| 研究生: |
邱楷能 Chiu, Kai-Neng |
|---|---|
| 論文名稱: |
以蠟層包覆之微米纖維表面製備高分子為基球之雙邊不對稱球體 A Novel Fabrication of Polymeric-Based Janus Particles from the Wax-coated Micro-fiber Surfaces |
| 指導教授: |
郭昌恕
Kuo, Chang-Shu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 英文 |
| 論文頁數: | 80 |
| 中文關鍵詞: | 蠟崁入層 、高分子基球雙邊不對稱球 、異向性 、光致發光 、角度相依性 |
| 外文關鍵詞: | Janus particles, wax embedding layer, polymeric Janus, Anisotropic, Photoluminescence, Angle dependent |
| 相關次數: | 點閱:98 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
這篇論文說明藉在高分子基材上進行石蠟的化學氣相沉積,再將聚苯乙烯奈米球在低溫的環境進行嵌入到石蠟中,在裸露半球上進行表面改質,以此製造表面不對稱奈米球(asymmetric Janus colloids)的方法。利用電紡絲技術將聚對苯二甲酸乙二酯(polyethylene terephthalate),形成具有高比表面積且高強度的高分子纖維,以利於奈米球之吸附。利用化學蒸鍍的方式可以讓石蠟均勻的散佈在高分子基材上,且經由蒸鍍的次數精確的控制石蠟的厚度,以此來控制奈米球表面改質的程度。 再將高分子電紡絲上的石蠟層接上乙基吡啶,讓表面帶正電以此吸附帶負電的聚苯乙烯奈米球於石蠟表面上。
再藉由相對低溫的熱誘導法,可以均勻地將高分子的奈米球嵌入石蠟中。之後將露出的奈米球表面組裝上氧化鐵的奈米粒子。 再從奈米絲上分離下奈米粒子。最後於水溶液中進行螢光染料之接枝,完成同時具有光學與磁性雙功能特性之高分子球體。
通過暗場顯微鏡觀察到高分子基球雙邊不對稱球對外部磁場的響應。 同時暗場顯微鏡下所觀察到的閃爍運動表明高分子基球雙邊不對稱球具有各向異性。 之後利用在施加外加磁場的狀況下製作之異向性試片,於兩面偵測球體上螢光染料的發光特性,球體表現出明顯的光學異向性。 同時在不同角度下量測異向性試片的接收與入射的螢光光譜。 將結果和平面樣品比較,可以推斷高分子基球雙邊不對稱球的低角度依賴性的光致發光響應是由於其半球型分佈的染料所致。
A novel synthetic approach for the fabrications of asymmetric polymer-based Janus was demonstrated by the low temperature embedding process of surface-modified polystyrene colloids on the wax-coated polymer fibers, served as the embedding substrates. Electrospinning of polyethylene terephthalate (PET) produced polymer fibers with high specific surfaces and high mechanical strength for the colloids adsorption. Wax embedding layer was deposited by the chemical vapor deposition on PET fibers. And, the wax layer thickness determined the afterward polystyrene colloid embedding degrees, as well as their surface functionality ratios. Wax-coated PET fibers were further modified with 4-ethylpyridine to provide the surface positive charges to associate with the negatively-charged polystyrene colloids.
The thermally-induced colloids embedment was precisely manipulated by the low temperature heat treatment, which allowed the uniform and controllable embedding to apply on polymeric particles. The exposed colloid surfaces were selectively modified with desired Fe3O4 nanoparticles. Subsequently, the polystyrene particles were recovered from the polymer fibers. Finally, the hemispheric surfaces decorated with Fe3O4 nanoparticles were modified again by the dye molecules. Fabrications and characterization of these bi-functionalized Janus particles were carefully conducted.
The responses of Fe3O4/Dye polymeric Janus particles to the external magnetic field were observed by dark field microscopy. The twinkling movement in dark field microscopy as well as the photoluminescence contrast of orientated Fe3O4/Dye Janus particle films indicated the anisotropism of Fe3O4/Dye polymeric Janus particles. Angle-dependent photoluminescence measurements were also conducted in order to sketch the excitation and emission profiles of these orientated Janus particle samples. Their low angle-dependent photoluminescence responses were observed and believed due to the hemispherically-distributed dyes as compared with the normal coated film samples.
1. Hektor, H. J.; Scholtmeijer, K., Hydrophobins: proteins with potential. Current Opinion in Biotechnology 2005, 16 (4), 434-439.
2. Wurm, F.; Kilbinger, A. F. M., Polymeric Janus asymmetric particles. Angew. Chem., Int. Ed. 2009, 48 (45), 8412-8421.
3. Cho, I.; Lee, K.-W., Morphology of Latex Particles Formed by Poly(methy1 Methacrylate)-Seeded Emulsion Polymerization of Styrene. Journal of Applied Polymer Science 1985, 30 (5), 1903-1926.
4. Casagrande, C.; Fabre, P.; Raphael, E.; Veyssie, M., Janus Beads - Realization and Behavior at Water Oil Interfaces. Europhys Lett 1989, 9 (3), 251-255.
5. de Gennes, P.-G., Soft Matter (Nobel Lecture). Angewandte Chemie International Edition in English 1992, 31 (7), 842-845.
6. Perro, A.; Reculusa, S.; Ravaine, S.; Bourgeat-Lami, E. B.; Duguet, E., Design and synthesis of Janus micro- and nanoparticles. Journal of Materials Chemistry 2005, 15 (35-36), 3745-3760.
7. Walther, A.; Mueller, A. H. E., Janus Particles: Synthesis, Self-Assembly, Physical Properties, and Applications. Chem. Rev. (Washington, DC, U. S.) 2013, 113 (7), 5194-5261.
8. Yi, Y.; Sanchez, L.; Gao, Y.; Yu, Y., Janus particles for biological imaging and sensing. Analyst (Cambridge, U. K.) 2016, 141 (12), 3526-3539.
9. Jiang, S.; Chen, Q.; Tripathy, M.; Luijten, E.; Schweizer, K. S.; Granick, S., Janus particle synthesis and assembly. Adv. Mater. (Weinheim, Ger.) 2010, 22 (10), 1060-1071.
10. Lattuada, M.; Hatton, T. A., Synthesis, properties and applications of Janus nanoparticles. Nano Today 2011, 6 (3), 286-308.
11. Walther, A.; Mueller, A. H. E., Janus particles. Soft Matter 2008, 4 (4), 663-668.
12. Komazaki, Y.; Hirama, H.; Torii, T., Electrically and magnetically dual-driven Janus particles for handwriting-enabled electronic paper. Journal of Applied Physics 2015, 117 (15), 154506.
13. Kaewsaneha, C.; Tangboriboonrat, P.; Polpanich, D.; Eissa, M.; Elaissari, A., Janus Colloidal Particles: Preparation, Properties, and Biomedical Applications. ACS Appl. Mater. Interfaces 2013, 5 (6), 1857-1869.
14. Hu, J.; Zhou, S.; Sun, Y.; Fang, X.; Wu, L., Fabrication, properties and applications of Janus particles. Chem. Soc. Rev. 2012, 41 (11), 4356-4378.
15. Groschel, A. H.; Schacher, F. H.; Schmalz, H.; Borisov, O. V.; Zhulina, E. B.; Walther, A.; Muller, A. H., Precise hierarchical self-assembly of multicompartment micelles. Nature Communications 2012, 3, 710.
16. Groschel, A. H.; Walther, A.; Lobling, T. I.; Schmelz, J.; Hanisch, A.; Schmalz, H.; Muller, A. H., Facile, solution-based synthesis of soft, nanoscale Janus particles with tunable Janus balance. Journal of the American Chemical Society 2012, 134 (33), 13850-60.
17. Xu, H.; Erhardt, R.; Abetz, V.; Muller, A. H. E.; Goedel, W. A., Janus micelles at the air/water interface. Langmuir 2001, 17 (22), 6787-6793.
18. Chen, T.; Chen, G.; Xing, S. X.; Wu, T.; Chen, H. Y., Scalable Routes to Janus Au-SiO(2) and Ternary Ag-Au-SiO(2) Nanoparticles. Chem. Mat. 2010, 22 (13), 3826-3828.
19. Braunecker, W. A.; Matyjaszewski, K., Controlled/living radical polymerization: Features, developments, and perspectives. Prog. Polym. Sci. 2007, 32 (1), 93-146.
20. He, Y. J.; Li, K. S., Novel Janus Cu-2(OH)(2)CO3/CUS microspheres prepared via a Pickering emulsion route. J. Colloid Interface Sci. 2007, 306 (2), 296-299.
21. Hong, L.; Jiang, S.; Granick, S., Simple method to produce Janus colloidal particles in large quantity. Langmuir 2006, 22 (23), 9495-9499.
22. Correa-Duarte, M. A.; Salgueiriño-Maceira, V.; Rodríguez-González, B.; Liz-Marzán, L. M.; Kosiorek, A.; Kandulski, W.; Giersig, M., Asymmetric Functional Colloids Through Selective Hemisphere Modification. Advanced Materials 2005, 17 (16), 2014-2018.
23. Li, Z.; Lee, D.; Rubner, M. F.; Cohen, R. E., Layer-by-Layer Assembled Janus Microcapsules. Macromolecules 2005, 38 (19), 7876-7879.
24. Cayre, O. J.; Paunov, V. N., Contact Angles of Colloid Silica and Gold Particles at Air−Water and Oil−Water Interfaces Determined with the Gel Trapping Technique. Langmuir 2004, 20 (22), 9594-9599.
25. Paunov, V. N.; Cayre, O. J., Supraparticles and “Janus” Particles Fabricated by Replication of Particle Monolayers at Liquid Surfaces Using a Gel Trapping Technique. Advanced Materials 2004, 16 (9-10), 788-791.
26. Cui, J.-Q.; Kretzschmar, I., Surface-Anisotropic Polystyrene Spheres by Electroless Deposition. Langmuir 2006, 22 (20), 8281-8284.
27. Huang, W. H., Field-induced and Spontaneous Self-assembly of Janus Particles. National Cheng Kung University 2012.
28. Lin, C.-C.; Liao, C.-W.; Chao, Y.-C.; Kuo, C., Fabrication and Characterization of Asymmetric Janus and Ternary Particles. ACS Appl. Mater. Interfaces 2010, 2 (11), 3185-3191.
29. Ho, C. C.; Chen, W. S.; Shie, T. Y.; Lin, J. N.; Kuo, C., Novel fabrication of Janus particles from the surfaces of electrospun polymer fibers. Langmuir 2008, 24 (11), 5663-6.
30. Schick, I.; Lorenz, S.; Gehrig, D.; Tenzer, S.; Storck, W.; Fischer, K.; Strand, D.; Laquai, F.; Tremel, W., Inorganic Janus particles for biomedical applications. Beilstein J. Nanotechnol. 2014, 5, 2346-2362, 17 pp.
31. Chao, Y.-C.; Huang, W.-H.; Cheng, K.-M.; Kuo, C., Assembly and Manipulation of Fe3O4/Coumarin Bifunctionalized Submicrometer Janus Particles. ACS Applied Materials & Interfaces 2014, 6 (6), 4338-4345.
32. Wang, H.; Yang, S.; Yin, S. N.; Chen, L.; Chen, S., Janus Suprabead Displays Derived from the Modified Photonic Crystals toward Temperature Magnetism and Optics Multiple Responses. ACS Applied Materials & Interfaces 2015, 7 (16), 8827-33.
33. Graham-Rowe, D., Electronic paper rewrites the rulebook for displays. Nature Photonics 2007, 1 (5), 248-251.
34. Nisisako, T.; Torii, T.; Takahashi, T.; Takizawa, Y., Synthesis of monodisperse bicolored janus particles with electrical anisotropy using a microfluidic co-flow system. Advanced Materials 2006, 18 (9), 1152-+.
35. Binsk, B. P.; Fletcher, P. D. I., Particles adsorbed at the oil-water interface: A theoretical comparison between spheres of uniform wettability and "Janus" particles. Langmuir 2001, 17 (16), 4708-4710.
36. Cheung, D. L.; Bon, S. A. F., Stability of Janus nanoparticles at fluid interfaces. Soft Matter 2009, 5 (20), 3969-3976.
37. Behrend, C. J.; Anker, J. N.; McNaughton, B. H.; Kopelman, R., Microrheology with modulated optical nanoprobes (MOONs). J. Magn. Magn. Mater. 2005, 293 (1), 663-670.
38. Anthony, S. M.; Kim, M.; Granick, S., Single-particle tracking of janus colloids in close proximity. Langmuir 2008, 24 (13), 6557-6561.
39. Zhang, Q.; Dong, R.; Chang, X.; Ren, B.; Tong, Z., Spiropyran-Decorated SiO2-Pt Janus Micromotor: Preparation and Light-Induced Dynamic Self-Assembly and Disassembly. ACS Appl. Mater. Interfaces 2015, 7 (44), 24585-24591.
40. Li, J.; Shklyaev, O. E.; Li, T.; Liu, W.; Shum, H.; Rozen, I.; Balazs, A. C.; Wang, J., Self-Propelled Nanomotors Autonomously Seek and Repair Cracks. Nano Lett. 2015, 15 (10), 7077-7085.
41. Deng, R.; Liang, F.; Zhu, J.; Yang, Z., Recent advances in the synthesis of Janus nanomaterials of block copolymers. Mater. Chem. Front. 2017, 1 (3), 431-443.
42. Fan, X.; Yang, J.; Loh, X. J.; Li, Z., Polymeric Janus Nanoparticles: Recent Advances in Synthetic Strategies, Materials Properties, and Applications. Macromol. Rapid Commun. 2019, 40 (5), n/a.
43. Walther, A.; Matussek, K.; Mueller, A. H. E., Engineering Nanostructured Polymer Blends with Controlled Nanoparticle Location using Janus Particles. ACS Nano 2008, 2 (6), 1167-1178.
44. Yoshida, M.; Roh, K.-H.; Mandal, S.; Bhaskar, S.; Lim, D.; Nandivada, H.; Deng, X.; Lahann, J., Structurally Controlled Bio-hybrid Materials Based on Unidirectional Association of Anisotropic Microparticles with Human Endothelial Cells. Advanced Materials 2009, 21 (48), 4920-4925.
45. Hu, S.-H.; Gao, X., Nanocomposites with Spatially Separated Functionalities for Combined Imaging and Magnetolytic Therapy. Journal of the American Chemical Society 2010, 132 (21), 7234-7237.
46. Alexeev, A.; Uspal, W. E.; Balazs, A. C., Harnessing Janus Nanoparticles to Create Controllable Pores in Membranes. ACS Nano 2008, 2 (6), 1117-1122.
47. Goldacker, T.; Abetz, V.; Stadler, R.; Erukhimovich, I.; Leibler, L., Non-centrosymmetric superlattices in block copolymer blends. Nature (London) 1999, 398 (6723), 137-139.
48. Zhou, C.; Wang, M.; Zou, K.; Chen, J.; Zhu, Y.; Du, J., Antibacterial Polypeptide-Grafted Chitosan-Based Nanocapsules As an “Armed” Carrier of Anticancer and Antiepileptic Drugs. ACS Macro Letters 2013, 2 (11), 1021-1025.
49. Li, Z.; Chee, P. L.; Owh, C.; Lakshminarayanan, R.; Loh, X. J., Safe and efficient membrane permeabilizing polymers based on PLLA for antibacterial applications. RSC Advances 2016, 6 (34), 28947-28955.
50. Fan, X.; Zhang, W.; Hu, Z.; Li, Z., Facile synthesis of RGD-conjugated unimolecular micelles based on a polyester dendrimer for targeting drug delivery. Journal of Materials Chemistry B 2017, 5 (5), 1062-1072.
51. Kim, J.; Choi, C.-H.; Yeom, S.-J.; Eom, N.; Kang, K.-K.; Lee, C.-S., Directed Assembly of Janus Cylinders by Controlling the Solvent Polarity. Langmuir 2017, 33 (30), 7503-7511.
52. Kirillova, A.; Marschelke, C.; Friedrichs, J.; Werner, C.; Synytska, A., Hybrid Hairy Janus Particles as Building Blocks for Antibiofouling Surfaces. ACS Applied Materials & Interfaces 2016, 8 (47), 32591-32603.
53. Shi, W.; Weitz, D. A., Polymer Phase Separation in a Microcapsule Shell. Macromolecules 2017, 50 (19), 7681-7686.
54. Urban, M.; Freisinger, B.; Ghazy, O.; Staff, R.; Landfester, K.; Crespy, D.; Musyanovych, A., Polymer Janus Nanoparticles with Two Spatially Segregated Functionalizations. Macromolecules (Washington, DC, U. S.) 2014, 47 (20), 7194-7199.
55. Jordahl, J. H.; Ramcharan, S.; Gregory, J. V.; Lahann, J., Needleless Electrohydrodynamic Cojetting of Bicompartmental Particles and Fibers from an Extended Fluid Interface. Macromol. Rapid Commun. 2017, 38 (1), n/a.
56. Ekanem, E. E.; Zhang, Z.; Vladisavljevic, G. T., Facile Production of Biodegradable Bipolymer Patchy and Patchy Janus Particles with Controlled Morphology by Microfluidic Routes. Langmuir 2017, 33 (34), 8476-8482.
57. Fan, J.-B.; Song, Y.; Liu, H.; Lu, Z.; Zhang, F.; Liu, H.; Meng, J.; Gu, L.; Wang, S.; Jiang, L., A general strategy to synthesize chemically and topologically anisotropic Janus particles. Sci. Adv. 2017, 3 (6), e1603203/1-e1603203/9.
58. Kim, J.-W.; Lee, D.; Shum, H. C.; Weitz, D. A., Colloid surfactants for emulsion stabilization. Adv. Mater. (Weinheim, Ger.) 2008, 20 (17), 3239-3243.
59. Chen, K.; Zhu, Y.; Zhang, Y.; Li, L.; Lu, Y.; Guo, X., Synthesis of Magnetic Spherical Polyelectrolyte Brushes. Macromolecules (Washington, DC, U. S.) 2011, 44 (3), 632-639.
60. Gangwal, S.; Cayre, O. J.; Velev, O. D., Dielectrophoretic Assembly of Metallodielectric Janus Particles in AC Electric Fields. Langmuir 2008, 24 (23), 13312-13320.
61. Yuan, J.; Zhao, W.; Pan, M.; Zhu, L., Self-Assembled Colloidal Particle Clusters from In Situ Pickering-Like Emulsion Polymerization via Single Electron Transfer Mechanism. Macromolecular Rapid Communications 2016, 37 (15), 1282-1287.
62. Paunov, V. N., Novel Method for Determining the Three-Phase Contact Angle of Colloid Particles Adsorbed at Air−Water and Oil−Water Interfaces. Langmuir 2003, 19 (19), 7970-7976.
63. Cao, H.; He, J.; Deng, L.; Gao, X., Fabrication of cyclodextrin-functionalized superparamagnetic Fe3O4/amino-silane core–shell nanoparticles via layer-by-layer method. Applied Surface Science 2009, 255 (18), 7974-7980.
64. Becker, C.; Burger, S.; Barth, C.; Manley, P.; Jäger, K.; Eisenhauer, D.; Köppel, G.; Chabera, P.; Chen, J.; Zheng, K.; Pullerits, T., Nanophotonic-Enhanced Two-Photon-Excited Photoluminescence of Perovskite Quantum Dots. ACS Photonics 2018, 5 (11), 4668-4676.
65. Wolter, M. H.; Bissig, B.; Reinhard, P.; Buecheler, S.; Jackson, P.; Siebentritt, S., Correcting for interference effects in the photoluminescence of Cu(In,Ga)Se2 thin films. physica status solidi c 2017, 14 (6), 1600189.
校內:2024-08-30公開