簡易檢索 / 詳目顯示

研究生: 王彥甯
Wang, Yen-Ning
論文名稱: 市區汽車客運業導入氫燃料電池大客車之關鍵因素分析
Key Factor Analysis of Introducing Fuel Cell Electric Buses in City Bus Carrier
指導教授: 魏健宏
Wei, Chien-Hung
學位類別: 碩士
Master
系所名稱: 管理學院 - 交通管理科學系
Department of Transportation and Communication Management Science
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 176
中文關鍵詞: 氫燃料電池市區汽車客運業大客車關鍵因素模糊層級分析法
外文關鍵詞: Hydrogen Fuel Cells, City Bus Carrier, Clean Energy Vehicles, Key Factors, Fuzzy Analytic Hierarchy Process
相關次數: 點閱:17下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 聯合國政府間氣候變遷委員會(IPCC)指出,化石燃料產生的溫室氣體是全球氣候變遷之主因,其中運輸部門約占全球每年溫室氣體排放量 15%,因應淨零排放趨勢,各國正積極發展新能源。我國針對運輸部門之策略係以電動車為主軸,並將氫燃料電池車輛視為無碳運具發展的重要方向,期望於 2050 年前實現「氫能車輛普及化」。2024 年交通部公告「氫燃料電池大客車試辦運行計畫」,以市區公車路線為優先試辦對象,旨在提升民眾認知與接受度,並透過實務運行累積基礎設施建設與營運經驗,顯示氫能應用於運輸領域已為我國未來之發展趨勢。
    目前氫燃料電池大客車在國際市場上已具穩定技術和營運經驗,惟我國氫燃料運具的發展仍處於初期階段,尚未如日本、韓國與歐美等國制定具體推廣目標和策略,且相較於氫燃料電池小客車,大客車更面臨車輛購置成本高昂、加氫站需設置於路線適度範圍內、車輛安全檢測能量尚待完備以及業者欠缺相關營運知識等挑戰。此外,現有研究多聚焦於氫燃料電池小客車,針對公共運輸導入氫燃料電池之相關研究相對匱乏。
    綜上所述,本研究以我國市區汽車客運業為探討對象,探討其導入氫燃料電池大客車之關鍵因素。透過文獻回顧歸納出四大構面與相應評估準則,並採模糊層級分析法(FAHP)進行專家問卷調查與分析。研究結果顯示,整體專家認為應優先聚焦於「完善國家氫能制度」,其後依序為「提升公眾接受度」、「技術推進與成本降低」與「強化氫燃料電池大客車部署管理」。整體層級評估準則亦顯示,制度建構為當前推動重點。進一步分析則發現,儘管各界專家普遍重視「完善國家氫能制度」,但在推動重點與施力方向上仍展現不同立場與取捨。
    本研究最終根據分析結果,為政府機構與相關產業提出切實可行之政策建議,作為未來推動氫燃料電池大客車發展依據,期望促進我國此類車輛之導入與推廣,並補足國內在相關研究的不足。

    The Intergovernmental Panel on Climate Change (IPCC) highlights that greenhouse gases (GHGs) from fossil fuels are a significant driver of global climate change, with transportation contributing about 15% of global annual GHG emissions. In response to net-zero goals, countries worldwide are actively promoting the development of alternative energy. Taiwan’s transport strategy prioritizes electric vehicles while identifying hydrogen fuel cells as a core technology, aiming for widespread hydrogen vehicle adoption by 2050. In 2024, Taiwan’s Ministry of Transportation and Communications (MOTC) launched the “Hydrogen Fuel Cell Bus Pilot Operation Program,” prioritizing city bus routes to enhance public acceptance and infrastructure readiness.
    Although hydrogen fuel cell buses are technically mature internationally, Taiwan’s development remains in its early stages, lacking the promotion goals and strategies seen in Japan, South Korea, and Western nations. Compared to cars, hydrogen buses face challenges like designated-route refueling, incomplete safety testing, and limited operational expertise. Research primarily focuses on cars, with limited studies on public transportation.
    This study focuses on Taiwan’s city bus carrier and explores the key factors influencing the adoption of hydrogen fuel cell buses. Based on a literature review, four evaluation criteria and associated sub-criteria were developed. Expert opinions were gathered through questionnaires and analyzed using the Fuzzy Analytic Hierarchy Process (FAHP). Results show that “Refine National Hydrogen Energy Policies” is the highest priority, followed by “Enhance Public Acceptance,” “Technological Advancement and Cost Reduction,” and “Strengthen Fuel Cell Bus Deployment and Management.” This study also identifies differences in stakeholder perspectives and concludes with practical policy recommendations to support the adoption and development of hydrogen fuel cell buses in Taiwan.

    第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 7 1.3 研究流程 8 第二章 文獻回顧 10 2.1 氫燃料電池運具概述 10 2.1.1 氫燃料電池技術與運行原理 10 2.1.2 加氫站發展現況與設施分類 13 2.1.3 氫燃料電池運具與電動運具比較 16 2.1.4 全球氫燃料電池運具發展趨勢 18 2.2 國外氫燃料電池大客車發展現況與政策分析 20 2.2.1 日本 20 2.2.2 韓國 24 2.2.3 中國 26 2.2.4 美國 31 2.2.5 歐洲 33 2.3 我國氫燃料電池大客車發展現況與政策分析 35 2.3.1 我國氫燃料電池大客車政策沿革 35 2.3.2 我國氫燃料電池大客車發展現況 40 2.3.3 我國氫燃料電池大客車與電動大客車發展比較 43 2.4 國內外發展潔淨能源運具之問題與關鍵因素 47 2.5 多準則決策理論與方法 54 第三章 研究方法與設計 57 3.1 模糊層級分析法 57 3.2 建立研究架構 64 3.2.1 技術推進與成本降低 66 3.2.2 強化氫燃料電池大客車部署管理 67 3.2.3 提升公眾接受度 69 3.2.4 完善國家氫能制度 70 3.3 研究問卷設計 72 3.3.1 評估尺度建構 72 3.3.2 問卷內容設計 75 3.3.3 專家挑選與問卷調查方式 76 3.3.4 問卷前測與修正 77 第四章 問卷調查與分析 78 4.1 問卷處理 78 4.1.1 問卷調查與專家選擇 78 4.1.2 各層級專家一致性檢定結果 79 4.1.3 模糊層級分析法計算程序說明 81 4.2 整體專家問卷之相對權重分析 86 4.2.1 四大構面之相對權重分析 86 4.2.2 各構面評估準則之相對權重分析 87 4.2.3 整體層級評估準則之相對權重分析 92 4.3 各領域專家群之決策差異分析 96 4.3.1 四大構面之決策差異分析 96 4.3.2 整體層級評估準則之決策差異分析 97 4.4 不同模糊數下整體層級評估準則排序之影響 102 4.4.1 模糊數尺度選定與說明 102 4.4.2 各模糊數設定下整體層級評估準則之排序分析 103 4.5 小結 106 第五章 結論與建議 108 5.1 結論 108 5.2 建議 111 5.3 研究限制與未來研究建議 116 參考文獻 117 期刊、論文 117 網路資源 125 附錄 130 附錄一 交通部氫燃料電池大客車試辦運行計畫 130 附錄二 問卷調查表 144

    刁培正(2014),多準則非凌越解評選方法之探討,東吳大學商學院企業管理學系碩士班,碩士論文。
    工業技術研究院(2022),邁向2050淨零排放 臺灣2050氫應用發展技術藍圖。
    中國政府工作網(2019),政府工作報告。
    中國氫能聯盟(2019),中國氫能源及燃料電池產業 白皮書(2019 年版)。
    中華人民共和國國家品質監督檢驗檢疫總局、中國國家標準化管理委員會(2017),加氫站安全技術規範。
    中華人民共和國國家發展和改革委員會、國家能源局(2016),能源技術革命創新行動計畫(2016–2030 年)。
    中華人民共和國國家發展與改革委員會(2021),中華人民共和國國民經濟社會發展第十四個五年計畫和2035年遠景目標綱要。
    中華人民共和國國家發展與改革委員會、國家能源局(2022),氫能產業發展中長期規劃(2021-2035年)。
    王小璠(2015),多準則決策分析。滄海書局。
    加氫站銷售氫燃料經營許可管理辦法(2023)。
    交通部(2023a),2030 年客運車輛電動化推動計畫(113 年至 119 年)(核定本)。
    交通部(2023b),臺灣 2050 淨零轉型「運具電動化及無碳化」關鍵戰略行動計畫(核定本)。
    交通部(2024),交通部氫燃料電池大客車試辦運行計畫。
    交通部公路局補助電動大客車作業要點(2023)。
    交通部氫燃料電池大客車試辦運行計畫申請者資格及補助審查作業要點(2024)。
    交通部運輸研究所(2022),電動大客車營運數據監控管理平台示範建置與應用。
    交通部運輸研究所(2023),111年電動大客車營運數據監控平台維運與移轉。
    交通部運輸研究所(2024),客運電動化轉型與未來發展趨勢。
    行政院(2012),能源發展綱領(核定本)。
    林坤讓、王奕仁(2006),淺談燃料電池,綠基會通訊,第3期,頁2-5。
    林祥輝(2014),日本新版能源基本計畫─新計畫將核能定位為重要的基載電源,推動核電廠的重新運轉,工業技術研究院 綠能與環境研究所。
    施泊甫(2023),淺談國際氫燃料電池車發展與我國氫燃料電池車推動概況,車安通訊季刊,第112-04期,頁14-25。
    孫守明(2000),模糊環境下ELECTRE方法之研究,東海大學工業工程學系,碩士論文。
    能源管理法(2016)。
    財團法人中技社(2016),國際與我國氫能運用發展與推動政策研析。
    財團法人中技社(2024),電動車及氫能車發展評估。
    財團法人車輛研究測試中心(2015),電動車安全入門手冊。
    國家發展委員會(2009),98 年全國能源會議結論執行情形說明。
    國家發展委員會、行政院環境保護署、經濟部、科技部、交通部、內政部、行政院農業委員會、金融監督管理委員會(2022),臺灣 2050 淨零排放路徑及策略總說明。
    張美娟(2003),國內有線電視發展數位電視服務經營策略之研究,臺灣師範大學圖文傳播學系,碩士論文。
    張基成、蔡政緯(2012),以網路模糊德懷術與模糊層級分析法發展數位化學習歷程檔案之知識管理行為量表,教育資料與圖書館學,50(1),103-133。
    張紹勳(2012),模糊多準則評估法及統計(初版)。臺北:五南圖書出版股份有限公司。
    張朝能、黃國修、張學孔、江芷瑛、沈大維、陳雅雯、陳永勳、陳維隆、黃子瞻、賴勁丞(2016),公路公共運輸電動客車經營與運作績效調查,交通部運輸研究所。
    張瓊文、朱珮芸、蕭為元、陳國岳(2016),氫燃料電池車輛之耗能與碳排生命週期分析,交通部運輸研究所。
    產業通商資源部(2021),氫能經濟實施第一次基本計畫。
    許毓真(2015),台資藥廠進入大陸市場之多準則決策分析,東吳大學商學院企業管理學系碩士班,碩士論文。
    陳藝文(2017),層級分析法與模糊層級分析法之探究及應用,高雄師範大學數學系碩士班,碩士論文。
    黃莉婷、王穎達(2022),日本氫能策略與近期動態評析,工業技術研究院。
    黃鎮江(2019),綠色能源(第三版)。全華圖書。
    楊志忠、林頌恩、韋文誠(2003),燃料電池的發展現況,科學發展,第367期,頁30-33。
    經濟部(2023),臺灣 2050 淨零轉型「氫能」關鍵戰略行動計畫(核定本)。
    經濟部能源署(2003),能源策略之具體行動方案。
    經濟部能源署(2007),燃料電池與氫能科技。
    經濟部能源署(2016),2016年能源產業技術白皮書。
    經濟部能源署(2023),國內能源供需概況。
    劉兆軒(2024),113 年度赴日考察加氫站之安全管理制度。
    劉儒俊(2002),行銷資源最適配置模式--FuzzyAHP之應用,中正大學企業管理研究所,碩士論文。
    潘俊仁、黃秋萍、林俊男、蔡麗端、黃炳照(2014),燃料電池觸媒材料的開發現況,工業材料雜誌,第328期,頁116-125。
    鄧振源(2005),計畫評估-方法與應用。基隆:海洋大學運籌規劃與管理研究中心。
    環境部(2024),2024 年中華民國國家溫室氣體排放清冊報告。
    環境部補助電動大客車營運作業要點(2023)。
    聯華氣體工業(2022),響應淨零碳排放 台灣第一座加氫站! 聯華林德投入台灣氫能發展 2023引進氫能卡車。
    Ajanovic, A., & Haas, R. (2021). Prospects and impediments for hydrogen and fuel cell vehicles in the transport sector. International journal of hydrogen energy, 46(16), 10049-10058.
    Alazemi, J., & Andrews, J. (2015). Automotive hydrogen fuelling stations: An international review. Renewable and sustainable energy reviews, 48, 483-499.
    Andújar, J. M., & Segura, F. (2009). Fuel cells: History and updating. A walk along two centuries. Renewable and sustainable energy reviews, 13(9), 2309-2322.
    Apostolou, D., & Xydis, G. (2019). A literature review on hydrogen refuelling stations and infrastructure. Current status and future prospects. Renewable and Sustainable Energy Reviews, 113, 109292.
    Berkeley, N., Bailey, D., Jones, A., & Jarvis, D. (2017). Assessing the transition towards Battery Electric Vehicles: A Multi-Level Perspective on drivers of, and barriers to, take up. Transportation Research part A: policy and practice, 106, 320-332.
    Biresselioglu, M. E., Kaplan, M. D., & Yilmaz, B. K. (2018). Electric mobility in Europe: A comprehensive review of motivators and barriers in decision making processes. Transportation Research Part A: Policy and Practice, 109, 1-13.
    Browne, D., O'Mahony, M., & Caulfield, B. (2012). How should barriers to alternative fuels and vehicles be classified and potential policies to promote innovative technologies be evaluated?. Journal of Cleaner Production, 35, 140-151.
    Buckley, J. J. (1985). Fuzzy hierarchical analysis. Fuzzy sets and Systems, 17(3), 233-247.
    Büyüközkan, G., & Çifçi, G. (2012). A novel hybrid MCDM approach based on fuzzy DEMATEL, fuzzy ANP and fuzzy TOPSIS to evaluate green suppliers. Expert Systems with Applications, 39(3), 3000-3011.
    Byun, D. H. (2001). The AHP approach for selecting an automobile purchase model. Information & management, 38(5), 289-297.
    CaFCP (2018), The California Fuel Cell Revolution A Vision for Advancing Economic, Social, and Environmental Priorities.
    CaFCP (2019), FUEL CELL ELECTRIC BUSES Enable 100% Zero Emission Bus Procurement by 2029.
    Chai, J., Liu, J. N., & Ngai, E. W. (2013). Application of decision-making techniques in supplier selection: A systematic review of literature. Expert systems with applications, 40(10), 3872-3885.
    Chan, H. K., Sun, X., & Chung, S.-H. (2019). When should fuzzy analytic hierarchy process be used instead of analytic hierarchy process? Decision Support Systems, 125, 113114.
    Chang, D.-Y. (1996). Applications of the extent analysis method on fuzzy AHP. European Journal of Operational Research, 95(3), 649-655.
    Chen, H. H., Lee, A. H., & Tong, Y. (2007). Prioritization and operations NPD mix in a network with strategic partners under uncertainty. Expert Systems with Applications, 33(2), 337-346.
    De Wolf, D., & Smeers, Y. (2023). Comparison of battery electric vehicles and fuel cell vehicles. World Electric Vehicle Journal, 14(9), 262.
    Deng, H. (1999). Multicriteria analysis with fuzzy pairwise comparison. International journal of approximate reasoning, 21(3), 215-231.
    Department for Transport (2021a), Bus Back Better: National Bus Strategy for England.
    Department for Transport (2021b), UK Hydrogen Strategy.
    Dincer, H., Hacioglu, U., Tatoglu, E., & Delen, D. (2016). A fuzzy-hybrid analytic model to assess investors' perceptions for industry selection. Decision Support Systems, 86, 24-34.
    Emodi, N. V., Lovell, H., Levitt, C., & Franklin, E. (2021). A systematic literature review of societal acceptance and stakeholders’ perception of hydrogen technologies. International journal of hydrogen energy, 46(60), 30669-30697.
    Energy Policy Act of 2005 (2005).
    European Commission (2008), The European hydrogen energy roadmap.
    FCH JU (2019), Hydrogen roadmap Europe A sustainable pathway for the European energy transition.
    Friedlingstein, P., O'Sullivan, M., Jones, M. W., Andrew, R. M., Bakker, D. C. E., Hauck, J., Landschützer, P., Le Quéré, C., Luijkx, I. T., Peters, G. P., Peters, W., Pongratz, J., Schwingshackl, C., Sitch, S., Canadell, J. G., Ciais, P., Jackson, R. B., Alin, S. R., Anthoni, P., Barbero, L., Bates, N. R., …, Zheng, B. (2023). Global Carbon Budget 2023, Earth System Science Data.
    Government of Korea (2019), Hydrogen Economy Roadmap of Korea.
    Govindan, K., Rajendran, S., Sarkis, J., & Murugesan, P. (2015). Multi criteria decision making approaches for green supplier evaluation and selection: a literature review. Journal of cleaner production, 98, 66-83.
    Grove, W. R. (1839). XXIV. On voltaic series and the combination of gases by platinum. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 14(86-87), 127-130.
    Haddadian, G., Khodayar, M., & Shahidehpour, M. (2015). Accelerating the global adoption of electric vehicles: barriers and drivers. The Electricity Journal, 28(10), 53-68.
    Hardman, S., Shiu, E., Steinberger-Wilckens, R., & Turrentine, T. (2017). Barriers to the adoption of fuel cell vehicles: A qualitative investigation into early adopters attitudes. Transportation Research Part A: Policy and Practice, 95, 166-182.
    Herva, M., & Roca, E. (2013). Review of combined approaches and multi-criteria analysis for corporate environmental evaluation. Journal of cleaner production, 39, 355-371.
    Ho, W. (2008). Integrated analytic hierarchy process and its applications–A literature review. European Journal of Operational Research, 186(1), 211-228.
    Ho, W., Xu, X., & Dey, P. K. (2010). Multi-criteria decision making approaches for supplier evaluation and selection: A literature review. European Journal of Operational Research, 202(1), 16-24.
    IEA (2021), Net Zero by 2050 - A Roadmap for the Global Energy Sector.
    IEA (2024), Global Hydrogen Review 2024.
    IEA Jato-Espino, D., Castillo-Lopez, E., Rodriguez-Hernandez, J., & Canteras-Jordana, J. C. (2014). A review of application of multi-criteria decision making methods in construction. Automation in construction, 45, 151-162.
    Ishizaka, A., & Nguyen, N. H. (2013). Calibrated fuzzy AHP for current bank account selection. Expert systems with applications, 40(9), 3775-3783.
    Javanbarg, M. B., Scawthorn, C., Kiyono, J., & Shahbodaghkhan, B. (2012). Fuzzy AHP-based multicriteria decision making systems using particle swarm optimization. Expert systems with applications, 39(1), 960-966.
    Kilic, H. S., Zaim, S., & Delen, D. (2014). Development of a hybrid methodology for ERP system selection: The case of Turkish Airlines. Decision Support Systems, 66, 82-92.
    Kwong, C.-K., & Bai, H. (2003). Determining the importance weights for the customer requirements in QFD using a fuzzy AHP with an extent analysis approach. Iie transactions, 35(7), 619-626.
    Lee, Y., Jung, J., & Song, H. (2023). Public acceptance of hydrogen buses through policy instrument: Local government perceptions in Changwon city. International Journal of Hydrogen Energy, 48(36), 13377-13389.
    Liu, Y., Eckert, C. M., & Earl, C. (2020). A review of fuzzy AHP methods for decision-making with subjective judgements. Expert systems with applications, 161, 113738.
    Mikhailov, L., & Tsvetinov, P. (2004). Evaluation of services using a fuzzy analytic hierarchy process. Applied Soft Computing, 5(1), 23-33.
    Pedrycz, W., & Song, M. (2011). Analytic hierarchy process (AHP) in group decision making and its optimization with an allocation of information granularity. IEEE Transactions on Fuzzy Systems, 19(3), 527-539.
    Rahimi, S. A., Jamshidi, A., Ruiz, A., & Aït-Kadi, D. (2016). A new dynamic integrated framework for surgical patients' prioritization considering risks and uncertainties. Decision Support Systems, 88, 112-120.
    Saaty, T. L. (1980). The analytic hierarchy process (AHP). The Journal of the Operational Research Society, 41(11), 1073-1076.
    Saaty, T. L. (1996). Multicriteria decision making: The analytic hierarchy process. RWS Publ.
    Subramanian, N., & Ramanathan, R. (2012). A review of applications of Analytic Hierarchy Process in operations management. International Journal of Production Economics, 138(2), 215-241.
    Tarei, P. K., Chand, P., & Gupta, H. (2021). Barriers to the adoption of electric vehicles: Evidence from India. Journal of Cleaner Production, 291, 125847.
    Thomas, C. E. (2009). Fuel cell and battery electric vehicles compared. international journal of hydrogen energy, 34(15), 6005-6020.
    Trencher, G. (2020). Strategies to accelerate the production and diffusion of fuel cell electric vehicles: Experiences from California. Energy Reports, 6, 2503-2519.
    Trencher, G., & Edianto, A. (2021). Drivers and barriers to adopting fuel cell passenger vehicles and buses in Germany. Energies, 14(4), 833.
    Trencher, G., & Wesseling, J. (2022). Roadblocks to fuel-cell electric vehicle diffusion: Evidence from Germany, Japan and California. Transportation Research Part D: Transport and Environment, 112, 103458.
    Tzeng, G. H., & Huang, J. J. (2011). Multiple attribute decision making: methods and applications. CRC press.
    United States Department of Energy (2002a), A National Vision of Americas Transition to A Hydrogen Economy-to 2030 and beyond.
    United States Department of Energy (2002b), National Hydrogen Energy Roadmap.
    United States Department of Energy (2021), U.S. National Clean Hydrogen Strategy and Roadmap.
    Vaidya, O. S., & Kumar, S. (2006). Analytic hierarchy process: An overview of applications. European Journal of Operational Research, 169(1), 1-29.
    Van Laarhoven, P. J., & Pedrycz, W. (1983). A fuzzy extension of Saaty's priority theory. Fuzzy sets and Systems, 11(1-3), 229-241.
    Varshney, T., Waghmare, A., Singh, V., Meena, V., Anand, R., & Khan, B. (2024). Fuzzy analytic hierarchy process based generation management for interconnected power system. Scientific Reports, 14(1), 11446.
    Wong, B. K., & Lai, V. S. (2011). A survey of the application of fuzzy set theory in production and operations management: 1998–2009. International Journal of Production Economics, 129(1), 157-168.
    Wu, C., & Barnes, D. (2011). A literature review of decision-making models and approaches for partner selection in agile supply chains. Journal of Purchasing and Supply Management, 17(4), 256-274.
    Xu, Z., & Liao, H. (2013). Intuitionistic fuzzy analytic hierarchy process. IEEE Transactions on Fuzzy Systems, 22(4), 749-761.
    Yaqiong, L., Man, L. K., & Zhang, W. (2011). Fuzzy theory applied in quality management of distributed manufacturing system: A literature review and classification. Engineering Applications of Artificial Intelligence, 24(2), 266-277.
    Zhang, L., Yu, J., Ren, J., Ma, L., Zhang, W., & Liang, H. (2016). How can fuel cell vehicles bring a bright future for this dragon? Answer by multi-criteria decision making analysis. International Journal of Hydrogen Energy, 41(39), 17183-17192.
    Zhang, Q., Chen, J., & Ihara, T. (2024). Assessing regional variations in hydrogen fuel cell vehicle adoption: An integrative approach using real-world data and analytic hierarchy process in Tokyo. Applied Energy, 363, 123014.
    NEDO(2015),水素エネルギー白書。
    一般社団法人 日本ガス協会(2021),都市ガスを利用したオンサイト方式水素ステーションのご紹介。
    公益財団法人 日本自動車輸送技術協会(2024),令和5年度(補正予算) 脱炭素成長型経済構造移行推進対策費補助金 商用車の電動化促進事業(タクシー・バス)公募説明会資料。
    日本一般高壓氣體保安規則(2024)。
    再生可能エネルギー・水素等関係閣僚会議(2017),水素基本戦略。
    東京ガス株式会社(2022),東京ガスにおける水素ステーションの取組みと燃料電池バスの普及に向けた課題。
    経済産業省資源エネルギー庁(2014),エネルギー基本計画。
    環境省 水・大気環境局自動車環境対策課、国土交通省 自動車局環境政策課(2019),燃料電池自動車・バスの普及 に向けた導入支援策について。
    韓國促進氫經濟和氫安全管理法(2024)。
    韓國租稅特例限制法(2024)。
    韓國高壓氣體安全管理法(2024)。
    韓國碳中和委員會(2021),2030年國家自訂貢獻(NDC)。
    韓國環境部(2021),加氫站策略部署計畫。
    韓國環境部(2022),2023年氫能車輛普及及氫氣充電站設置事業補助金業務處理指導方針。
    ESG遠見(2023),終極的潔淨能源就是它!全球氫能熱,中油、台電帶頭衝,擷取時間:2024年10月08日,網址:https://esg.gvm.com.tw/article/20189。
    FCCJ(2024),商用水素ステーションの普及状況,擷取時間:2024年10月26日,網址:https://fccj.jp/hystation/index.html#list。
    GreenPeace綠色和平(2023),什麼是淨零碳排?臺灣怎麼實現?國際作法一次看,擷取時間:2024年10月05日,網址:https://www.greenpeace.org/taiwan/update/38067/%E4%BB%80%E9%BA%BC%E6%98%AF%E6%B7%A8%E9%9B%B6%E7%A2%B3%E6%8E%92%EF%BC%9F%E8%87%BA%E7%81%A3%E6%80%8E%E9%BA%BC%E5%AF%A6%E7%8F%BE%EF%BC%9F%E5%9C%8B%E9%9A%9B%E4%BD%9C%E6%B3%95%E4%B8%80%E6%AC%A1%E7%9C%8B/。
    國家發展委員會(2024),淨零公正轉型-台南市市區客運電動化計畫 淨零公正轉型共識論壇,擷取時間:2024年11月07日,網址:https://drive.google.com/file/d/1PSwrt9CYON-oeE9NCnGzLbx1bkKEiafS/view?usp=drive_link。
    中華人民共和國交通運輸部(2024),交通部財政部有關印發《新能源城市公車及動力電池更新補貼實施細則》的通知,擷取時間:2024年10月27日,網址:https://xxgk.mot.gov.cn/jigou/ysfws/202408/t20240801_4145711.html。
    中華人民共和國財政部(2019),關於支持新能源公車推廣應用的通知,擷取時間:2024年10月27日,網址:https://jjs.mof.gov.cn/zhengcefagui/201905/t20190508_3251282.htm。
    中華人民共和國國家發展和改革委員會(2024),關於加力支持大規模設備更新和消費品以舊換新的若干措施,擷取時間:2024年10月27日,網址:https://www.ndrc.gov.cn/xxgk/zcfb/tz/202407/t20240725_1391941.html。
    中華民國內政部消防署全球資訊網(2024),電動車/油電車緊急救援手冊,擷取時間:2024年11月05日,網址:https://www.nfa.gov.tw/pro/index.php?keyword=%E5%A4%A7%E5%AE%A2%E8%BB%8A&csrf=3d23995071d2cc435d1b145b76039f15&code=list&ids=173&postFlag=1&csrf=5c6d2180887d3e25b883557bfdaf8fb7。
    化學神的夢想世界(2009),『化學專門課程』燃料電池(Fuel Cell),udn 網路城邦,擷取時間:2024年10月13日,網址:https://blog.udn.com/chemicalgod/2967519。
    台灣中油全球資訊網(2024),綠色轉型及創新研發,擷取時間:2024年10月30日,網址:https://www.cpc.com.tw/csr/cp.aspx?n=3014。
    台灣氫能與燃料電池夥伴聯盟(2024),台灣氫能與燃料電池夥伴聯盟,擷取時間:2024年10月30日,網址:https://www.thfcp.org.tw/xmdoc/cont?xsmsid=0L280379637405701583。
    氣候公民對話平臺(2024a),我國溫室氣體排放及減量,擷取時間:2024年09月12日,網址:https://www.cca.gov.tw/climatetalks/emission-and-reduction/national/1867.html。
    氣候公民對話平臺(2024b),運輸部門,擷取時間:2024年10月07日,網址:https://www.cca.gov.tw/climatetalks/emission-and-reduction/sectoral/transportation/1877.html。
    財團法人車輛研究測試中心(2010),淺談機車新能源─燃料電池(下),擷取時間:2024年10月13日,網址:https://www.artc.org.tw/tw/knowledge/articles/1640。
    國際能源網(2022),3154輛+48城!氫燃料公車全國佈局分析!,擷取時間:2024年10月27日,網址:https://m.in-en.com/article/html/energy-2311474.shtml。
    郭羽漫(2024),氫氣輸儲安全嗎?一覽氫氣與運輸、接收設施風貌,破除危險迷思,科技魅癮,擷取時間:2024年11月05日,網址:https://www.charmingscitech.nat.gov.tw/post/hydrogen-transportation-storage。
    經濟部能源署(2024),112 年能源供給概況,擷取時間:2024年10月29日,網址:https://www.moeaea.gov.tw/ECW/populace/content/Content.aspx?menu_id=14435。
    Anandan, V. (2023), The Effects of Internal Combustion Engines on the Environment, Delta-Q, Retrieved October 14, 2024, website: https://delta-q.com/industry-news/the-effects-of-internal-combustion-engines-on-the-environment/.
    Bettayeb, K. (2017), Hydrogen Cars for All?, CRNS NEWS, Retrieved October 15, 2024, website: https://news.cnrs.fr/articles/hydrogen-cars-for-all.
    CaFCP (2024), FCEV Sales, FCEB, & Hydrogen Station Data, Retrieved October 28, 2024, website: https://h2fcp.org/by_the_numbers.
    CoacHyfied (2024), CoacHyfied, Retrieved October 29, 2024, website: https://coachyfied.eu/.
    COP28 UAE (2023). COP28 Delivers Historic Consensus in Dubai to Accelerate Climate Action, Retrieved October 6, 2024, website: https://www.cop28.com/en/news/2023/12/COP28-delivers-historic-consensus-in-Dubai-to-accelerate-climate-action.
    Enyenihi, A. (2024), Environmental Impact of Internal Combustion Engines: Air Pollution Challenges & Solutions, AWIS, Retrieved October 14, 2024, website: https://awis.org/resource/environmental-impact-internal-combustion-engines-air-pollution-challenges-solutions/.
    European Commission (2024), Clean Urban Transport for Europe, Retrieved October 29, 2024, website: https://trimis.ec.europa.eu/project/clean-urban-transport-europe.
    Fuel Cell Electric Buses (2024a), CHIC, Retrieved October 29, 2024, website: https://fuelcellbuses.eu/projects/chic.
    Fuel Cell Electric Buses (2024b), High V.LO-City, Retrieved October 29, 2024, website: https://fuelcellbuses.eu/projects/high-vlo-city.
    H2Stations (2025), Milestone reached: over 1,000 hydrogen refuelling stations in operation worldwide in 2024, Retrieved April 23, 2025, website: https://www.h2stations.org/press-release-2025-milestone-reached-over-1000-hydrogen-refuelling-stations-in-op-eration-worldwide-in-2024/.
    IEA (2020), Global hydrogen demand by sector in the Sustainable Development Scenario, 2019-2070, Retrieved October 18, 2024, website: https://www.iea.org/data-and-statistics/charts/global-hydrogen-demand-by-sector-in-the-sustainable-development-scenario-2019-2070.
    JHyM (2025), Outline of HRS, Retrieved April 23, 2025, website: https://www.jhym.co.jp/en/station/.
    Kimley Horn (2022), BEVs or FCEVs: Which Zero Emission Vehicle is Right for Your Fleet?, Retrieved October 8, 2024, website: https://www.kimley-horn.com/news-insights/perspectives/bev-or-fcev-which-zev-for-your-fleet/.
    Lovati, S. (2020), BEVs vs. FCEVs: Competing or Complementary Technologies?, EEWeb, Retrieved October 15, 2024, website: https://www.eeweb.com/bevs-vs-fcevs-competing-or-complementary-technologies/.
    Manthey, N. (2022), Montpellier foregoes hydrogen project for battery-electric buses, for now, electrive, Retrieved November 2, 2024, website: https://www.electrive.com/2022/01/11/montpellier-foregoes-hydrogen-project-for-battery-electric-buses-for-now/.
    Net Zero Tracker (2024), Data Explorer, Retrieved October 5, 2024, website: https://zerotracker.net/.
    OWID (2024), Energy consumption by source, World, Retrieved October 6, 2024, website: https://ourworldindata.org/grapher/energy-consumption-by-source-and-country.
    Parkes, R. (2024), 'Not possible' | Rising costs force Austrian state to abandon plan to bring 35 hydrogen buses to city roads, Hydrogen Insight, Retrieved November 2, 2024, website: https://www.hydrogeninsight.com/transport/not-possible-rising-costs-force-austrian-state-to-abandon-plan-to-bring-35-hydrogen-buses-to-city-roads/2-1-1641883.
    Rhodium Group (2024), Fueling a Transition Away from Fossil: The Outlook for Global Fossil Fuel Demand, Retrieved October 6, 2024, website: https://rhg.com/research/global-fossil-fuel-demand/.
    Statista (2024a), Carbon dioxide emissions of the transportation sector worldwide in 2023, by select country, Retrieved April 23, 2025, website: https://www.statista.com/statistics/1291501/transportation-emissions-worldwide-by-country/.
    Statista (2024b), Share of Fossil Fuels in Primary Energy Consumption Worldwide from 1965 to 2023, Retrieved October 6, 2024, website: https://www.statista.com/statistics/1302762/fossil-fuel-share-in-energy-consumption-worldwide/.
    Sustainable Bus (2023), Hydrogen pioneer Pau (France) now consider BEV technology amidst soaring H2 costs, Retrieved November 2, 2024, website: https://www.sustainable-bus.com/news/pau-france-hydrogen-battery-electric-technology/.
    Sustainable Bus (2024), Fuel cell bus projects in the spotlight: fleets, manufacturers, trends, Retrieved October 29, 2024, website: https://www.sustainable-bus.com/fuel-cell-bus/fuel-cell-bus-hydrogen/.
    Transport for London (2025). Discounts and exemptions for Congestion Charge and Blackwall and Silvertown tunnels charge, Retrieved March 12, 2025, website: https://tfl.gov.uk/modes/driving/discounts-and-exemptions.
    UN (2024), Causes and Effects of Climate Change, Retrieved October 5, 2024, website: https://www.un.org/en/climatechange/science/causes-effects-climate-change.
    Zemo Partnership (2023), Buses & Coaches, Retrieved May 23, 2025, website: https://www.zemo.org.uk/work-with-us/buses-coaches/low-emission-buses/areas-of-operation.htm.
    Zhu, S. (2024), China plans to build more than 1,200 hydrogen refueling stations by 2025, more than the current total worldwide, Interact Analysis, Retrieved October 27, 2024, website: https://interactanalysis.com/insight/china-plans-to-build-more-than-1200-hydrogen-refueling-stations-by-2025-more-than-the-current-total-worldwide/.
    NEDO(2024),サンシャイン計画 50周年記念 特設サイトSunshine Project 50th Anniversary,擷取時間:2024年10月24日,網址:https://www.nedo.go.jp/activities/sunshine50th.html。
    Office for Government Policy Coordination Prime Minister's Secretariat (2020), 201015 보도자료_제2차 수소경제위원회, Retrieved October 26, 2024, website: https://www.opm.go.kr/flexer/view.do?ftype=hwp&attachNo=101500。
    Tokyo水素ナビ(2024),燃料電池バスの導入,擷取時間:2024年10月26日,網址:https://www.tokyo-h2-navi.metro.tokyo.lg.jp/tonaisuiso/nenryo-denchi-bus。
    大和総研(2014),「日本再興戦略」改訂2014と「水素・燃料電池戦略ロードマップ」,擷取時間:2024年10月24日,網址:https://www.dir.co.jp/report/research/capital-mkt/esg/20140630_008702.html。
    脱炭素技術センター(2023),燃料電池バスの開発状況,擷取時間:2024年10月26日,網址:https://www.decarbonation-tech.com/vehicle_74/。
    에너지신문(2024), 2030년까지 전체 광역버스 25% 수소버스 보급한다, Retrieved October 26, 2024, website: https://www.energy-news.co.kr/news/articleView.html?idxno=205751.
    월간수소경제(2024), 수소산업 주요 통계(2024년 8월 31일 기준), Retrieved October 26, 2024, website: https://www.h2news.kr/news/articleView.html?idxno=12946.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE