簡易檢索 / 詳目顯示

研究生: 黃彥欽
Huang, Yen-Chin
論文名稱: 混合相磊晶鐵酸鉍薄膜的相變
Phase Evolution in Mixed Phase BiFeO3 Epitaxial Films
指導教授: 陳宜君
Chen, Yi-Chun
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 43
中文關鍵詞: 混合相相變拉曼多鐵性材料鐵酸鉍
外文關鍵詞: mixed phase, phase transition, Raman, multiferroic material, BiFeO3
相關次數: 點閱:113下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在混合相的鈣鈦礦材料中常有ㄧ些特殊物理特性,像很高壓電係數、介電常數等等。這些現象可能來自於多相的耦合或有一中間相。本研究中,我們探討受鋁酸鑭(LaAlO3,簡稱LAO)基板壓縮應力所形成的混合相鐵酸鉍(BiFeO3,簡稱BFO)磊晶薄膜樣品。受基板應力,在鐵酸鉍混合相中形成類似菱長晶(R)和類似長方晶(T)的斜方晶結構,具有週期性的結構,並且隨著厚度增加而釋放應力,R結構比例增加。我們利用拉曼散射研究混合相晶格結構,從不同R/T比例的拉曼光譜顯示了隨厚度的晶格扭曲變化。本研究中,探討了從溫度室溫到600 ℃的相變化。此外,利用奈米級顯微探針探討電壓對結構的相變影響也可在拉曼光譜中量測到。R結構的振動峰在最厚的薄膜中明顯增強,在厚度增加期間,Bi-O鍵結間距拉長,氧八面體沿著[110]軸持續傾斜。菱長晶結構振動峰225、 238 和 362 cm-1在200 ℃ R-T相變點消失,相反的,T結構一直到600 ℃都還存在且Bi-O間距隨溫度縮短。外加電壓下,Bi-O距離縮短,Fe-O相關的振動峰強度下降,結構相變成T結構。

    Significant changes of physical properties are usually observed in perovskite materials with mixed phases. This phenomenon may come from the couplings between the multiple phases or the intermediate structures. In this study, we investigated the BiFeO3 (BFO) films with mixed phases driven by compressive stress from the substrate. In these films, different phases, including monoclinic rhombohedral-like phase (R), and tetragonal-like phase (T), formed periodical strained patterns, and the R/T ratio relaxed with the film thickness. We explored the BFO crystal structures by Raman scattering. The Raman spectrum of samples with different R/T phase ratios showed the change of lattice distortion with thickness. The evolution of phonon behaviors during phase transformation from room temperature to 600 ℃ was investigated. Moreover, the phase transformation with the bias, which was confirmed at nanoscale by scanning probe microscopy, was also revealed by the Raman spectrum. The enhancement of the rhombohedral phonon was observed in the thickest film. In the processes of increasing thicknesses, the Bi-O bonds became longer and the octahedra rotated around [110] axis. The R-phonon about 225, 238 and 362 cm-1 disappeared at the R-T phase transition at low temperature. In contrast, the T phase in the Raman spectrum last to our highest measured temperature 600 ℃ and the Bi-O bonds distance decreased. Under the electric field, the Bi-O bonds shrank and the intensity of Fe-O octahedra-related phonons decreased, which corresponded with the phase transformation of R to T.

    摘要…………………………………………….……………………………Ⅰ Abstract…………………………………………….………………………Ⅱ 致謝………………………………………………………….………………Ⅲ 目錄…………………………………………………………….……………Ⅳ 表目錄……………………………………………………………….………Ⅴ 圖目錄…………………………………………………………….…………Ⅵ 第一章 緒論……………………………………………………….…………1 第二章 文獻回顧……………………………………………….……………3 2.1 鐵酸鉍材料介紹………………………………………...……..3 2.1.1 多鐵性……………………………………………...…..3 2.1.2多鐵性材料理論基礎………………………..………….3 2.1.3 鐵酸鉍材料基本性質………………….………………5 2.2 鈣鈦礦結構研究………………………………….……………6 2.2.1拉曼散射相關研究…………………………….……….6 第三章 實驗原理與方法……………………………………….…………..14 3.1拉曼光譜原理…………………………………...…………….14 3.1.1 拉曼散射機制………………………………...………14 3.1.2拉曼散射的古典波動模型……………………….……16 3.1.3微拉曼(micro Raman)散射系統介統…………....……17 3.1.4實驗流程..…………………………………………...…19 第四章 結果與討論……………………………………...…………………21 4.1受應力調制結構的鐵酸鉍拉曼光譜………………….………21 4.1.1鐵酸鉍拉曼振動模態……………...…………………25 4.1.2基板應力調變…………………………………...……30 4.2鐵酸鉍混合相結構隨溫度的相變…………………...…..……35 4.3電壓調變晶格應力拉曼譜線………………...…………..……39 第五章 結論……………………………………………………...…………41 參考文獻……………………………………………………….……………42 表目錄 表2-1鐵酸鉍鐵電反鐵磁特性相變變化…………………………………..…6 表2-2偏振方向與振動模態關係………………………………………….….7 表2-3長方晶振動頻率與模態標定…………………………………………..8 表2-4菱長晶振動頻率與膜態標定………………………………………....10 表4-1鐵酸鉍長方晶各原子所佔位置與對稱性……………………………25 表4-2拉曼遠紅外振動模態查表流程…………………………...….…..….26 表4-3鉍、鐵、氧1(C4v) 在晶格(C4v)中的振動模態…………………….….27 表4-4氧2(C2v)在晶格(C4v)中的振動模態…………………………………27 表4-5鐵酸鉍菱長晶各原子所佔位置與對稱性…………………...….…..28 表4-6鉍、鐵(C3) 在晶格(C3v)中的振動模態………………………………28 表4-7氧(C1)在晶格(C3v)中的振動模態……………………………………28 表4-8鐵酸鉍斜方晶各原子所佔位置與對稱性……………………..……29 表4-9D. M. Adams and D. C. Newton所做的振動模態查詢表……...…...29 表4-10鐵酸鉍結構拉曼振動模態……………………...………………….30 圖目錄 圖2-1典型鈣鈦礦鈦酸鋇結構……………………………………………....4 圖2-2(a)利用xx/yy偏振方向使增強A1模態強度(b)xz偏振方向增強E模態………………………………………………...………………………...….7 圖2-3(a)A1、B1模態不同鍵結位能分布(b)E模態位能分布(c)各鍵結力常數大小……………………………………………………………...…………9 圖2-4鐵酸鉍長方晶結構各模態振動模式示意圖……………...…….……9 圖2-5鐵酸鉍菱長晶結構拉曼譜線………………...……………..……….11 圖2-6拉曼振動峰(2E9)強度與積分強度比(2E8/2E9)隨溫度變化…….….12 圖2-7鈮酸鋰振動峰位能分布……………..……………..………...…..….12 圖2-8鈮酸鋰A1模態振動模式示意圖……………………………………...13 圖2-9鐵氧八面體振動模態…………………………………………………13 圖3-1史托克、反史托克拉曼光譜訊號強度……………...………..........….15 圖3-2拉曼散射示意圖…………………………………………...………….18 圖3-3拉曼散射裝置圖………………………………………………………19 圖4-1鐵酸鉍不同厚度薄膜…………………………………………………22 圖4-2鐵酸鉍拉曼光譜…………………………………………………...….23 圖4-3鐵酸鉍長方晶結構圖……………………………………………..….26 圖4-4鐵酸鉍菱長晶結構…………………………………………………...30 圖4-5鐵酸鉍斜方晶結構…………………………………………………...30 圖4-6 不同厚度拉曼譜線………………………………………………......31 圖4-7菱長晶拉曼光譜比較………………………………………………....32 圖4-8振動峰頻率和強度隨厚度變化趨勢圖………………………………33 圖4-9 BFO變溫拉曼譜線…………………………………………………....36 圖4-10LAO變溫拉曼譜線……………………………………………..……..37 圖4-11拉曼溫變振動峰飄移……………………………………...………...38 圖4-12長方晶結構振動示意圖………………………………….………….38 圖4-13混合相表面圖3μm×3μm……………………………………....…...39 圖4-14加電壓前後拉曼譜線比較……..……………...…………………….40 圖4-15頻率與強度隨電壓變化趨勢圖.……………………………..…..….40

    [1] C. H. Ahn, et al., Science 33, 488 (2004).
    [2] Rijnders G. et al., Nature 306, 5 (2004).
    [3] L. P. Yong et al., Mater. Lett. 61, 542 (2007).
    [4] Ma et al., Appl. Phys. Lett. 92, 182902 (2008).
    [5] B. Noheda, Current Opinion in Solid State and Materials Science 6,(2002), 27-34.
    [6] R. J. Zeches et al., Science 326, 977 (2009).
    [7] M. E. Lines, et al., Principles and Applications of Ferroelectrics and Related Materials, Clarendon Press, Oxford (1977).
    [8] C. H. Ahn, et al., Science, 303, 488 (2004).
    [9] G. Srinivasan, et al., Solid State Commun. 128, 261 (2003).
    [10] G. A. Smolenskii , et al., SOVS. PHYS. USPEKHI.25, 475-493 (1982).
    [11] H. Schmid, Int. J. Magn. 4, 337 (1973).
    [12] N. A. Hill, Filippetti A, J Magn Magn Mate. 242–245,976. (2002).
    [13] N A. Hill, et al., Phys. Rev. B 59, 8759-8769 (1999).
    [14] Baettig P and Spaldin N A, Appl. Phys. Lett. 86, 012505 (2005).
    [15] Filippetti A and Hill N A J. Magn. Magn. Mater.236 176 (2001).
    [16] B. B. Van Aken, et al., Phys. Rev. B 69, 134113 (2004).
    [17] B. B. Van Aken, et al., Nat. Mater. 3, 164 (2004).
    [18] T Goto, et al., Phys. Rev. Lett. 92, 257201 (2004).
    [19] L. C. Chapon, et al., Phys. Rev. Lett. 93, 177402 (2004).
    [20] D. V. Efremov, et al., Nat.Mater. 3, 853 (2004).
    [21] John R. Ferrara, INTRODUCTORY RAMAN SPECTROSCOPY.
    [22] Manoj K. Singh et al.,PRB 72, 132101 (2005).
    [23] Jornal of APPLIED PHYSICS 103, 093532 (2008).
    [24] Mariola O. Ramirez et al., APPLIED PHYSICS LETTERS 92, 022511 (2008).
    [25] Y. Repelin et al., Journal of Physics and Chemistry of Solids 60 (1999) 819-825.
    [26] Alison J. Hatt, et al., Physical Review B 81, 054109 (2010).
    [27] 汪建民, 材料分析.

    下載圖示 校內:2011-08-31公開
    校外:2011-08-31公開
    QR CODE