| 研究生: |
楊哲青 Yang, Zhe-Qing |
|---|---|
| 論文名稱: |
生醫用鈦合金之滑動磨潤性質研究 Wear properties research of biomedical titanium alloys |
| 指導教授: |
朱建平
Ju, Chien-Ping 陳瑾惠 Chen, Jiin-Huey |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 89 |
| 中文關鍵詞: | 生醫材料 、鈦合金 、磨耗 |
| 外文關鍵詞: | biomaterials, wear, titanium alloys |
| 相關次數: | 點閱:75 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
人體在長期的相對運動下造成磨損,跟著年齡增長,磨耗程度也更加嚴重,在嚴重磨損的情形下,導致嚴重疼痛,或是因為關節的病變發生時,便需要考慮人工關節的置換。
人工髖關節需要承受高應力且耐衝擊,故多選用金屬材料製作,本研究將以實驗室自行開發的高強度低彈性模數鈦合金(Ti-7.5Mo)與目前商用的Ti-6Al-4V與Ti-13Nb-13Zr兩種鈦合金作對陶瓷與金屬的滑動磨潤性質研究,希望能開發出不含毒性元素且具有更優良的機械性質之新型鈦合金。
對磨陶瓷的實驗中,Ti-13Nb-13Zr的耐磨性最差,Ti-6Al-4V有最佳的抗磨性﹔而在金屬對金屬的實驗中,Ti-6Al-4V有明顯優異的抗磨耗表現。實驗中發現,抗磨耗性質最優異的都是硬度最高的Ti-6Al-4V,所以單從磨耗行為來討論,Ti-6Al-4V會是適合作為人工關節元件的材料。
With the increase of age, the joint will get more serious damage. In some badly cases, they should consider total hip joint replacement.
Artificial hip joint require bearing high stress and shocks.Therefore the metal materials are wildly uesed. This research has used high strenghth low modulus titanium alloy(Ti-7.5Mo) and two other commercial titanium alloy Ti-6Al-4V and Ti-13Nb-13Zr to compare their wear properties in M/C and M/M test.
In M/C test Ti-13Nb-13Zr gets worse wear resistance.In M/M test Ti-6Al-4V has most good wear resistance. if only wear resistance was required,Ti-6Al-4V will be the suitable material of artificial joint devices.
[1] 韋文誠、鄭誠功、關永武,陶瓷人工髖關節球頭之發展與評估,科學發展月刊,第二十七卷,第九期,pp.998-1007.
[2] J.A. Davidson, A.K. Mishra, P. Kovacs and R.A. Poggie, “New surface hardened, low-modulus, corrosion-resistant Ti-13Nb-13Zr alloy for total hip arthroplasty”, Bio-Medical Materials and Engineering, 4(3): 231-243, 1994.
[3] Y. Okazaki, S. Rao, T. Tateishi, Y. Ito, “Cytocompatibility of various metal and development of new titanium alloys for medical implants”, Materials Science and Engineering, A243: 250-256, 1998.
[4] A.K. Mishra, J.A. Davidson, R.A. Poggie, P. Kovacs and T.J. Fitzgerald, “Mechanical and tribological properties and biocompatibility of diffusion hardened Ti13Nb13Zr- a new titanium alloy for surgical implants”, edited by S.A. Brown and J.E. Lemons, Medical Applications of Titanium and Its Alloys: The Material and Biological Issues, ASTM STP 1272, West Conshohocken, PA: ASTM, pp. 96-113, 1996.
[5] L.D. Zardiackas, D.W. Mitchell and J.A. Disegi, “Characterization of Ti-15Mo beta titanium alloy for orthopaedic implant applications”, edited by S.A. Brown and J.E. Lemons, Medical Applications of Titanium and Its Alloys: The Material and Biological Issues, ASTM STP 1272, West Conshohocken, PA: ASTM, pp. 60-75, 1996.
[6] J.O. Galante, J. Lemons, M. Spector and P.D. Wilson, “The biologic effects of implant materials”, Journal of Orthopaedic Research, 9: 760-775, 1991.
[7] Goldsmith AA., Dowson D., Isaac GH., Lancaster JG., “A comparative joint simulator study of the wear of metal-on-metal and alternative material combinations in hip replacements.”, Proceedings of the Institution of Mechanical Engineers. Part H-Journal of Engineering in Medicine. (214)1:30-47,2000.
[8] 黃景暉 ”鈦鉬合金滑動磨潤性質之研究”2002
[9] 傅宇輝“骨科原理及應用” 國立編譯館,第一版,第二十七章,1989.
[10] J.B. Park, “Biomaterials science and engineering”, Introduction ,Chap.1, Plenum press, pp. 1, 1984.
[11] J.B. Park, “Biomaterials science and engineering”, Introduction, Chap.1, Plenum press, pp. 4, 1984.
[12] J. Livermore, “Effect of femoral head size on wear of the polyethylene acetabular component”, The Journal of Bone and Joint Surgery, vol. 72-A, No. 4, April, 1990.
[13] J.A. Davidson, “Characteristics of metal and ceramic total hip bearing surface and the effect on long-term UHMWPE wear”, Orthopaedic Research Report OR-92-08, Smith and Nephew, 1991.
[14] J.L. Tipper, P.J. Firkins, A.A. Besong, P.S.M. Barbour, J. Nevelos, M.H. Stone, E. Ingham, J. Fisher “Characterisation of wear debris from UHMWPE on zirconia ceramic, metal-on-metal and alumina ceramic-on-ceramic hip prostheses generated in a physiological anatomical hip joint simulator” Wear 250 (2001) 120-128
[15] S.S. Seymour, “Plastics materials and processes”, Van Nostrand Reinhold, New York, pp. 74-77, 1982.
[16] S.R. Simon, “Orthopaedic basic science”, American Academy ofOrthopaedic Surgeons, pp. 474, 1994.
[17] S.L. Evans and P.J. Gregson, “Composite technology in load-bearing orthopaedic implants”, Biomaterials, 19: 1329-1342, 1998.
[18] Y. Fu and A.W. Batchelor, “Fretting wear behavior of thermal sprayed hydroxyapatite coating lubricated with bovine albumin”, Wear, 230: 98-102, 1999.
[19] M. Rψkkum, M. Brandt, K. Bye, K.R. Hetland, S. Waage and A. Reigstad, “Polyethylene wear, osteolysis and acetabular loosening with an HA-coated hip prosthesis”, The Journal of Bone and Joint Surgery, 81B: 582-589, 1999.
[20] D.P. Dowling, P.V. Kola and K. Donnelly, “Evaluation of diamond-like carbon-coated orthopaedic implants”, 6: 390-393, 1997.
[21] M.T. Raimondi and R. Pietrabissa, “The in-vivo wear performance of prosthetic femoral heads with titanium nitride coating”, Biomaterials, 21: 907-913, 2000.
[22] J. Matthew and Jr. Donachie, “Titanium a technical guide”, ASM International, Metals Park, OH 44073, USA, 1988.
[23] J.L. Murray, “Binary alloy phase diagrams”, Vol. 3, edited by massalski TB, J.L. Murray, L.H. Bennett and H. Baker, American Society for Metals, Park, Ohio: ASM, pp. 1637-1641, 1986.
[24] P.J. Bania, “Beta titanium alloys and their role in the titanium industry”, edited by D. Eylon, R. Boyer and D. Koss, Beta Titanium Alloys in the 1990’s, TMS, Warrendale, PA, pp. 3-14, 1993.
[25] W.F. Ho, “Structure and properties of cast Ti-Mo alloys”, Dissertation for Philosophy, Department of Materials Science and Engineering National Cheng-Kung University, Tainan, Taiwan, R.O.C., 1999.
[26] R.M. Hall and A. Unsworth, “Review-Friction in hip prostheses”, Biomaterials, 18: 1017-1026, 1997.
[27] R.J.A. Bigsby, D.D. Auger, Z.M. Jin, D. Dowson, C.S. Hardaker and J. Fisher, “A comparative tribological study of wear of composite cushion cups in a physiological hip joint simulator”, Journal of Biomechanics, 31: 363-369, 1998.
[28] S.J. Hall, “Basic Biomechanics”, The McGraw-Hill Companies, Inc., Chap. 4, 1995.
[29] W.H. Harris, “Osteolysis and particle disease in hip replacement-A review”, Acta orthopaedica Scandinavica, 65: 113-123, 1994.
[30] S. Santavirta, “Biocompatibility of polyethylene and host response to loosening of cementless total hip replacement”, Clinical Orthopaedics and Related research, 297: 100-110, 1993.
[31] H.A. McKellop, P. Campbell and S.H. Park, “The origin of submicron polyethylene wear debris in total hip arthroplasty”, Clinical Orthopaedics and Related Research, 311: 3-20, 1995.
[32] H.G. Willert and H. Bertram, “Osteolysis in alloarthroplasty of the hip-The role of ultra-high molecular weight polyethylene wear particles”, Clinical Orthopaedics and Related Research, No. 258, Sep, 1990.
[33] M.T. Manley and P. Serekian, “Wear debris-An environmental issue in total joint replacement”, Clinical Orthopaedics and Related Research, 298: 137-146, 1994.
[34] M.J. Griffith, M.K. Seidenstein, D. Williams and J. Charnley, “Eight year results of Charnley arthroplasties of the hip with special reference to the behavior of cement”, Clinical Orthopaedics and Related Research, 137: 24-36, 1978.
[35] J.K. Weaver, “Activity expectations and limitations following total joint replacement”, Clinical Orthopaedics and Related Research, 137: 55-61, 1978.
[36] Ingham E., Fisher J.“Biological reactions to wear debris in total joint replacement.”, Proceedings of the Institution of Mechanical Engoneers. Part H – Journal of Engineering in Medicine. 214(1):21-37,2000
[37] C.H. Lohmann and Z. Schwartz, ”Phagocytosis of wear debris by osteoblasts affects differentiation and local factor production in a manner dependent on particle composition”, 21: 551-561, 2000.
[38] 陳漢民, ”低能量摩擦材料製程及磨潤性質研究”,1997
[39] 陳立輝,”滑動磨耗概述”,材料科學,第18B卷第一期,pp.1-12
[40] A.J. Kinloch, “The science of adhesion”, J. Mater.Sci, 15, pp2141-2166, 1980
[41] K.H. Zum, Gahr, Microstructure and Wear of Materials, Elservier, Arusterdam, pp.80-168, 1987
[42] B.V. Derjaguin, “Investigation on the adhesion of polymer particles to the surface of a semiconductors ”, J. Adhesion. pp.65-71, 1972
[43] H. Krupp, “Recent result in particle adhesion, UHV measurements, light modulated adhesion and the effect of adsorbates”, J. Adhesion, pp.83-86, 1972
[44] J.E. Nevelos, E. Ingham, C. Doyle, J. Fisher and A.B. Nevelos, “Analysis of retrieved alumina ceramic components from Mittelmeier total hip prostheses”, Biomaterials, 20: 1833-1840, 1999.
[45] S.R. Simon, “Orthopedics basic science”, American Academy of Orthopedic Surgeons, pp. 464-466, 1994.
[46] A. Wang, A. Essner, C. Stark and J.H. Dumbleton, “Comparison of the size and morphology of UHMWPE wear debris produced by a hip joint simulator under serum and water lubricated conditions”, Biomaterials, Vol. 17, No. 9, 1996.
[47] V.D. Good, I.C. Clarke and L. Anissian, “Water and bovine serum lubrication compared in simulator PTFE/CoCr wear model”, Journal of Biomedical Materials Research, 33: 275-283, 1996.
[48] J.P. Van Loon, G.J. Verkerke, L.G. M. de Bont and R.S.B. Liem, “Wear-testing of a temporomandibular joint prosthesis: UHMWPE and PTFE against a metal ball, in water and in serum”, Biomaterials, 20: 1471-1478, 1999.
[49] V. Chanddrasekaran, W.L. Sauer, A.M. Tayor and D.W. Hoeppner, “Evaluation of fretting corrosion behavior of the proximal pad taper of a modular hip design”, Wear, 231: 54-64, 1999.
[50] M.J. Paooas, G. Makris and F.F. Buechel, “Titanium nitride ceramic film against polyethylene”, Clinical Orthopaedics and Related Research, 317: 64-70, 1995.
[51] V.O. Saikko, P.O. Paavolainen and P. Slatis, “Wear of the polyethylene acetabular cup-Metallic and ceramic heads compared in a hip simulator”, Acta Orthopaedica Scandinavica, 64: 391-402, 1993.
[52] Mitsuo Niinomi “Corrosion wear fracture of new β type biomedical titanium alloys” Material science & engineering A 263,pp193-199,1999
[53] 何信威, 陳豐彥 ”粉末冶金技術手冊”第二十一章 燒結摩擦材料
[54] D. Iijima, T. Yoneyama, H. Doi, H. Hamanaka, N.Kurosaki ”Wear properties of Ti and Ti-6Al-7Nb castings for dental prostheses”, Biomaterials 24 pp1519-1524, 2003