| 研究生: |
張宇志 Chang, Yu-Chih |
|---|---|
| 論文名稱: |
具有奈米球結構之氮化鎵系發光二極體之研製 Fabrication of GaN-Based Light Emitting Diodes with Nanosphere Structures |
| 指導教授: |
劉文超
Liu, Wen-Chau |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 109 |
| 中文關鍵詞: | 發光二極體 、奈米球 、圖形化藍寶石基板 、反射鏡 |
| 外文關鍵詞: | light emitting diodes, nanospheres, pattern sapphire substrate, reflector |
| 相關次數: | 點閱:107 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文中,為了改善氮化鎵(GaN)系發光二極體(light-emitting diodes, LEDs)之光萃取效率(light extraction efficiency)及內部量子效率(internal quantum efficiency, IQE),我們有效地運用具有自組裝(self-assemble)特性的二氧化矽奈米球,並分別提出了三種改善方法及元件製程,縝密地進行材料分析與元件量測,深入討論其光電特性與磊晶品質之改善結果。
為了有效改善高功率發光二極體之光萃取效率,我們提出利用內嵌一二氧化矽奈米球單層結構來形成三維光子晶體背鍍反射鏡結構,首先將具自組裝偽六角緊密堆積(pseudo-hexagonal close packing)陣列之奈米球單層結構塗佈至藍寶石基板背面,並背鍍分佈式布拉格反射鏡(distributed Bragg reflector, DBR)及鋁金屬反射鏡(aluminum metal mirror),利用奈米球之圓球外形使得背鍍反射鏡形成三維結構,改變反射光之光路徑降低內部全反射(total internal reflection, TIR);除此之外,由於奈米球單層結構於球與球之間會形成空隙,會導致似光子晶體(photonic crystal)的空氣孔洞(air voids)陣列的產生,因此元件內部之光散射(light scattering)效應可有效地提升,令光子有更多的機會由逃脫角錐散射至元件外,進而大幅地改善光萃取效率。相較於不具有背鍍反射鏡的傳統LED,此三維光子晶體背鍍反射鏡結構在350 mA的操作電流下,不但使光輸出功率增加了136%,而且相對於僅背鍍混和反射鏡 (DBR + Al mirror),其光輸出功率亦增加了23.6%,而且由於此結構製作於元件之背面而不在電流路徑上,更具有不影響元件電性特性之優點。
不過由於二氧化矽奈米球結構於藍寶石基板的背面僅以凡德瓦力(Van der Waals forces)附著,因此附著力不佳易導致背鍍反射鏡脫落,故本論文中亦研究改以二氧化矽奈米球當作蝕刻遮罩,利用感應耦合電漿(inductively coupled plasma, ICP)進行乾性蝕刻達到圖形轉印之效果,形成具偽六角緊密堆積凸半球陣列之圖騰於藍寶石基板之背面,並背鍍分佈式布拉格及鋁金屬反射鏡,形成三維背鍍反射鏡結構以達到增加散射效應,並改善二氧化矽奈米球附著力不佳的問題。由於此結構係利用乾蝕刻方式轉印奈米球之凸半球陣列圖形,故不具有似光子晶體空氣孔洞陣列於結構中。相較於不具有背鍍反射鏡的傳統LED,在350 mA的操作電流下,其之光輸出功率之改善仍高達116%,而且相對於僅背鍍混和反射鏡 (DBR + Al mirror),其光輸出功率亦增加了14.1%,且有效增加三維背鍍反射鏡結構製程良率。
此外,由於氮化鎵與藍寶石基板間晶格不匹配(lattice mismatch)與相差過大的熱膨脹係數(thermal expansion coefficient),導致在磊晶成長過程中會有大量地線差排(threading dislocation)產生,在此論文的最後我們研究利用具有自組裝偽六角緊密堆積陣列的奈米球單層結構來製作奈米級圖形化基板並將其應用至氮化鎵發光二極體中。與此部分我們先利用乾蝕刻的方式成功地將二氧化矽奈米球單層結構轉印至藍寶石基板上形成具偽六角緊密堆積奈米級凸半球陣列之圖形化藍寶石基板(nanosphere-pattern sapphire substrate),此奈米級圖形化基板可有效地降低氮化鎵磊晶層中的線差排密度,大幅提升磊晶品質,減少非輻射復合(nonradiative recombination)熱消耗,進而改善發光二極體的發光效率。在20 mA的操作電流下其輸出功率有高達31.4%之提升,且順向導通電壓與逆向漏電流皆較小,其可能是因為磊晶品質可藉由此奈米級凸半球陣列之圖形化藍寶石基板大幅改善。
In order to improve light extraction efficiency (LEE) and internal quantum efficiency (IQE) of GaN-based light-emitting diodes (LEDs), the self-assembled SiO2 nanosphere monolayer structure is introduced and studied. Three new nanosphere monolayer-related approaches are proposed in this thesis. The optical and electrical properties as well as related material analyses were also studied and discussed.
An interesting approach to improve light extraction efficiency of high power GaN-based LEDs by the use of a three dimensional-photonic crystal (3D-PhC) backside reflector is studied. A 3D-PhC backside reflector is formed by coating a self-assembled SiO2 nanosphere monolayer between the hybrid reflector and backside of sapphire substrate. Firstly, a self-assembled pseudo-hexagonal close packing SiO2 nanosphere monolayer was coated on the backside of sapphire substrate. Then, a distributed Bragg reflector (DBR) and an aluminum (Al) metal mirror were deposited subsequently. By inserting SiO2 nanospheres, hemispherical patterns could be transferred to the deposited reflector. Hence, photons could be redirected into arbitrary angles for light extraction by the transferred concave surface. Total internal reflection (TIR) could be limited. In addition, due to the presence of gap between SiO2 nanospheres, the PhC-like air void arrangement is formed after the deposition of backside reflector. Hence, light scattering effect could be effectively improved. This certainly gives photons more opportunities to find the escape cones. As compared with a conventional LED (without backside reflector), at 350 mA, the studied device exhibits 136% enhancement in light output power without the degradation of electrical properties. Notably, the studied device exhibits 23.6% enhancement in light output power as compared with the LED with a planar hybrid (a DBR + an Al metal mirror) backside reflector.
In chapter 3, since SiO2 nanospheres are pulled and adhered on the backside of sapphire substrate by Van der Waals forces, the adhesion between SiO2 nanospheres and sapphire substrate is poor. Hence, in order to alleviate this problem, a new approach to form a 3D backside reflector by using SiO2 nanspheres as a hard mask and inductively coupled plasma (ICP) dry etching process to transfer pseudo-hexagonal close packing hemispherical arrangement patterns on the backside of sapphire substrate. Then, a DBR and an Al metal mirror were deposited subsequently, as mentioned above. Due to the hemispherical arrangement patterns on the backside of sapphire substrate, hemispherical patterns could be transferred to the deposited reflector. Hence, photons could be redirected into arbitrary angles for light extraction by the transferred concave surface. However, since hemispherical patterns structure was formed by ICP process, the PhC-like air void arrangement was not present. As compared with a conventional LED (without backside reflector), at 350 mA, the studied device still exhibits 116% enhancement in light output power. Notably, the studied device exhibits 14.1% enhancement in light output power as compared with the LED with a planar hybrid (a DBR + an Al metal mirror) backside reflector. Moreover, the product yield could also be improved, due to the enhanced adhesion between backside reflector and sapphire substrate
In addition, due to the large difference in lattice mismatch and thermal expansion coefficient between GaN and sapphire, many threading dislocations (TDs) on GaN epitaxial layers would be induced. For this reason, the employment of nanospheres-pattern sapphire substrate (NS-PSS) is studied in this work. This NS-PSS is successfully fabricated by using SiO2 nanspheres as the hard mask and inductively coupled plasma (ICP) dry etching process to transfer hemispherical patterns, which exhibits pseudo-hexagonal close packing arrangement, on the sapphire substrate. The use of NS-PSS could effectively decrease threading dislocation density, which reduces undesirable nonradiative recombinations, and enhance light output power. As compared with a conventional LED, at 20 mA, the studied device exhibits 31.4% enhancement in light output power. And forward voltage and leakage current could also be reduced. These results could be attributed to that the crystalline quality of GaN epitaxial layer is effectively improved by using a NS-PSS.
Reference
1. R. Huang, H. Dong, D. Wang, K. Chen, H. Ding, X. Wang, W. Li, J. Xu, and Z. Ma, “Role of barrier layers in electroluminescence from SiN-based multilayer light-emitting devices,” Appl. Phys. Lett., vol. 92, pp. 181106, 2008.
2. K. N. Bourdakos, D. M. N. M. Dissanayake, T. Lutz, S. R. P. Silva, and R. J. Curry, “Highly efficient near-infrared hybrid organic-inorganic nanocrystal electroluminescence device,” Appl. Phys. Lett., vol. 92, pp. 153311, 2008.
3. E. H. Park, I. T. Ferguson, S. K. Jeon, J. S. Park, and T. K. Yoo, “The effect of silicon doping in the selected barrier on the electroluminescence of InGaN/GaN multiquantum well light emitting diode,” Appl. Phys. Lett., vol. 90, pp. 031102, 2007.
4. C. F. Huang, C. Y. Chen, C. F. Lu, and C. C. Yang, “Reduced injection current induced blueshift in an InGaN/GaN quantum-well light-emitting diode of prestrained growth,” Appl. Phys. Lett., vol. 91, pp. 051121, 2007.
5. M. S. Ferdous, X. Wang, M. N. Fairchild, and S. D. Hersee, “Effect of threading defects on InGaN/GaN multiple quantum well light emitting diodes,” Appl. Phys. Lett., vol. 91, pp. 231107, 2007.
6. H. P. Maruska and J.J. Tietjen, “The preparation and properties of vapor-deposited single-crystal-line GaN,” Appl. Phys. Lett., vol. 15, pp. 327, 1969.
7. J. I. Pankov, E.A. Miller, D. Richman, and J.E. Berkeyheiser“Electroluminescence in GaN, ”Journal of Luminescence, vol. 4, pp. 63-66, 1971.
8. H. P. Maruska, D.A. Stevenson, and J. I. Pankov, “Violet luminescence of Mg-doped GaN,” Appl. Phys. Lett., vol. 22, pp.1003-1006, 1973.
9. H. Amano, M. Kito, K. Hiramatsu, and I. Akasaki, “Effect of the structure of a photoactive compound on the dissolution inhibition effect,” Jpn. J. Appl. Phys., vol. 28, pp. L2112, 1989.
10. S. Nakamura, M. Kito, K. Hiramatsu, and I.Akasaki, “Reducing reverse-bias current in 450°C-annealed n+p junction by hydrogen radical sintering,” Jan. J. Appl. Phys., vol. 34, pp. L797, 1995.
11. E. J. Hong, K. J. Byeon, H. Park, J. Hwang, H. Lee, K. Choi, and G. Y. Jung, “Fabrication of moth-eye structure on p-GaN layer of GaN-based LEDs for improvement of light extraction,” Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater., vol. 163, pp. 170-173, 2009.
12. T. Lei, K. F. Ludwig, and T. D. Moustakas, “Heteroepitaxy, polymor-phism, and faulting in gain thin-films on silicon and sapphire substrates,” J. Appl. Phys., vol. 74, no. 7, pp. 4430–4437, 1993.
13. C. P. Kuo, R. M. Fletcher, T. D. Osentowski, M. C. Lardizabal, M. G. Craford, and V. M. Robbins, “High performance AlGaInP visible light-emitting diodes,” Appl. Phys. Lett., vol. 75, no. 27, pp. 2937–2939, 1990.
14. I. Ju, Y. Kwon, C. S. Shin, K. H. Kim, S. J. Bae, D. H. Kim, J. Choi, and C. G. Ko, “High power GaN-based light-emitting diodes using thermally stable and highly reflective nano-scaled Ni-Ag-Ni-Au mirror,” IEEE Photonics Technol. Lett., vol. 23, pp. 1685-1687, 2011.
15. S. Y. Huang, R. H. Horng, P. L. Liu, J. Y. Wu, H. W. Wu, and D. S. Wuu, “Thermal stability improvement of vertical conducting green resonant-cavity light-emitting diodes on copper substrates,” IEEE Photonics Technol. Lett., vol. 20, pp. 797-799. 2008.
16. C. S. Chang, S. J. Chang, Y. K. Su, W. S. Chen, C. F. Shen, S. C. Shei, and H. M. Lo, “Nitride based power chip with indium-tin-oxide p-contact and Al back-side reflector,” Jpn. J. Appl. Phys., vol. 44, pp. 2462-2464, 2005.
17. R. H. Horng, J. S Hong, Y. L. Tsai, D. S. Wuu, C. M. Chen, and C. J. Chen, “Optimized thermal management from a chip to a heat sink for high-power GaN-based light-emitting diodes,” IEEE Trans. Electron Devices, vol. 57, pp. 2203-2207, SEP. 2010.
18. W. S. Wong, M. Kneissl, P. Mei, D. W. Treat, M. Treep, and N. M. Johnson,“Continuous-wave InGaN multiple-quantum-well laser diodes on copper substrates,” Appl. Phys. Let.t, vol. 78, pp. 1198–1201, 2001.
19. R. H. Horng, A. L. Hu, R. C. Lin, K. C. Peng, and Y. C. Chiang, “Thermal behavior of sapphire-based InGaN light-emitting diodes with cap-shaped copper-diamond substrates,” Electrochem. Solid State Lett., vol. 14, pp. H215-H217, 2011.
20. R. H. Horng, H. Y. Hsiao, C. C. Chiang, D. S. Wuu, Y. L Tsai, and H. I. Lin, “Novel device design for high-power InGaN/sapphire LEDs using copper heat spreader with reflector,” IEEE J. Sel. Top. Quantum Electron., vol. 15, pp.1281-1286, 2009.
21. W. S. Wong, T. Sands, and N. W. Cheung, “Damage-free separation of GaN thin films from sapphire substrates,” Appl. Phys. Lett., vol. 72, pp. 599–602, 1998.
22. V. Kitaev and G. A. Ozin, “Self-assembled surface patterns of binary colloidal crystals,” Adv. Mater., vol. 15, pp. 75-+. 2003.
23. A. K. Srivastava, S. Madhavi, T. J. White, and R. V. Ramanijan, “Template assisted assembly of cobalt nanobowl arrays,” J. Mater. Chem., vol. 15, pp. 4424-4428, 2005.
24. Y. Wang, S. B. Han, A. L. Briseno, R. J. G. Sanedrin, and F. M. Zhou, “A modified nanosphere lithography for the fabrication of aminosilane/polystyrene nanoring arrays and the subsequent attachment of gold or DNA-capped gold nanoparticles,” J. Mater. Chem., vol. 15, pp. 3488-3494. 2004.
25. B. G. Prevo, E. W. Hon, and O. D. Velev, “Assembly and characterization of colloid-based antireflective coatings on multicrystalline silicon solar cells,” J. Mater. Chem., vol. 17, pp. 791-799. 2007.
26. P. Jiang and M. J. McFarland, “Wafer-scale periodic nanohole arrays templated from two-dimensional nonclose-packed colloidal crystals,” J. Am. Chem. Soc., vol. 127, pp. 3710-3711, 2005.
27. J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, T. R. Jensen, and R. P. Van Duyne, “Nanosphere lithography: Size-tunable silver nanoparticle and surface cluster arrays,” J. Phys. Chem. B, vol. 103, pp. 3854-3863, 1999.
28. H. B. Zeng, X. J. Xu, Y. Bando, U. K. Gautam, T. Y. Zhai, X. S. Fang, B. D. Liu, and D. Golberg, “Template deformation-tailored ZnO Nanorod/nanowire arrays: full growth control and optimization of field-emission,” Adv. Funct. Mater., vol. 19, pp. 3165-3172, 2009.
29. Y. N. Xia, B. Gates, Y. D. Yin, and Y. Lu, “Monodispersed colloidal spheres: Old materials with new applications,” Adv. Mater., vol. 12, pp. 693-713, 2000.
30. P. Jiang, J. F. Bertone, K. S. Hwang, and V. L. Colvin, “Single-crystal colloidal multilayers of controlled thickness,” Chem. Mat., vol. 11, pp. 2132- 2140, 1999.
31. Z. Z. Gu, A. Fujishima, and O. Sato, “Fabrication of high-quality opal films with controllable thickness,” Chem. Mat., vol. 14, pp. 760-765, 2002.
32. D. Y. Wang and H. Mohwald, “Rapid fabrication of binary colloidal crystals by stepwise spin-coating,” Adv. Mater., vol. 16, pp. 244-+, 2004.
33. F. Garcia-Santamaria, H. T. Miyazaki, A. Urquia, M. Ibisate, M. Belmonte, N. Shinya, F. Mesegure, and C. Lopez, “Nanorobotic manipulation of microspheres for on-chip diamond architectures,” Adv. Mater., vol. 14, pp. 1144-1147, 2002.
34. W. Kandulski, A. Kosiorek, M. Olek, and M. Giersig, “A new method for production of nanoscale structures for possible applications in security,” Int. J. Nanotechnol., vol. 4, pp. 226-232, 2007.
35. A. Valsesia, T. Meziani, F. Bretagnol, P. Colpo, G. Ceccone, and F. Rossi, “Plasma assisted production of chemical nano-patterns by nano-sphere lithography: application to bio-interfaces,” J. Phys. D-Appl. Phys, vol.40, pp. 2341-2347. 2007.
36. Z. P. Huang, H. Fang, and J. Zhu, “Fabrication of silicon nanowire arrays with controlled diameter, length, and density,” Adv. Mater., vol. 19. pp. 744-+, 2007.
37. K. H. Park, S. Lee, K. H. Koh, R. Lacerda, K. B. K. Teo, and W. I. Milne, “Advanced nanosphere lithography for the areal-density variation of periodic arrays of vertically aligned carbon nanofibers,” J. Appl. Phys., vol. 97, pp. 024311, JAN. 2005.
38. S. V. Kesapragada and D. Gall, “Two-component nanopillar arrays grown by Glancing Angle Deposition,” Thin Solid Films, vol. 494, pp. 234-239, 2006.
39. L. Li and N. Koshizaki, “Vertically aligned and ordered hematite hierarchical columnar arrays for applications in field-emission, superhydrophilicity, and photocatalysis,” J. Mater. Chem., vol. 20, pp. 2972-2978, 2010.
40. A. Wolfsteller, N. Geyer, T. K. Nguyen-Du, P. Das Anungo, N. D. Zakharov, M. Reiche, W. Erfurth, H. Blumtritt, P. Werner, and U. Gosele, “Comparison of the top-down and bottom-up approach to fabricate nanowire-based Silicon/Germanium heterostructures,” Thin Solid Films, vol. 518. pp. 2555-2561, 2010.
41. L. Li, T. Y. Zhai, H. B. Zeng, X. S. Fang, Y. Bando, and D. Golberg, “Polystyrene sphere-assisted one-dimensional nanostructure arrays: synthesis and applications,” J. Mater. Chem., vol. 21, pp. 40-56, 2011.
42. Y. L. Chou, R. M. Lin, M. H. Tung, C. L. Tsai, J. C. Li, I. C. Kuo, and M. C. Wu, “Improvement of surface emission for GaN-based light-emitting diodes with a metal-via-hole structure embedded in a reflector,” IEEE Photonics Technol. Lett., vol. 23, pp. 393-395, 2011.
43. E. J. Koerperick, J. T. Olesberg, J. L. Hicks, J. P. Prineas, and T. F. Boggess, “High power MWIR cascaded InAs-GaSb superlattice LEDs,” IEEE J. Quantum Electron., vol. 45, pp. 849-853, 2009.
44. W. C. Lee, S. J. Wang, K. M. Uang, T. M. Chen, D. M. Kuo, P. R. Wang, and P. H. Wang, “Enhanced light output of vertical-structured GaN-based light-emitting diodes with TiO2/SiO2 reflector and roughened GaOx surface Film,” Jpn. J. Appl. Phys., vol. 50, pp. 04DG06, 2011.
45. J. K. Liou, Y. J. Liu, C. C. Chen, P. C. Chou, W. C. Hsu, and W. C. Liu, “On a GaN-Based light-emitting diode with an aluminum metal mirror deposited on naturally-textured V-shaped pits grown on the p-GaN surface,” IEEE Electron Device Lett., vol. 33, pp. 227-229, 2012.
46. R. M. Lin, Y. C. Lu, Y. L. Chou, G. H. Chen, Y. H. Lin, and M. C. Wu, “Enhanced characteristics of blue InGaN/GaN light-emitting diodes by using selective activation to modulate the lateral current spreading length,” Appl. Phys. Lett., vol. 92, pp. 261105, 2008.
47. J, K. Kim, T. Gessmann, H. Luo, and E. F. Schubert, “GaInN light-emitting diodes with RuO2/SiO2/Ag omni-directional reflector,” Appl. Phys. Lett., vol. 84, pp. 4508-4510, 2004.
48. D. T. Chen and J. Han, “High reflectance membrane-based distributed Bragg reflectors for GaN photonics,” Appl. Phys. Lett., vol. 101, pp.221104, 2012.
49. T. Gessmann, E. F. Schubert, J. W. Graff, K. Streubel, and C. Karnutsch, “Omnidirectional reflective contacts for light-emitting diodes,” IEEE Electron Device Lett., vol. 24, pp. 683-685, 2003.
50. Y. S. Zhao, D. L. Hibbard, H. P. Lee, K. Ma, and H. Liu, “Efficiency enhancement of InGaN/GaN light-emitting diodes with a back-surface distributed Bragg reflector,” J. Electron. Mater., vol. 32, pp. 1523-1526, 2003.
51. S. J. Chang, C. F. Shen, M. H. Hsieh, C. T. Kuo, T. K. Ko, W. S. Chen, and S. C. Shei, “Nitride-based LEDs with a hybrid Al mirror +TiO2/SiO2 DBR backside reflector,” J. Lightwave Technol., vol. 26, pp. 3131-3136, 2008.
52. Q. Zhang, K. H. Li, and H. W. Choi, “InGaN light-emitting diodes with indium-tin-oxide sub-micron lenses patterned by nanosphere lithography,” Appl. Phys. Lett., vol. 100, pp. 061120, 2012,
53. K. M. Huang, H. J. Chang, C. L. Ho, and M. C. Wu, “Enhanced light extraction efficiency of GaN-based LEDs with 3-D colloidal-photonic-crystal bottom reflector,” IEEE Photonics Technol. Lett., vol. 24, pp. 1298-1300, 2012.
54. M. V. Maximov, E. M. Ramushina, V. I. Skopina, E. M. Tanklevskaya, V. A. Solov'ev, Y. M. Shernyakov, I. N. Kaiander, M. A. Kaliteevski, S. A. Gurevich, N. N. Ledentsov, V. M. Ustinov, Z. I. Alferov, C. M. S. Torres, and D. Bimberg, “Edge-emitting InGaAs/GaAs lasers with deeply etched semiconductor/air distributed Bragg reflector mirrors,” Semicond. Sci. Technol., vol. 17, pp. L69-L71, 2002.
55. O. M. Khreis, “Modeling interdiffusion in semiconductor distributed Bragg reflectors: An analytical approach,” Superlattices Microstruct., vol. 52, pp. 913-920, 2012.
56. F. Jarai-Szabo, Z. Neda, S. Astilean, C. Farcau, and A. Kuttesch, “Shake-induced order in nanosphere systems,” Eur. Phys. J. E, vol. 23, pp. 153-159, 2007.
57. R. Micheletto, H. Fukuda, and M. Ohtsu, “A simple method for the production of a 2-dimensional, ordered array of small latex-particles,” Langmuir, vol. 11, pp. 3333-3336, 1995.
58. Y. J. Liu, T. Y. Tsai, K. H. Yu, D. F. Guo, L. Y. Chen, T. H. Tsai, and W. C. Liu, “A low damage GaN-based light-emitting diode with textured/inclined sidewalls and an air-buffer layer,” Displays, vol. 31, pp. 111-114, 2010.
59. K. H. Baik. B. K. Min, J. Y. Kim, H. K. Kim, C. Sone, Y. Park, and H.Kim, “Light output enhancement of GaN-based flip-chip light-emitting diodes fabricated with SiO2/TiO2 distributed Bragg reflector coated on mesa sidewall,” J. Appl. Phys., vol. 108, pp. 063105, 2010.
60. M. N. Lin, S. C. Shei, and S. J. Chang, “Nitride-based LEDs with high-reflectance and wide-angle Ag mirror+SiO2/TiO2 DBR backside reflector,” J. Lightwave Technol., vol. 29, pp. 1033-1038, 2011.
61. L. C. Chen and H. C. Feng,”Improved performance of InGaN/GaN blue light-emitting diodes with a SiO2/TiO2 Bragg reflector,” Phys. Status Solidi A-Appl. Mat., vol. 202, pp. 2836-2839, 2005.
62. Y. P. Hsu, S. J. Chang, C. S. Chang, Y. K. Su, S. C. Shei, Y. C. Lin, C. H. Kuo, L. W. Wu, and S. C. Chen, “InGaN/GaN light-emitting diodes with a reflector at the backside of sapphire substrates,” J. Electron. Mater., vol. 32, pp. 403-406, 2003.
63. B. J. Kim, H. Jung, S. H. Kim, and J. Bang, “GaN-based light-emitting diode with three-dimensional silver reflectors,” IEEE Photonics Technol. Lett., vol. 21, pp. 700-702, 2009.
64. H. W. Huang, C. H. Lin, C. C. Yu, B. D. Lee, H. C. Kuo, K. M. Leung, and S. C. Wang, “Investigation of InGaN/GaN power chip light emitting diodes with TiO(2)/SiO(2) omnidirectional reflector,” Semicond. Sci. Technol., vol. 23, pp.125006, 2008.
65. Y. J. Park, H. Y. Kim, J. H. Ryu, H. K. Kim, J. H. Kang, N. Han, M. Han, H. Jeong, M. S. Jeong, and C. H. Hong, “Effect of embedded silica nanospheres on improving the performance of InGaN/GaN light-emitting diodes,” Opt. Express, vol. 19, pp. 2029-2036. 2011.
66. Y. J. Lee, C. J. Lee, and C. H. Chen, “Effect of surface texture and backside patterned reflector on the AlGaInP light-emitting diode: high extraction of waveguided light,” IEEE J. Quantum Electron, vol. 47, pp. 636-641. 2011.
67. Y. J. Liu, C. H. Yen, L. Y. Chen, T. H. Tsai, T. Y. Tsai, and W. C. Liu, “On a GaN-based light-emitting diode with a p-GaN/i-InGaN superlattice structure,” IEEE Electron Device Lett., vol. 30, pp. 1149-1151, 2009.
68. Y. J. Liu, C. C. Huang, T. Y. Chen, C. S. Hsu, T. Y. Tsai, and W. C. Liu, “On a GaN-based light-emitting diode with an indium-tin-oxide (ITO) direct-ohmic contact structure,” IEEE Photonics Technol. Lett., vol. 23, pp. 1037-1039, 2011.
69. Y. J. Liu, T. Y. Tsai, C. H. Yen, L. Y. Chen, T. H. Tsai, C. C. Huang, T. Y. Chen, C. H. Hsu, and W. C. Liu, “Performance investigation of GaN-based light-emitting diodes with tiny misorientation of sapphire substrates,” Opt. Express, vol. 18, pp. 2729-2742, 2010.
70. Y. J. Liu, C. C. Huang, T. Y. Chen, C. S. Hsu, S. Y. Chang, K. W. Lin, J. K. Liou, and W. C. Liu, “Improved performance of GaN-based light-emitting diodes by using short-period superlattice structures,” Prog. Nat. Sci., vol. 20, pp. 70-75, 2010.
71. T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Appl. Phys. Lett., vol. 84, pp. 855-857, 2004.
72. M. A. Mastro, R. T. Holm, and N. D. Bassim, C. R. Eddy, R. L. Henry, M. E. Twigg and A. Rosenberg, “Wurtzite III-nitride distributed Bragg reflectors on Si(100) substrates,” Appl. Phys. Lett., vol. 45, pp. L814-L816, 2006.
73. C. H. Yen, Y. J. Liu, K. H. Yu, P. L. Lin, T. P. Chen, L. Y. Chen, T. H. Tsai, N. Y. Huang, C. Y. Lee, and W. C. Liu, “On an AlGaInP-based light-emitting diode with an ITO direct ohmic contact structure,” IEEE Electron Device Lett., vol. 30, pp. 359-361, 2009.
74. J. K. Sheu, I. H. Hung, W. C. Lai, S. C. Shei, and M. L. Lee, “Enhancement in output power of blue gallium nitride-based light-emitting diodes with omnidirectional metal reflector under electrode pads,” Appl. Phys. Lett., vol. 93, pp. 103507, 2008.
75. H. J. Chen, H. Guo, P. Y. Zhang, X. Zhang, H. G. Liu, S. K. Wang, and Y. P. Cui, “Enhanced performance of GaN-based light-emitting diodes by using Al mirror and atomic layer deposition-TiO2/Al2O3 distributed bragg reflector backside reflector with patterned sapphire substrate,” Appl. Phys. Express, vol. 6, 2013.
76. Y. C. Chang, J. K. Liou, and W. C. Liu, “Improved light extraction efficiency of a high-power GaN-based light-emitting diode with a three-dimensional-photonic crystal (3-D-PhC) Backside Reflector,” IEEE Electron Device Lett., vol. 34, pp. 777-779, 2013.
77. H. W. Huang, H. C. Kuo, C. F. Lai, C. E. Lee, C. W. Chiu, T. C. Lu, S. C. Wang, C. H. Lin, and K. M. Leung, “High-performance GaN-based vertical-injection light-emitting diodes with TiO2-SiO2 omnidirectional reflector and n-GaN roughness,” IEEE Photonics Technol. Lett., vol. 19, pp. 565-567, 2007.
78. A. Di Carlo, “Tuning optical properties of GaN-based nanostructures by charge screening,” Phys. Status Solidi A-Appl. Mat., vol. 183, pp. 81-85, 2001.
79. Y. Arakawa, “Progress in GaN-based quantum dots for optoelectronics applications,” IEEE J. Sel. Top. Quantum Electron., vol. 8, pp. 823-832, 2002.
80. Y. J. Liu, C. H. Yen, C. H. Hsu, K. H. Yu, L. Y. Chen, T. H. Tsai, and W. C. Liu, “Impact of an indium oxide/indium-tin oxide mixed structure for GaN-based light-emitting diodes,” Opt. Rev., vol. 16, pp. 575-577, 2009.
81. H. W. Huang, C. C. Kao, J. I. Chu, S. C. Wang, and C. C. Yu, “Improvement of InGaN-GaN light-emitting diode performance with a nano-roughened p-GaN surface,” IEEE Photonics Technol. Lett., vol. 17, pp. 983-985, 2005.
82. Y. J. Liu, C. H. Yen, K. H. Yu, P. L. Lin, L. Y. Chang, T. H. Tsai, T. Y. Tsai, and W. C. Liu, “Characteristics of an AlGaInP-based light emitting diode with an indium-tin-oxide (ITO) direct ohmic contact structure,” IEEE J. Quantum Electron., vol. 46, pp. 246-252, 2010.
83. H. W. Huang, F. I. Lai, J. K. Huang, C. H. Lin, K. Y. Lee, C. F. Lin, C. C. Yu, and H. C. Kuo, “Enhancement of light output power of GaN-based light-emitting diodes using a SiO2 nano-scale structure on a p-GaN surface,” Semicond. Sci. Technol., vol. 25, pp. 065007, 2010.
84. Y. T. Hsu, C. C, Yu, K. F. Huang, W. H. Lan, J. E. Huang, J. C. Lin, and W. J. Lin, “Improved output power of Nitride-based light-emitting diodes with convex-patterned sapphire substrates,” IEEE Photonics Technol. Lett., vol. 24, pp.1686-1688, 2012.
85. Y. J. Liu, C. H. Yen, K. H. Yu, T. P. Chen, L. Y. Chen, T. H. Tsai, and W. C. Liu, “Characteristics of a low-damage GaN-based light-emitting diode using a KOH-treated wet-etching approach,” Jpn. J. Appl. Phys., vol. 48, pp. 082104, 2009.
86. Y. J. Liu, D. F. Guo, L. Y. Chen, T. H. Tsai, C. C. Huang, T. Y. Chen, C. H. Hsu, and W. C. Liu, “Investigation of the electrostatic discharge performance of GaN-Based light-emitting diodes with naturally textured p-GaN contact layers grown on miscut sapphire substrates,” IEEE Trans. Electron Devices, vol. 57, pp. 2155-2162, 2010.
87. R. H. Horng, Y. A. Lu, and D. S. Wuu, “Light extraction study on thin-film GaN light-emitting diodes with electrodes covering by wafer bonding and textured surfaces,” IEEE Trans. Electron Devices, vol. 57. pp. 2651-2654, 2010.
88. C. C. Wang, H. C. Lu, C. C. Liu, F. L. Jenq, Y. H. Wang, and M. P. Houng, “Improved extraction efficiency of light-emitting diodes by modifying surface roughness with anodic aluminum oxide film”, IEEE Photonics Technol. Lett., vol. 20, pp. 428-430, 2008.
89. C. S. Li, S. H. Su, H. Y. Chi, and M. Yokoyama, “Application of highly ordered carbon nanotubes templates to field-emission organic light-emitting diodes”, Journal of Crystal Growth, vol. 311, pp. 615-618, 2009.
90. C. W. Kuo, L. C. Chang, and C. H. Kuo, “GaN-Based light-emitting diode prepared on nano-inverted pyramid GaN template,” IEEE Photonics Technol. Lett., vol. 21, pp. 1645-1647, 2009.
91. S. J. Rosner, E. C. Carr, M. J. Ludowise, G. Girolami, and H. I. Erikson, “Correlation of cathodoluminescence inhomogeneity with microstructural defects in epitaxial GaN grown by metalorganic chemical-vapor deposition,” Appl. Phys. Lett., vol. 70. pp. 420-422, 1997.
92. T. Sugahara, H. Sato, M. Hao, Y. Naoi, S. Kurai, S. Tottori, K. Yamashita, K. Nishino, L. T. Romano, and S. Sakai, “Direct evidence that dislocations are non-radiative recombination centers in GaN,” Jpn. J. Appl. Phys., vol. 37, pp. L398-L400, 1998.
93. S. W. Lee, D. C. Oh, H. Goto, J. S. Ha, H. J. Lee, T. Hanada, M. W. Cho, S. K. Hong, H. Y. Lee, S. R. Cho, J. W. Choi, J. H. Choi, J. H. Jang, J. E. Shin, J. S. Lee, and T. Yao, “Analysis of the relation between leakage current and dislocations in GaN-based light-emitting devices,” Phys. stat. sol. vol. 4, pp. 37-40, 2007.
94. B. W. Lin, C. Y. Niu, C. Y. Hsieh, B. M. Wang, W. C. Hsu, R. M. Lin, and Y. C. S. Wu, “Using BCl3-based plasma to modify wet-etching pattern sapphire substrate for improving the growth of GaN-based LEDs,” IEEE Photonics Technol. Lett., vol. 25, pp. 371-373, 2013.
95. D. M. Deng, N. Yu, Y. Wang, X. B. Zou, H. C. Kuo, P. Chen, and K. M. Lau, “InGaN-based light-emitting diodes grown and fabricated on nanopatterned Si substrates,” Appl. Phys. Lett., vol. 96, pp. 201106, 2010.
96. Y. C. Lee, S. C. Yeh, Y. Y. Chou, P. J. Tsai, J. W. Pan, H. M. Chou, C. H. Hou, Y. Y. Chang, M. S. Chu, C. H. Wu, and C. H. Ho, “High-efficiency InGaN-based LEDs grown on patterned sapphire substrates using nanoimprinting technology,” Microelectron. Eng., vol. 105, pp. 86-90, 2013.
97. S. F. Yu, S. P. Chang, S. J. Chang, R. M. Lin, H. H. Wu, and W. C. Hsu, “Characteristics of InGaN-based light-emitting diodes on patterned sapphire substrates with various pattern heights,” J. Nanomater., pp. 346915, 2012.
98. C. Y. Hsieh, B. W. Lin, H. J. Cho, B. M. Wang, N. Chang, and Y. C. S. Wu, “Improvement of epitaxy GaN quality ssing liquid-phase deposited nano-patterned sapphire substrates,” IEEE Photonics Technol. Lett., vol. 24, pp. 2232-2234, 2012.
99. Y. K. Su, C. C. Kao, C. L. Lin, and J. J. Chen, “The Study of stress effects in GaN epilayers on very thin sapphire substrates using chemical mechanical polishing technique,” Jpn. J. Appl. Phys., vol. 49, pp. 04DF15, 2010.
100. T. Kozawa, T. Kachi, H. Kano, N. Koide, and K. Manabe, “Thermal-stress in gan epitaxial layers grown on sapphire substrates,” J. Appl. Phys., vol. 77, pp. 4389-4392, 1995.
101. G. H. Olsen and M. Ettenberg, “Calculated stresses in multilayered heteroepitaxial structures,” J. Appl. Phys., vol. 48, pp. 2543-2547. 1977.
102. B. Heying, X. H. Wu, S. Keller, Y. Li, D. Kapolnek, B. P. Keller, S. P. DenBaars, and J. S. Speck, “Role of threading dislocation structure on the x-ray diffraction peak widths in epitaxial GaN films,” Appl. Phys. Lett., vol. 68, pp. 643-645, 1996.
103. J. Bai, T. Wang, H. D. Li, N. Jiang, and S. Sakai, “(0001) oriented GaN epilayer grown on (1 1 (2)over-bar 0) sapphire by MOCVD,” J. Cryst. Growth, vol. 231, pp.41-47, 2001.
104. X. H. Huang, J. P. Liu, Y. M. Fan, J. J. Kong, H. Yang, and H. B. Wang, “Improving InGaN-LED performance by optimizing the patterned sapphire substrate shape,” Chin. Phys. B, vol. 21, pp. 037105, 2012.
105. H. Y. Gao, F. W. Yan, Y. Zhang, J. M. Li, Y. P. Zeng, and G. H. Wang, “Fabrication of nano-patterned sapphire substrates and their application to the improvement of the performance of GaN-based LEDs,” J. Phys. D-Appl. Phys., vol. 41, pp. 115106, 2008.
106. Y. K. Su, J. J. Chen, C. L. Lin, S. M. Chen, W. L. Li, and C. C. Kao, “GaN-Based light-emitting diodes grown on photonic crystal-patterned sapphire substrates by nanosphere lithography,” Jpn. J. Appl. Phys., vol. 47, pp. 6706-6708, 2008.
107. K. Tadatomo, H. Okagawa, Y. Ohuchi, T. Tsunekawa, Y. Imada, M. Kato, and T. Taguchi, “High output power InGaN ultraviolet light-emitting diodes fabricated on patterned substrates using metalorganic vapor phase epitaxy,” Jpn. J. Appl. Phys., vol. 40, pp. L583-L585, 2001.
108. S. M. Hwang, H. Song, Y. G. Seo, J. S. Son, J. Kim, and K. H. Baik, “Enhanced electroluminescence of a-plane InGaN light emitting diodes grown on oxide-patterned r-plane sapphire substrates,” Opt. Express, vol. 19, pp. 23036-23041, 2011.
109. L. B. Huang, T. J. Yu, Z. Z. Chen, Z. X. Qin, Z. J. Yang, and G. Y. Zhang, “Different degradation behaviors of InGaN/GaN MQWs blue and violet LEDs,” J. Lumines., vol. 129, pp. 1981- 1984, 2009.
110. X. A. Cao, E. B. Stokes, P. M. Sandvik, S. F, LeBoeuf, J. Kretchmer, and D. Walker, “Diffusion and tunneling currents in GaN/InGaN multiple quantum well light-emitting diodes,” IEEE Electron Device Lett., vol. 23, pp. 535-537, 2002.
111. M. F. Schubert, S. Chhajed, J. K. Kim, and E. Fred Schubert, “Effect of dislocation density on efficiency droop in GaInN/GaN light-emitting diodes,” Appl. Phys. Lett., vol. 91, pp. 231114, 2007.
112. W. N. Ng, C. H. Leung, P. T. Lai, and H. W. Choi, “Photonic crystal light-emitting diodes fabricated by microsphere lithography,” Nanotechnology, vol. 19, pp. 255302, 2008.
113. N. Han, H. G. Kim, H. Y. Kim, J. H. Kang, B. D. Ryu, Y. J. Park, M. Han, H. Jeong, S. Chandramohan, E. K. Suh, and C. H. Hong, “Self-assembled periodic silica nanosphere arrays on wet-etched patterned sapphire substrate for a high-light-extraction-efficiency light-emitting diode,” IEEE Electron Device Lett., vol. 32, pp. 527-529, 2011.
校內:2018-07-31公開