| 研究生: |
鄭家昌 Cheng, Jia-Chang |
|---|---|
| 論文名稱: |
不可靠生產系統之經濟批量模式
--考慮瑕疵品及重製製程 |
| 指導教授: |
李賢得
Lee, Shine-Der |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 工業管理科學系 Department of Industrial Management Science |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | 瑕疵品 、經濟生產批量 、不可靠生產系統 、重製製程 |
| 相關次數: | 點閱:125 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
本研究針對機器不可靠及重製製程之生產系統進行其最佳經濟生產批量之探討。此系統為一包含原料、瑕疵品及製成品等多種存貨型態的生產管理系統,當考慮系統內機器不可靠及瑕疵品需重製加工時,則可能因機器的損壞、機器的修復及重製情形之不同,造成批次之生產週期及其相關成本之差異。機器的不可靠性及重製特性將造成批次生產週期的延長;就成本而言,則包含額外的儲存成本、額外的機器整備成本、機器的修復成本及瑕疵品的存貨成本。
針對上述問題,本研究以隨機模式與傳統之存貨水準相對時間變化圖為工具,根據重新報酬理論,建構期望總生產存貨成本及期望生產週期時間模式,以最小化單位時間期望總成本為目標,求得最佳之經濟生產批量。期望總成本則包含原料及瑕疵品兩種生產階段的期望整備成本、各種存貨型態的期望儲存成本以及機器的期望修復成本。
本研所發展之模式可求得考慮瑕疵品且須重製加工之不可靠生產系統經濟生產批量及其相對之最小單位時間總期望存貨成本,研究中發現在假設生產批量為連續下,則單位時間的期望總存貨成本函數可能為凸函數(convex)或片斷式凸函數;而瑕疵品比例、機器損壞間隔時間以及機器修復時間對於經濟批量和單位時間存貨成本會有顯著之影響;另外,在模式推導中雖然使用到泰勒展開式去近似,但誤差值均很小可以忽略不計,因此使用泰勒展開式去近似不但可以免於推導上的困難且非常合適。
none
參考文獻
董青雲,具瑕疵品與同質重製工作兩階段生產系統之最佳經濟批量研究,成功大學工業管理研究所碩士論文,民87。
Agnihothri, S. R., and Kenett, R. S. 1995. The impact of defects on a process with rework. European Journal of Operational Research 80, 308-327.
Akella, R., and Kumar, P. R. 1986. Optimal control of production rate in a failure prone manufacturing system. IEEE Transactions on Automatic Control 31, 116-126.
Bieleckl, T., and Kumar, P. R. 1988. Optimality of zero-inventory policies for unreliable manufacturing systems. Operations Research 36, 532-541.
Chern, C. C., and Yang, P. 1999. Determining a threshold control policy for an imperfect production system with rework jobs. Naval Research Logistics 46, 273-301.
Groenevelt, H., Pintelon, L., and Seidmann, A. 1992a. Production lot sizing with machine breakdowns. Management Science 38, 104-123.
Groenevelt, H., Pintelon, L., and Seidmann, A. 1992b. Production batching with machine breakdowns and safety stocks. Operations Research 40, 959-971.
Hariga, M., and Ben-Daya, M. 1998. Note:the economic manufacturing lot-sizing problem with imperfect production processes:bounds and optimal solutions. Naval Research Logistics 45, 423-433.
Heavey. C. 1993. The throughput rate of multistation unreliable production lines. European Journal of Operational Research 68, 69-89.
Hong, Y., and Seong, D. 1993. The analysis of an unreliable two-machine production line with random processing times. European Journal of Operational Research 68, 228-235.
Jensen, P. A., Pakath, R., and Wilson, J. R. 1991. Optimal buffer inventories for multistage production systems with failures. European Journal of Operational Research 51, 313-326.
Johnson, L. A., and Montgomery, D. C., (1974), Operation Research in Production Planning, Scheduling, and Inventory Control, John Wiley & Sons, Inc.
Kimemia, J., and Gershwin, S. B. 1983. An algorithm for the computer control of a flexible manufacturing system. IIE Transactions15, 353-362.
Kim, C. H., and Hong, Y. 1997. An extended EMQ model for a failure prone machine with general lifetime distribution. International Journal of Production Economics 49, 215-223.
Kim, C. H., and Hong, Y. 1999. An optimal production run length in deteriorating production processes. International Journal of Production Economics 58, 183-189.
Kim, C. H., Hong, Y., and Chang, S. Y. 2001. Optimal production run length and inspection schedules in a deteriorating production process. IIE Transactions 33, 421-426.
Klein, M. 1966. Markovian decision models for reject allowance problems. Management Science 12, 349-358.
Lee, H. L., and Rosenblatt, M. J. 1987. Simultaneous determination of production cycle and inspection schedules in a production system. Management Science 33, 1125-1136.
Lee, H. L., and Yano, C. A. 1988. Production control in multistage systems with variable yield losses. Operations Research 36, 269-278.
Lee, H. L. 1992. Lot sizing to reduce capacity utilization in a production process with defective items, process corrections, and rework. Management Science 38, 1314-1328.
Lee, S. D., and Rung, J. M. 2000. Production lot sizing in failure prone two-stage serial system. European Journal of Operational Research 123, 42-60.
Levitan, R. E. 1960. The optimum reject allowance problem. Management Science 6, 172-186.
Lin, C. S. 1999. Integrated production-inventory models with imperfect production processes and a limited capacity for raw materials. Mathematical and Computer Modelling 29, 81-89.
Liu, J. J., and Yang, P. 1996. Optimal lot-sizing in an imperfect production system with homogeneous reworkable jobs. European Journal of Operational Research 91, 517-527.
Liu, B., and Cao, J. 1997. Production control of an unreliable manufacturing system under the assumption of no backlog. Mathematical Methods of Operations Research 46, 103-117.
Maimon, O. Z., and Gershwin, S. B. 1988. Dynamic scheduling and routing for flexible manufacturing systems that have unreliable machines. Operations Research 36, 279-292.
Makis, V. 1998. Optimal lot sizing and inspection policy for an EMQ model with imperfect inspections. Naval Research Logistics 45, 165-186.
Makis, V., and Fung, J. 1998. An EMQ model with inspections and random machine failures. Journal of the Operational Research Society 49, 66-76.
Porteus, E. L. 1986. Optimal lot sizing, process quality improvement, and setup cost reduction. Operations Research 34, 137-144.
Rosenblatt, M. J., and Lee, H. L. 1986. Economic production cycles with imperfect production processes. IIE Transactions 18, 48-55.
Ross, S. M. (1996), Stochastic Processes, 2th ed., John Wiley & Sons, Inc.
Sharifnia, A. 1988. Production control of a manufacturing system with multiple machine states. IEEE Transactions on Automatic Control 33, 620-625.
Silver, E. A., Pyke, D. F., and Peterson, R. (1998), Inventory management and production planning and scheduling, 6th ed., John Wiley & Sons, Inc.
Wang, C. H., and Sheu, S. H. 2001. Simultaneous determination of the optimal production-inventory and product inspection policies for a deteriorating production system. Computers & Operations Research 28, 1093-1110.
White, L. S. 1967. Bayes Markovian decision models for a multi-period reject allowance problem. Operations Research 15, 857-865.