簡易檢索 / 詳目顯示

研究生: 蔡育安
Tsai, Yu-An
論文名稱: 尖晶石鈷鋅鐵氧體對於促進過氯酸銨熱分解之研究
Research on Spinel Cobalt Zinc Ferrite for Promoting the Thermal Decomposition of Ammonium Perchlorate
指導教授: 吳志勇
Wu, Chih-Yung
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 82
中文關鍵詞: 固態推進劑過氯酸銨氧化鐵尖晶石熱分解
外文關鍵詞: Solid Propellant, Ammonium Perchlorate, Iron Oxide, Spinel, Thermal Decomposition
相關次數: 點閱:38下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究為探討用於固態火箭發動機中傳統用於觸媒的單一過渡金屬氧化物的氧化鐵,及複合過渡金屬氧化物的尖晶石對促進過氯酸銨熱分解的比較。其中氧化鐵與尖晶石的觸媒皆是使用改進型溶膠凝膠法的pechini-process來合成。作為氧化劑的過氯酸銨會與燃料環氧樹酯以及觸媒來混和並製成推進劑,藉由推進劑在大氣的線性燃燒率來驗證觸媒的優劣。此研究對於觸媒材料的分析使用SEM、EDS、XRD、BET、FTIR來觀察合成出來的金屬氧化物的表面特徵與顆粒大小及各元素在空間的分布與純度。
    過氯酸銨對觸媒的熱分解分析藉由質子轉移的機制與TG/DSC的實驗結果來找到過氯酸銨的低溫、高溫熱分解溫度與藉由TG/FTIR來尋找產物與釋出的量,搭配質子轉移的機制可得知相較於氧化鐵,尖晶石在高溫分解區對於過氯酸銨N2O 、NO2的生成都有顯著的減少以儲存更多的能量來釋放。並由燃燒率的測試結果驗證氧化鐵與尖晶石的能力。

    This study aims to compare the catalytic efficacy of traditional single transition metal oxides, specifically iron oxide, and complex transition metal oxides, namely spinel, in promoting the thermal decomposition of ammonium perchlorate used in solid rocket motors. Both the iron oxide and spinel catalysts were synthesized using the modified sol-gel Pechini process. Ammonium perchlorate, serving as the oxidizer, was mixed with the fuel epoxy resin and the catalysts to form the propellant. The efficacy of the catalysts was evaluated by measuring the linear burning rate of the propellant in an atmospheric environment. The analysis of the catalyst materials involved techniques such as SEM, EDS, XRD, BET, and FTIR to observe the surface characteristics, particle size, spatial distribution of elements, and purity of the synthesized metal oxides.
    The thermal decomposition analysis of ammonium perchlorate on the catalysts was conducted using proton transfer mechanisms and TG/DSC experiments to determine the low and high-temperature decomposition temperatures of ammonium perchlorate. Additionally, TG/FTIR was used to identify the products and their release quantities. Compared to iron oxide, spinel significantly reduced the formation of N2O and NO2 in the high-temperature decomposition zone, thereby storing more energy for release. The burning rate test results further validated the capabilities of iron oxide and spinel catalysts.

    摘要 i Extended Abstract ii 目錄 xviii 圖目錄 xx 表目錄 xxiii 符號表 xxiii 第1章 前言 1 第2章 文獻回顧 3 2-1 複合固態推進劑簡介 3 2-2 常用於固態推進的燃燒率調節劑 4 2-3 尖晶石(Spinel)- 鈷鋅鐵氧體 6 2-4 過氯酸銨熱分解機制 7 2-5 觸媒合成 13 2-6 動機與目的 19 第3章 實驗設備與方法 21 3-1 藥品與材料 21 3-2 儀器設備 22 3-3 觸媒製備步驟 23 3-4 推進劑製備步驟 25 3-5 觸媒材料性質分析 26 第4章 結果與討論 28 4-1 觸媒性能測試 28 4.1.1 觸媒表面SEM&BET與EDS分析 28 4.1.2 觸媒結構XRD分析 32 4.1.3 觸媒表面FTIR分析 34 4.1.4 熱重同步(TG/DSC/DTG)分析 39 4.1.5 熱重串聯紅外線光譜儀(TG/FTIR)分析 42 4.1.6 活化能分析 44 4-2 推進劑性能分析 50 第5章 結論 52 參考文獻 54

    [1] Hill, P., Mechanics and Thermodynamics of Propulsion. 2nd ed. 1991: Pearson. 768.

    [2] Sutton, G.P., Rocket Propulsion Elements. 9th ed. 2016: Wiley. 800.

    [3] Yadav, N., P.K. Srivastava, and M. Varma, Recent advances in catalytic combustion of AP-based composite solid propellants. Defence Technology, 2021. 17(3): p. 1013-1031.

    [4] Chen, T., et al., Recent progress on transition metal oxides and carbon-supported transition metal oxides as catalysts for thermal decomposition of ammonium perchlorate. Defence Technology, 2021. 17(4): p. 1471-1485.

    [5] Li, Y., et al., The effect of citric acid to metal nitrates molar ratio on sol–gel combustion synthesis of nanocrystalline LaMnO3 powders. Journal of Alloys and Compounds, 2009. 478(1): p. 493-497.

    [6] Tanaka, H. and M. Misono, Advances in designing perovskite catalysts. Current Opinion in Solid State and Materials Science, 2001. 5(5): p. 381-387.

    [7] Ji, Q., et al., The role of oxygen vacancies of ABO3 perovskite oxides in the oxygen reduction reaction. Energy & Environmental Science, 2020. 13(5): p. 1408-1428.

    [8] Boldyrev, V.V., Thermal decomposition of ammonium perchlorate. Thermochimica Acta, 2006. 443(1): p. 1-36.

    [9] Hu, Y., et al., Thermal decomposition of ammonium perchlorate over perovskite catalysts: Catalytic decomposition behavior, mechanism and application. Applied Surface Science, 2020. 513: p. 145849.

    [10] Mallick, L., S. Kumar, and A. Chowdhury, Thermal decomposition of ammonium perchlorate—A TGA–FTIR–MS study: Part I. Thermochimica Acta, 2015. 610: p. 57-68.

    [11] Navas, D., et al., Review on Sol-Gel Synthesis of Perovskite and Oxide Nanomaterials. Gels, 2021. 7(4).

    [12] Li, Y., et al. Hematite: A Good Catalyst for the Thermal Decomposition of Energetic Materials and the Application in Nano-Thermite. Molecules, 2023. 28, DOI: 10.3390/molecules28052035.

    [13] Muñoz, H.J., S.A. Korili, and A. Gil Progress and Recent Strategies in the Synthesis and Catalytic Applications of Perovskites Based on Lanthanum and Aluminum. Materials, 2022. 15, DOI: 10.3390/ma15093288.

    [14] Navas, D., et al. Review on Sol-Gel Synthesis of Perovskite and Oxide Nanomaterials. Gels, 2021. 7, DOI: 10.3390/gels7040275.

    [15] Pechini, M.P., Method of Preparing Lead and Alkaline Earth Titanates and Niobates and Coating Method Using the Same to Form a Capacitor. 1967: US Patent.

    [16] Dimesso, L., Pechini Processes: An Alternate Approach of the Sol-Gel Method, Preparation, Properties, and Applications, in Handbook of Sol-Gel Science and Technology: Processing, Characterization and Applications, L. Klein, M. Aparicio, and A. Jitianu, Editors. 2018, Springer International Publishing: Cham. p. 1067-1088.

    [17] Prasad, D.H., et al., Synthesis of nano-crystalline La1–xSrxCoO3–δ perovskite oxides by EDTA–citrate complexing process and its catalytic activity for soot oxidation. Applied Catalysis A: General, 2012. 447-448: p. 100-106.

    [18] Rao, D.C.K., N. Yadav, and P.C. Joshi, Cu–Co–O nano-catalysts as a burn rate modifier for composite solid propellants. Defence Technology, 2016. 12(4): p. 297-304.

    [19] Sunde, T.O.L., T. Grande, and M.-A. Einarsrud, Modified Pechini Synthesis of Oxide Powders and Thin Films, in Handbook of Sol-Gel Science and Technology, L. Klein, M. Aparicio, and A. Jitianu, Editors. 2016, Springer International Publishing: Cham. p. 1-30.

    [20] Galceran, M., et al., Sol-gel modified Pechini method for obtaining nanocrystalline KRE(WO4)2 (RE = Gd and Yb). Journal of Sol-Gel Science and Technology, 2007. 42(1): p. 79-88.

    [21] Li, C., et al., High surface area LaMnO3 nanoparticles enhancing electrochemical catalytic activity for rechargeable lithium-air batteries. Journal of Physics and Chemistry of Solids, 2018. 113: p. 151-156.

    [22] Kavian, R. and A. Saidi, Sol–gel derived BaTiO3 nanopowders. Journal of Alloys and Compounds, 2009. 468(1): p. 528-532.

    [23] 王則皓, 波洛斯凱特鐵酸鑭促進過氯酸銨熱分解之研究, in 航空太空工程學系. 2023, 國立成功大學.

    [24] Hjiri, M., Highly sensitive NO2 gas sensor based on hematite nanoparticles synthesized by sol–gel technique. Journal of Materials Science: Materials in Electronics, 2020. 31(6): p. 5025-5031.

    [25] Dutt, M., et al., Mesoporous silica mediated synthesis of α-Fe2O3 porous structures and their application as humidity sensors. Journal of Materials Science: Materials in Electronics, 2018. 29(23): p. 20506-20516.

    [26] Sharma, S.K., Handbook of Materials Characterization. 2018: Springer. 621.

    [27] Khan, M.W., et al., Engineering N-reduced graphene oxide wrapped Co3O4@f-MWCNT hybrid for enhance performance dye-sensitized solar cells. Journal of Electroanalytical Chemistry, 2019. 844: p. 142-154.

    [28] Claros, M., et al. AACVD Synthesis and Characterization of Iron and Copper Oxides Modified ZnO Structured Films. Nanomaterials, 2020. 10, DOI: 10.3390/nano10030471.

    [29] Xu, Y., et al., Solar water splitting with nanostructured hematite: the role of oxygen vacancy. Journal of Materials Science, 2022. 57(42): p. 19716-19729.

    [30] Zhang, X., Applications of Kinetic Methods in Thermal Analysis: A Review. Engineered Science, 2021. 14: p. 1-13.

    無法下載圖示 校內:2029-08-16公開
    校外:2029-08-16公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE