簡易檢索 / 詳目顯示

研究生: 李威廷
Li, Wei-Ting
論文名稱: 相互引導之有機與無機晶相排列對薄膜壓電性質的影響
Mutually-related assembly and stacking of constituent organic/inorganic crystals and corresponding impacts on thin film piezoelectricity
指導教授: 阮至正
Ruan, Jrjeng-Jeng
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 84
中文關鍵詞: 交互作用混成材料壓電材料
外文關鍵詞: interactions, hybrid thin film, piezoelectricity
相關次數: 點閱:61下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著人工智慧與物聯網的興起,各種電子設備逐漸以輕便、尺寸小、方便攜帶和長時間運行來設計:如智能手錶和健身設備...等可撓式穿戴電子設備。然而電池的更換是非常不方便的,因此自供電系統是需要的。而在可持續供應電源的選擇中,機械能是最有希望的能源。
    作為可撓式壓電薄膜開發的鐵電高分子多晶材料,由於結晶取向不一致,以及偶極矩較小,壓電效能無法滿足應用的需求。因此,科學家透過混摻無機壓電晶相,形成有機無機混成壓電材料試圖提升薄膜整體的壓電性質。但因無機晶相在薄膜的分散性不佳以及晶粒取向的不一致,使得混成薄膜的壓電性質陷入瓶頸。
    許多無機晶相的前驅物,傾向聚集於極性較佳的PMMA區域。基於這樣的研究觀察,此研究將探討,透過調控鐵電高分子P(VDF-TrFE) (poly(vinylidene fluoride-co-trifluoroethylene)和PMMA在薄膜中的分布,來調控無機前驅物分布的情形。再以水熱法於低溫將前驅物轉變成ZnO柱狀晶,來發展出具有P(VDF-TrFE)有序板晶/站立ZnO柱狀晶排列陣列的有機無機混成壓電材料,以提升薄膜整體的壓電效應。經由此研究,不僅探索出新穎的晶相成長引導機制,來調控混成晶相薄膜的結構,亦發現高分子板晶的壓電係數,會因氧化鋅柱狀晶的成長與分布而大幅提升,為一新穎的研究成果。

    With artificial intelligence and the Internet of Things rising, electronic devices are designed to be lightweight, small size, easy to carry and long-running : flexible wearable electronic devices such as smart watches. However, replacement of battery is inconvenient,so self-powered systems are needed. In the choice of power supply, mechanical energy is the most promising energy source.
    Ferroelectric polymeric material is developed as a flexible piezoelectric film. The inconsistent orientation of crystals and small dipole moments bring that piezoelectric performance cannot satisfy the application requirements. Therefore, scientists improve piezoelectric properties of the film by mixing inorganic piezoelectric crystals to form organic-inorganic hybrid piezoelectric materials. However, due to the poor dispersion of the inorganic crystal in the film and inconsistency of the crystal grain orientation, the piezoelectric properties of the hybrid film fall into a bottleneck.
    Precursors of inorganic crystalline tend to aggregate in PMMA region. Based on research observations, this study will explore the distribution of inorganic precursors by regulating the distribution of ferroelectric polymer P(VDF-TrFE) (poly(vinylidene fluoride-co-trifluoroethylene) and PMMA in the film. Then, the precursor is transformed into ZnO nanorods by hydrothermal method at low temperature to develop organic-inorganic hybrid piezoelectric materials with P(VDF-TrFE) ordered lamellar crystal/standing ZnO nanorods arrays to enhance piezoelectric effect.Through this research, we have not only explored a novel crystal growth guiding mechanism to control the structure of the hybrid materials, but also found that the piezoelectric coefficient of the polymer lamellar crystals will be enhance due to the growth of zinc oxide nanorods.

    摘要.......I 英文延伸摘要.......II 致謝 .......VII 目錄....... IX 圖目錄.......XII 表目錄.......XVIII 第一章 緒論.......1 1.1 前言.......1 1.2 研究動機與目的.......2 第二章 文獻回顧.......3 2.1 有機無機混成壓電材料簡介.......3 2.1.1 壓電效應(Piezoelectric effect).......3 2.1.2 壓電材料的介紹與比較.......8 2.1.3 ZnO的基本性質.......11 2.1.4 P(VDF-TrFE)的基本性質.......13 2.1.5 有機無機混成材料簡介與前景.......16 2.2 晶相取向性的影響.......18 2.2.1 晶種及小分子對無機晶相取向的影響.......19 2.3 掃描式探針技術於壓電性質的量測.......22 2.3.1 壓電響應顯微鏡的原理.......22 第三章 實驗材料與方法.......26 3.1 實驗材料.......26 3.2 實驗分析儀器.......29 3.3 實驗流程.......35 3.4 實驗步驟與分析.......36 3.4.1 薄膜製備.......36 3.4.2 水熱合成法.......36 3.4.3 實驗分析.......37 第四章 結果與討論.......39 4.1 混摻效應.......39 4.1.1 混摻對P(VDF-TrFE)/PMMA相分佈的影響.......39 4.1.2 混摻對PMMA相變化行為的影響.......41 4.2 板晶融合、成長對混摻系統中非晶相PMMA區域演變的影響.......44 4.2.1 緩慢升溫對P(VDF-TrFE)/PMMA/Zn(Ac)2.2H2O混摻系統中非晶相 PMMA區域演變探討.......44 4.2.2 利用焓驅動形成混成材料(enthalpy driven mixing ).......49 4.2.3 利用熵驅動形成混成材料(entropy driven mixing).......52 4.2.4 利用PMMA區域的融合發展混成材料.......57 4.3 有機無機混成薄膜壓電性質的量測.......64 4.3.1 PVDF-TrFE薄膜的壓電性質.......64 4.3.2 PVDF-TrFE/ZnO 混成薄膜的壓電性質.......71 第五章 結論.......74 第六章 參考文獻.......77

    [1] James Speight, P.D., Lange's Handbook of Chemistry, Sixteenth Edition. 16th ed. / ed. 2005, New York: McGraw-Hill Education.
    [2] Coppens, P., Chapter 1.2 in:" Electron Distributions and the Chemical Bond," P. Coppens and MB Hall, eds. 1982, Plenum, New York.
    [3] Seitz, F. and D. Turnbull, Solid state physics. 1957: Academic Press.
    [4] Moss, G. and Coppens P, Space partitioning and the effects of molecular proximity on electrostatic moments of the crystalline formamide molecule. Chemical Physics Letters, 1980. 75(2): p. 298-302.
    [5] Kochervinskii, V., Piezoelectricity in crystallizing ferroelectric polymers: Poly (vinylidene fluoride) and its copolymers (A review). Crystallography Reports, 2003. 48(4): p. 649-675.
    [6] Damjanovic, D., Stress and frequency dependence of the direct piezoelectric effect in ferroelectric ceramics. Journal of Applied Physics, 1997. 82(4): p. 1788-1797.
    [7] Tonisch, K., Cimalla, V., Foerster, C., Romanus, H., Ambacher, O., Dontsov, D., Piezoelectric properties of polycrystalline AlN thin films for MEMS application. Sensors and Actuators A: Physical, 2006. 132(2): p. 658-663.
    [8] Soeno, Y., Ichikawa, S., Tsuna, T., Sato, I., et al., Read/write head including displacement generating means that elongates and contracts by inverse piezoelectric effect of electrostrictive effect. 2001, 6: p.246,552
    [9] Li, X., Sun, M., Wei, X., Shan, C., & Chen, Q., 1D piezoelectric material based nanogenerators: methods, materials and property optimization. Nanomaterials, 2018. 8(4): p. 188.
    [10] Pramanik, S., Pingguan-Murphy, B. and Osman N.A., Developments of immobilized surface modified piezoelectric crystal biosensors for advanced applications. Int. J. Electrochem. Sci, 2013. 8: p. 8863-8892.
    [11] Harrison, J. and Ounaies, Z, Piezoelectric polymers. Encyclopedia of polymer science and technology, 2002. 3.
    [12] Zhao, M.-H., Wang Z.-L, and Mao S.X, Piezoelectric characterization of individual zinc oxide nanobelt probed by piezoresponse force microscope. Nano Letters, 2004. 4(4): p. 587-590.
    [13] Wang, Z.L. and J. Song, Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science, 2006. 312(5771): p. 242-246.
    [14] Song, J., Zhou J., and. Wang Z.L, Piezoelectric and semiconducting coupled power generating process of a single ZnO belt/wire. A technology for harvesting electricity from the environment. Nano letters, 2006. 6(8): p. 1656-1662.
    [15] Park, K. and. Ko K, Effect of TiO2 on high-temperature thermoelectric properties of ZnO. Journal of alloys and compounds, 2007. 430(1-2): p. 200-204.
    [16] Zhang, H., Ma, X., Xu, J., Niu, J., Yang, D., Arrays of ZnO nanowires fabricated by a simple chemical solution route. Nanotechnology, 2003. 14(4): p. 423.
    [17] Zhang, W. and . Yanagisawa K, Hydrothermal synthesis of ZnO long fibers. Chemistry letters, 2005. 34(8): p. 1170-1171.
    [18] Lee, W.,. Jeong M.-C, and. Myoung J.-M, Catalyst-free growth of ZnO nanowires by metal-organic chemical vapour deposition (MOCVD) and thermal evaporation. Acta Materialia, 2004. 52(13): p. 3949-3957.
    [19] Hu, X., Masuda, Y., Ohji, T., Kato, K., Polyethylenimine-guided self-twin zinc oxide nanoarray assemblies. Crystal Growth and Design, 2009. 9(8): p. 3598-3602.
    [20] Govender, K., Boyle, D. S., Kenway, P. B., O'Brien, P., Understanding the factors that govern the deposition and morphology of thin films of ZnO from aqueous solution. Journal of Materials Chemistry, 2004. 14(16): p. 2575-2591.
    [21] Horibe, H., Sasaki, Y., Oshiro, H., Hosokawa, Y., Kono, A., Takahashi, S., Nishiyama, T., Quantification of the solvent evaporation rate during the production of three PVDF crystalline structure types by solvent casting. Polymer journal, 2014. 46(2): p. 104-110.
    [22] Legrand, J., Structure and ferroelectric properties of P (VDF-TrFE) copolymers. Ferroelectrics, 1989. 91(1): p. 303-317
    [23] Nalwa, H.S., Ferroelectric polymers: chemistry: physics, and applications. 1995: CRC Press.
    [24] Ogoshi, T., Itoh, H., Kim, K. M., Chujo, Y., Structure and ferroelectric phase transition of vinylidene fluoride-trifluoroethylene copolymers: 2. VDF 55% copolymer. Polymer, 1984. 25(2): p. 195-208.
    [25] Kaval, W.G.,. Lake R.A, and. Coutu R.A, PVDF-TrFE Electroactive Polymer Based Micro-Electro-Mechanical Systems (MEMs) Structures, in Micro and Nanomechanics, Volume 5. 2018, Springer. p. 11-17.
    [26] Sanchez, C. and. Lebeau B, Design and properties of hybrid organic–inorganic nanocomposites for photonics. Mrs Bulletin, 2001. 26(5): p. 377-387.
    [27] Ogoshi, T., Itoh, H., Kim, K. M., Chujo, Y., Synthesis of organic− inorganic polymer hybrids having interpenetrating polymer network structure by formation of ruthenium− bipyridyl complex. Macromolecules, 2002. 35(2): p. 334-338.
    [28] Cölfen, H. and. Mann S, Higher‐order organization by mesoscale self‐assembly and transformation of hybrid nanostructures. Angewandte Chemie International Edition, 2003. 42(21): p. 2350-2365.
    [29] Gon, M., Tanaka K, and. Chujo Y, Creative synthesis of organic–inorganic molecular hybrid materials. Bulletin of the Chemical Society of Japan, 2017. 90(5): p. 463-474.
    [30] Wang, B., Wilkes, G. L., Hedrick, J. C., Liptak, S. C.,McGrath, J. E., New high-refractive-index organic/inorganic hybrid materials from sol-gel processing. Macromolecules, 1991. 24(11): p. 3449-3450.
    [31] agan, C., Mitzi D., and. Dimitrakopoulos C, Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors. Science, 1999. 286(5441): p. 945-947.
    [32] Huynh, W.U., Dittmer J.J, and. Alivisatos A.P, Hybrid nanorod-polymer solar cells. science, 2002. 295(5564): p. 2425-2427.
    [33] Lee, T. W., Park, O. O., Yoon, J., Kim, J. J., Polymer‐layered silicate nanocomposite light‐emitting devices. Advanced Materials, 2001. 13(3): p. 211-213.
    [34] Sanchez, C., Ribot, F., Rozes, L., Alonso, B., Design of Hybrid organic-inorganic nanocomposites synthesized via sol-gel chemistry. Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals, 2000. 354(1): p. 143-158.
    [35] Tamaki, R.,. Naka K, and. Chujo Y, Synthesis of poly (N, N-dimethylacrylamide)/silica gel polymer hybrids by in situ polymerization method. Polymer journal, 1998. 30(1): p. 60-65.
    [36] Dr. Changbum Jo,Dr. Yongbeom Seo,Dr. Kanghee Cho,Jaeheon Kim,Hye Sun Shin,Munhee Lee,Jeong‐Chul Kim,Prof. Sang Ouk Kim,Prof. Jeong Yong Lee,Prof. Hyotcherl Ihee,Prof. Ryong Ryoo, Random‐Graft Polymer‐Directed Synthesis of Inorganic Mesostructures with Ultrathin Frameworks. Angewandte Chemie, 2014. 126(20): p. 5217-5221.
    [37] MacLachlan, M.J.,. Manners I, and. Ozin G.A, New (inter) faces: polymers and inorganic materials. Advanced Materials, 2000. 12(9): p. 675-681.
    [38] Lin, J., Cates E, and. Bianconi P.A., A synthetic analog of the biomineralization process: controlled crystallization of an inorganic phase by a polymer matrix. Journal of the American Chemical Society, 1994. 116(11): p. 4738-4745.
    [39] Koegler, W.S. and. Griffith L.G, Osteoblast response to PLGA tissue engineering scaffolds with PEO modified surface chemistries and demonstration of patterned cell response. Biomaterials, 2004. 25(14): p. 2819-2830.
    [40] Ankit Agarwal,Tahlia L.Weis,Michael J.Schurr,Nancy G.Faith,Charles J.Czuprynski,Jonathan F. McAnulty,Christopher J. Murphy,Nicholas L. Abbott, Surfaces modified with nanometer-thick silver-impregnated polymeric films that kill bacteria but support growth of mammalian cells. Biomaterials, 2010. 31(4): p. 680-690.
    [41] Song, H.-J.,. Zhang Z.-Z., and. Men X.-H., Surface-modified carbon nanotubes and the effect of their addition on the tribological behavior of a polyurethane coating. European Polymer Journal, 2007. 43(10): p. 4092-4102.
    [42] Y Cui, Y Liu, Y Cui, X Jing, P Zhang, X Chen, The nanocomposite scaffold of poly (lactide-co-glycolide) and hydroxyapatite surface-grafted with L-lactic acid oligomer for bone repair. Acta biomaterialia, 2009. 5(7): p. 2680-2692.
    [43] X.S. Bian , L. Ambrosio , J.M. Kenny , L. Nicolais , E. Occhiello , M. Morra , F. Garbassi & A.T. Dibenedetto, The effects of surface treatments of fibers on the interfacial properties in single-fiber composites. Journal of adhesion science and technology, 1991. 5(5): p. 377-388.
    [44] Yonggang Wang,Gang Xu,Zhaohui Ren,Xiao Wei,Wenjian Weng,Piyi Du,Ge Shen,Gaorong Han, Low temperature polymer assisted hydrothermal synthesis of bismuth ferrite nanoparticles. Ceramics international, 2008. 34(6): p. 1569-1571.
    [45] Salavati-Niasari, M., Davar F, and. Loghman M.R -Estarki, Long chain polymer assisted synthesis of flower-like cadmium sulfide nanorods via hydrothermal process. Journal of alloys and compounds, 2009. 481(1-2): p. 776-780.
    [46] J. Li,X.L.Lu,Y.F. Zheng, Effect of surface modified hydroxyapatite on the tensile property improvement of HA/PLA composite. Applied Surface Science, 2008. 255(2): p. 494-497.
    [47] Zhongkui Hong,Xueyu Qiu,Jingru Sun,Mingxiao Deng,Xuesi Chen,Xiabin Jing, Grafting polymerization of L-lactide on the surface of hydroxyapatite nano-crystals. Polymer, 2004. 45(19): p. 6699-6706.
    [48] K Yi-Yeoun Kim, Elliot P. Douglas, and Laurie B. Gower, Patterning inorganic (CaCO3) thin films via a polymer-induced liquid-precursor process. Langmuir, 2007. 23(9): p. 4862-4870.
    [49] Ki Seok Kim, Hyun Jeong, Mun Seok Jeong, Gun Young Jung, Polymer‐templated hydrothermal growth of vertically aligned single‐crystal ZnO nanorods and morphological transformations using structural polarity. Advanced Functional Materials, 2010. 20(18): p. 3055-3063.
    [50] Valentina Cauda, Bruno Torre, Andrea Falqui, Giancarlo Canavese, Stefano Stassi, Thomas Bein, and Marco Pizzi, Confinement in oriented mesopores induces piezoelectric behavior of polymeric nanowires. Chemistry of Materials, 2012. 24(21): p. 4215-4221.
    [51] S. Trolier-McKinstry,P. Muralt, Thin film piezoelectrics for MEMS. Journal of Electroceramics, 2004. 12(1-2): p. 7-17.
    [52] Zhengrong R. Tian, James A. Voigt, Jun Liu, Bonnie Mckenzie, Matthew J. Mcdermott, Mark A. Rodriguez, Hiromi Konishi & Huifang Xu, Complex and oriented ZnO nanostructures. Nature materials, 2003. 2(12): p. 821-826.
    [53] Kevin M. McPeak, Thinh P. Le, Nathan G. Britton, Zhorro S. Nickolov, Yossef A. Elabd, and Jason B. Baxter, Chemical bath deposition of ZnO nanowires at near-neutral pH conditions without hexamethylenetetramine (HMTA): understanding the role of HMTA in ZnO nanowire growth. Langmuir, 2011. 27(7): p. 3672-3677.
    [54] Vincenzina Strano, Riccardo Giovanni Urso, Mario Scuderi, Kingsley O. Iwu, Francesca Simone, Enrico Ciliberto, Corrado Spinella, and Salvo Mirabella, Double role of HMTA in ZnO nanorods grown by chemical bath deposition. The Journal of Physical Chemistry C, 2014. 118(48): p. 28189-28195.
    [55] Seol, Daehee, Bora Kim, and Yunseok Kim, Non-piezoelectric effects in piezoresponse force microscopy. Current Applied Physics, 2017. 17(5): p. 661-674.
    [56] Elisabeth Soergel, Piezoresponse force microscopy (PFM). Journal of Physics D: Applied Physics, 2011. 44(46): p. 464003.
    [57] Yu-Meng You, Wei-Qiang Liao, Dewei Zhao,Heng-Yun Ye,Yi Zhang,Qionghua Zhou,Xianghong Niu,Jinlan Wang,Peng-Fei Li,Da-Wei Fu, Zheming Wang,Song Gao,Kunlun Yang,Jun-Ming Liu,Jiangyu Li,Yanfa Yan,Ren-Gen Xiong, An organic-inorganic perovskite ferroelectric with large piezoelectric response. Science, 2017. 357(6348): p. 306-309.

    下載圖示 校內:2025-07-14公開
    校外:2025-07-14公開
    QR CODE