1ationship between joint spacing and layer thickness. Journal of Structural Geology 17, 887-905.
中文部分
十萬分之一苗栗區地質圖 (1994),中國石油股份有限公司台灣油礦探勘總處。
內政部(2000):中華民國臺灣地區二萬五千分之一地形圖,經建第三版。苗栗市、南庄、大湖、虎山圖幅。
毛爾威、楊健一、張渝龍(1983),三義斷層上下盤地塊儲油氣可能性之研究:中國石油股份有限公司台灣油礦探勘總處專題研究報告(未刊報告)。
安藤昌三郎(1930),台灣苗栗油田之地質及構造:地質學雜誌,第37卷,第447期,第799-803頁
何信昌(1994) ,五萬分之一台灣地質圖幅「苗栗圖幅」及說明書:經濟部中央地質調查所,圖幅第12號,第9-44頁。
何春蓀(1997),台灣地質概論-台灣地質圖說明書。經濟部中央地質調查所,第二版,第95-96頁。
李錦發(2000),五萬分之一台灣地質圖幅「東勢圖幅」及說明書:經濟部中央地質調查所,圖幅第18號。
周瑞墩、黃集宗(1959),台灣苗栗出磺坑煤田地質:經濟部煤礦探勘處報告,第3-13頁。
林昶成(2010),台灣西北部內麓山帶構造轉移帶之變形作用分析:國立成功大學地球科學研究所碩士論文,118頁。
林朝棨(1935),台中豐原地方第三紀即第四紀地層之研究:台北帝國大學理農學部紀要,第13卷,第三期,第13-30頁。
林朝棨(1954),台灣之地質:台灣新誌,中國文化事業出版委員會。
林殿順、陳洲生、董家鈞(2008)台灣西南部沈積岩層資料蒐集分析。工業技術研究院二氧化碳再利用技術及地質封存潛能評估計畫期末報告,共 82 頁。
邱華燈、徐兆祥(1963)苗栗縣錦水背斜地下地質。台灣石油地質,第2號,第253-269頁。
洪日豪(1984),苗栗出磺坑背斜變形機制之研究。國立台灣大學地質學研究所碩士論文。
洪日豪(2008),台灣鐵砧山地區儲集層裂隙資料整合評估,行政院國家科學委員會/經濟部能源局「能源科技學術合作研究計畫」成果報告。
洪如江(1995),初等工程地質學大綱,財團法人地工技術研究發展基金會,第52-70頁。
洪奕星(1988),台灣西北部麓山帶中心統至下部上新統岩相和生痕化石相分析以及沉積環境。國立台灣大學地質研究所博士論文,114頁。
紀文榮(1981a),超微化石,中油公司探採研究中心,第407頁。
紀文榮(1981b),高雄區新第三紀地層之超微體化石生物地層研究,探採研究彙報,第四期,第1-26頁。
紀文榮(1982),嘉義、新營麓山帶地區新第三系之生物地層與對比:中油探採研究彙報,第5期。
郝騤(1956),錦水氣田地下地質之研究及其與出磺坑構造西翼地層剖面之對比。臺灣石油地質討論會論文專輯,第85-110頁。
郝騤、蕭寶宗(1957),苗栗通霄背鈄構造之地質研究。中國石油公司成立十週年紀念論文集,第128-139頁。
張憲卿(1990),五萬分之一台灣地質圖幅「白沙屯圖幅」及說明書:經濟部中央地質調查所,圖幅第11號,共29頁。
張憲卿(1994),五萬分之一台灣地質圖幅「大甲圖幅」及說明書:經濟部中央地質調查所,圖幅第17號,共63頁。
張麗旭 (1959),台灣西部中新世地層之基於小型有孔蟲之生物地層學研究(其一:浮游性有孔蟲)。中國地質學會會刊,第二號,第41-42頁。
張麗旭(1951),「三叉衝上斷層」及其附近之地質構造。台灣省地質調查所彙刊,第三號,第23-33頁。
張麗旭(1955),台灣之地層。台灣銀行季刊,第七卷,第二期,第26-49頁。
張麗旭、何春蓀(1948),台中縣之大安背斜。地質評論,第十三卷,第1-2期。
鳥居敬造( 1935 ),東勢地質幅及說明書。臺灣總督府殖產局,第732號,共26頁。
鳥居敬造、吉田要(1931),新竹苗栗及竹東油田調查報告。臺北:臺灣總督府殖產局。
楊耿明、黃旭燦、吳榮章、丁信修、李長之、梅文威、徐祥宏(2003),斷層活性觀測與地震潛勢評估-台灣陸上斷層帶地質構造與地殼變形調查研究(4/5)-台灣中部麓山帶地區,經濟部中央地質調查所報告第92-11號,第12-16頁。
楊健男(2010), 二氧化碳地質封存潛能評估與封存場址選擇:以桃園台地為例,國立中央大學地球物理研究所碩士論文。
鍾開增(1996),苗栗地區麓山帶之地質構造:國立中央大學應用地質研究所碩士論文,108頁。
鍾開增,張渝龍等(1982),苗栗出磺坑構造北端地質查核報告:中油公司台探總處(未刊報告)。
魏聲焜(1994),苗栗地區上新世至中新世地層之構造地層學研究,國立成功大學地球科學研究所碩士論文。