| 研究生: |
黃世宏 Huang, Shih-Hung |
|---|---|
| 論文名稱: |
奈米粉體在分離及電化學感測上之應用研究 Studies on application of nanopowders in separation and electrochemical detection |
| 指導教授: |
陳東煌
Chen, Dong-Hwang |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 188 |
| 中文關鍵詞: | 電化學感測 、氧化鐵 、吸附 、脂肪分解酵素 、聚丙烯酸 、磁性奈米吸附劑 、重金屬離子 、分離 、氨基化 、回收 、碳管 、正腎上腺素 |
| 外文關鍵詞: | recovery, carbon nanotube, Norepinephrine (NE), magnetic nano-adsorbent, polyacrylic acid, Lipase, adsorption, Amino-functionalization, heavy metal ions, electrochemical detection, iron oxide, separation |
| 相關次數: | 點閱:146 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文係有關功能性磁性奈米吸附劑在分離及PAA被覆奈米碳管在電化學感測上的應用。首先探討PAA被覆磁性奈米粒子在脂肪分解酵素(lipase)分離上的應用;其次利用化學修飾的方法進一步將PAA被覆磁性奈米粒子,使表面具備氨基化,並應用在重金屬(陰/陽離子)的分離與回收;最後利用PAA分散奈米碳管,並將PAA被覆奈米碳管修飾在網印電極上,並在電化學感測上,用於偵測維生素C、正腎上腺素及尿酸。
關於PAA被覆磁性奈米粒子在Candida rugosa lipase分離上的研究,吸附百分比取決於溶液的pH值,吸附量隨著pH值降低而增加,在pH 7-5.5從20%增加到90%,在pH 4.5-3.5吸附量達到98%,其吸附行為遵守Langmuir恆溫吸附模式,在2.5℃下0.03M、pH 3.5磷酸鹽緩衝溶液中,最大吸附容量(qm)和Langmuir平衡常數(K)分別為0.605 mg/mg與14.5 mL/mg。lipase吸附後,能夠在0.03M、pH 9磷酸鹽緩衝溶液中進行脫附,且經過吸附/脫附後,並沒有明顯的活性損失,根據pH影響、脫附和活性分析的研究,推測在使用的lipase,可能含有20%不純物或是不具活性的蛋白質,另外,lipase和PAA之間的靜電交互作用力,並沒有受到溫度(15~35℃)的影響。由於PAA被覆磁性奈米吸附劑無內物擴散阻力,故能在短時間內進行lipase的吸附/脫附實驗。基於上述結果,PAA被覆磁性奈米吸附劑可以有效率被用於並回收lipase。
關於氨基化磁性奈米吸附劑在重金屬回收之研究,係先製備表面被覆PAA的氧化鐵奈米粒子,再藉由碳二醯胺的活化將二次乙基三胺(DETA)共價鍵結在氧化鐵奈米粒子上。穿透式電子顯微鏡(TEM)分析顯示,氨基化磁性奈米粒子具有分散性,平均粒徑為11.2±2.8 nm。由X射線繞射儀(XRD)分析得知,磁性奈米粒子為四氧化三鐵之尖晶石結構,且不因鍵結程序而改變其結構,此外,由磁性分析得知,所得磁性奈米粒子具有超順磁性且飽和磁化量為63.2 emu/g,另外由傅立葉轉換紅外線光譜儀(FTIR) 和界面電位分析儀測量其等電點為2.45之分析,可確認表面被覆PAA的氧化鐵奈米粒子已被氨基化,等電點從2.64偏移至4.59。關於氨基化磁性奈米吸附劑在水溶液對於吸附金屬陽/陰離子有相當高的吸附容量和效率,可以利用螯合或是離子交換機制去除金屬離子。氨基化的磁性奈米吸附劑吸附Cu2+ 和Cr(VI)皆依循Langmuir恆溫吸附模式,最大吸附容量(qm) 和Langmuir平衡常數(K) 對於Cu2+ 和Cr(VI)分別為12.43 mg/g 與 0.06 L/mg;11.24 mg/g 與 0.0165 L/mg。
關於PAA被覆奈米碳管修飾在網印電極上,並在電化學感測上,用於偵測維生素C、正腎上腺素及尿酸的研究。係首先將碳管加入PAA水溶液中,在超音波下均勻混合形成PAA被覆奈米碳管複合物,並在網印電極表面上塗佈上一層PAA-MWNTs。經過PAA被覆奈米碳管修飾的網印電極,具有較大的表面積,而對於NE和UA分別可經由氫鍵或是靜電作用力的機制吸附在電極表面上。PAA被覆奈米碳管修飾的網印電極在磷酸鹽緩衝溶液(0.1 M、pH 7.5)中,偵測AA、 NE 和UA非常好的電化學催化活性,AA的氧化過電壓會降低,而NE 和UA氧化電流密度有明顯的增加。在使用微分脈衝伏安法偵測AA、 NE 和UA三成份混合溶液,氧化電位差NE-AA和UA-AA分別為228mV和112mV。經PAA被覆奈米碳管修飾的網印電極利用微分脈衝伏安法能夠將偵測三成份的訊號完全區分開來,也因此可以同時得到這三成份。而AA、NE 和UA濃度的線性範圍分別為100~1000μM、0~10μM 0~30μM;且偵側極限(S/N=3)分別為49.772μM 0.131μM和0.458μM。
This dissertation concerns the application of functional magnetic nano-adsorbent in enzyme separation and heavy metal ions recovery and PAA-coated multiwalled carbon nanotube in electrochemical detection. The adsorption of lipase from an aqueous solution by PAA-bound iron oxide magnetic nanoparticles was studied. Then the PAA-coated magnetic nanoparticles were further amino-functionalization using diethylenetriamine via carbodiimide activation and used for the recovery of heavy metal ions from aqueous solution. Finally, using PAA to dispersion carbon nanotube and PAA-coated multiwalled carbon nanotube composite modified Screen printed carbon electrode for the simultaneous determination ascorbic acid (AA)、Norepinephrine (NE) and Uric acid (UA).
The feasibility of the polyacrylic acid (PAA)-bound magnetic nano-adsorbent for the recovery of Candida rugosa lipase from aqueous solutions was studied. The adsorption percentage was strongly dependent on the solution pH. With decreasing pH, the adsorption percentage increased rapidly from 20% to 90% at pH 7-5.5 and 98% adsorption could be achieved at pH 4.5-3.5. The adsorption behavior followed the Langmuir isotherm with a maximum adsorption amount of 0.605 mg mg-1 and a Langmuir adsorption equilibrium constant of 14.5 mL mg-1 in 0.03 M phosphate buffer at pH 3.5 and 25C. The adsorbed lipase could be desorbed in 0.03 M phosphate buffer at pH 9, and no significant activity loss was observed after adsorption/desorption. According to the investigations on the pH effect, desorption, and activity assay, it was suggested that the lipase used in this work might contain 20% impure or inert protein. In addition, the electrostatic interaction between lipase and PAA was not significantly affected by the temperature at 15-35C, and both the adsorption and desorption of lipase were quite fast due to the absence of internal diffusion resistance. The whole result demonstrated that the PAA-bound magnetic nano-adsorbent could be practically used for the efficient and fast recovery of lipase.
A novel magnetic nano-adsorbent has been developed by the covalent binding of polyacrylic acid (PAA) on the surface of Fe3O4 nanoparticles and the followed amino-functionalization using diethylenetriamine (DETA) via carbodiimide activation. Transmission electron microscopy image showed that the amino-functionalized Fe3O4 nanoparticles were quite fine with a mean diameter of 11.2±2.8 nm. X-ray diffraction analysis indicated that the binding process did not result in the phase change of Fe3O4. Magnetic measurement revealed they were nearly superparamagnetic with a saturation magnetization of 63.2 emu/g Fe3O4. The binding of DETA on the PAA-coated Fe3O4 nanoparticles was demonstrated by the analyses of Fourier transform infrared (FTIR) spectroscopy and zeta potential. After amino-functionaliztion, the isoelectric point of PAA-coated Fe3O4 nanoparticles shifted from 2.64 to 4.59. The amino-functionalized magnetic nano-adsorbent shows a quite good capability for the rapid and efficient adsorption of metal cations and anions from aqueous solutions via the chelation or ion exchange mechanisms. The studies on the adsorption of Cu(II) and Cr(VI) ions revealed that both obeyed the Langmuir isotherm equation. The maximum adsorption capacities and Langmuir adsorption constants were 12.43 mg/g and 0.06 L/mg for Cu(II) ions and 11.24 mg/g and 0.0165 L/mg for Cr(VI) ions, respectively.
The use of PAA-coated multiwalled carbon-nanotubes (PAA-MWNTs) composite modified Screen printed carbon electrode (SPE) for the simultaneous determination ascorbic acid (AA)、Norepinephrine (NE) and Uric acid (UA). PAA-MWNTs composite was prepared by mixing of MWNTs powers into PAA aqueous solution under sonication. SPE surface was modified with PAA-MWNTs film by casting. The PAA-MWNTs/SPE is of a high surface area and of affinity adsorption via ion exchange for NE and hydrogen bonding mechanisms for UA, respectively. The PAA-MWNTs/SPE displayed excellent electrochemical catalytic activity towards AA、NE and UA, the oxidation overpotentials of AA was decreased and the enhanced oxidation peak currents significantly for NE and UA were observed at the PAA-MWNTs/SPE in phosphate buffer solution (0.1 M, pH 7.5). Differential pulse voltammetry was used for the simultaneous dertermination of AA, NE and UA in their ternary mixture. The peak separation between NE and AA, UA and NE was 228mV and 112mV, respectively. Therefore, the voltammetric responses of three compounds can be well resolved on the PAA-MWNTs/SPE, and simultaneous dertermination of these three compounds can be achieved. The calibration curves for AA, NE, UA were obtained in the range of 100~1000μM, 0~10μM, 0~30μM, respectively. The lowest detection limits (S/N=3) were 49.772μM, 0.131μM and 0.458μM for AA, NE and UA, respectively.
1. 張立德 (2000) 納米材料,北京:化學工業。
2. 張立德,牟季美 (2000) 納米材料和納米結構,北京:科學。
3. 張志焜,崔作林 (2000) 納米技術與納米材料,北京:國防工業。
4. 郭正次,朝春光 (2004) 奈米結構材料科學,台北:全華。
5. 馬振基 (2004) 奈米材料科技原理與應用,台北:全華。
6. 工研院工業材料研究所 (2001) 2001材料奈米技術專刊,臺北:經
濟部技術處。
7. 吳明立 (2001) 微乳化系統製備雙金屬奈米粒子之研究,國立成功
大學化學工程研究所博士論文。
8. Schmid, G.. (2001) Metals. In:Klabunde, K. J., ed. Nanoscale
Materials in Chemistry. New York:Wiley, pp.15-59.
9. 莊萬發 (1998) 超微粒子理論應用,臺南:復漢。
10. 廖敏宏 (2002) 磁性奈米載體在生物觸媒和生化分離之應用,國立
成功大學化學工程研究所博士論文。
11. 蘇品書 譯 (1989) 超微粒子材料技術,台南: 復漢。
12. 張揚狀 (2005) 表面被覆幾丁聚醣之多功能磁性奈米載體的製備
與應用,國立成功大學化學工程研究所博士論文。
13. Chen, D. H.; Chen, C. J. (2002) J. Mater. Chem., 12, 1557.
14. Freeman, R. G.; Hommer, M. B.; Grabar, K. C.; Jackson, M. A.; Natan, M. J. (1996) J. Phys. Chem., 100, 718.
15. Michaels, A. M.; Jiang, J.; Brus, L. (2000) J. Phys. Chem. B, 104, 11965.
16. Felidj, N.; Aubard, J.; Levi. G.; Krenn, J. R.; Hohenau, A.; Schider, G.; Leitner, A.; Aussenegg, F. R. (2003) Appl. Phys. Lett., 82, 3095.
17. Lu, L. H.; Zhang, H. J.; Sun, G. Y.; Xi, S. Q.; Wang, H. S.; Li, X. L.; Wang, X.; Zhao, B. (2003) Langmuir, 19, 9490.
18. Mandal, M.; Jana, N. R.; Kundu, S. ; Ghosh, S. K. ; Panigrahi, M. ; Pal, T. (2004) J. Nanoparticle Res., 6, 53.
19. Medintz, I. L. Uyeda, H. T. Goldman, E. R. Mattoussi, H. (2005) Nature Material, 4, 435.
20. Parak, W. J.; Gerion, D.; Zanchet, D.; Woerz, A. S.; Pellegrino, T.; Micheel, C.; Williams, S. C.; Seitz, M.; Bruehl, R. E.; Bryant, Z.; Bustamante, C.; Bertozzi, C. R.; Alivisatos, A. P. (2002) Chem. Mater., 14, 2113.
21. Haram, S. K.; Quinn, B. M.; Bard, A. J. (2001) J. Am. Chem. Soc., 123, 8860.
22. Hickey, S. G.; Riley, D. J.; Tull, E. J. (2000) J. Phys. Chem. B, 104, 7623.
23. Alamri, S. N.; Brinkman, A. W. (2000) J. Phys. D: Appl. Phys., 33, L1.
24. Gao, X.; Cui, Y.; Levenson, R. M.; Chung, L. W. K.; Nie, S. (2004) Nat. Biotechnol., 22, 969.
25. 尹邦耀 (2002) 奈米時代,臺北:五南。
26. 連昭晴 (2004) 鐵/金核殼型磁性複合奈米粒子之製備與應用,國立成功大學化學工程研究所碩士論文。
27. 吳思翰 (2004) 金屬及金屬核殼型複合奈米粒子之製備,國立成功大學化學工程研究所博士論文。
28. Sugimoto, T. (1987) Adv. Colloid Interface Sci., 28, 65.
29. Ayyappan, S.; Gopalan, R. S.; Subbanna, G. N.; Rao, C. N. R. (1997) J. Mater. Res., 12, 398.
30. Zhang, Z.; Zhao, B.; Hu, L. (1996) J. Solid State Chem., 121, 105.
31. Teranishi, T.; Nakata, K.; Miyake, M.; Toshima, N. (1996) Chem. Lett., 4, 277.
32. Li, X.; Lu, G.; Li, S. (1996) J. Mater. Sci. Lett., 15, 397.
33. Lee, J.; Isobe, T.; Senna, M. (1996) J. Colloid Interface Sci., 177, 490.
34. Ishizuki, N.; Torigoe, N.; Esumi, K.; Meguro, K. (1991) Colloids and Surfaces, 55, 15.
35. Sun, X.; Jiang, X.; Dong, S.; Wang, E. (2003) Macromol. Rapid Commun., 24, 1024.
36. Sun, X.; Dong, S.; Wang, E. (2004) Polymer, 45, 2181.
37. Osseo-Asare, K.; Arriagada, F. J. (1990) Ceram. Trans. 12, 3.
38. Meyer, M.; Wallberg, C.; Kurihara, K.; Fendler, J. H. (1984) J. Chem. Soc. Chem. Commun., 90.
39. Fendler, J. H. (1987) Chem. Rev., 87, 877.
40. Kitahara, A.; Kazuhiko, K.; Kijiro, K. (1988) J. Colloid Interface Sci., 122, 78.
41. Osseo-Asare, K.; Arriagada, F. J. (1990) Colloids and surfaces, 50, 321.
42. Sarathy, K. V.; Kulkarni, G. U.; Rao, C. N. R. (1997) Chem. Commun., 537.
43. Yonezawa, T.; Tominaga, T.; Richard, D. (1996) J. Chem. Soc. Dalton Trans., 783.
44. Reetz, M. T.; Winter, M.; Tesche, B. (1997) Chem. Commun., 535.
45. 張立德,牟季美 (2002) 奈米材料和奈米結構,臺中:滄海。
46. Ariga, K. (2004) Layer-by-layer nanoarchitectonics. In: Nalwa, H. S., ed. Encyclopedia of Nanoscience and Nanotechnology. California:American Scientific Publishers, Vol. 4, pp.467-480.
47. Caruso, F. (2001) Adv. Mater., 13, 11.
48. Ferreira, M.; Zucolotto, V.; Ferreira, M.; Oliveira, O. N. Jr. (2004) Layer-by-layer and Langmuir-Blodgett films from nanoparticles and complexes. In: (Nalwa, H. S., ed.) Encyclopedia of Nanoscience and Nanotechnology. California:American Scientific Publishers, Vol. 4, pp.441-465.
49. Kickelbick, G.; Liz-Marzn, L. M. (2004) Core-shell nanoaprticles. In: Nalwa, H. S., ed. Encyclopedia of Nanoscience and Nanotechnology. California:American Scientific Publishers, Vol. 2, pp.199-220.
50. McCaughey, B.; Hampsey, J. E.; Wang, D.; Lu, Y. (2004) Self-assembled organic/inorganic nanocomposites. In: Nalwa, H. S., ed. Encyclopedia of Nanoscience and Nanotechnology. California:American Scientific Publishers, Vol. 9, pp.529-559.
51. Dai, J.; Bruening, M. L. (2002) Nano. Lett., 2, 497.
52. Hong, X.; Li, J.; Wang, M.; Xu, J.; Guo, W.; Li, J.; Bai, Y.; Li T.; (2004) Chem. Mater., 16 , 4022.
53. Niemeyer, C. M. (2001) Angew. Chem. Int. Ed., 40, 4128.
54. Ahn, C. H.; Choi, J. W.; Cho, H. J. (2004) Nanomagnetics for biomedical applications. In: Nalwa, H. S., ed. Encyclopedia of Nanoscience and Nanotechnology. California:American Scientific Publishers, Vol. 6, pp.815-821.
55. Aylott, J. W.; Richardson, D. J.; Russell, D. A. (1997) Chem. Mater., 9, 2261.
56. Barker, S. L. R.; Kopelman, R.; Meyer, T. E.; Cusanovich, M. A. (1998) Anal. Chem., 70, 971.
57. Battati, S.; Pioselli, B.; Campanini, B.; Viappiani, C.; Mozzarelli, A. (2004) Protein-doped nanoporous silica gels. In: Nalwa, H. S., ed. Encyclopedia of Nanoscience and Nanotechnology. California:American Scientific Publishers, Vol. 9, pp.81-103.
58. Bronshtein, A.; Aharonson, N.; Avnir, D.; Turniansky, A.; Altstein, M. (1997) Chem. Mater., 9, 2632.
59. Bruchez, M. Jr.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P. (1998) Science, 281, 2013.
60. Cao, Y. W. C.; Jin, R.; Mirkin, C. A. (2002) Science, 297, 1536.
61. Chan, W. C. W.; Nie, S. (1998) Science, 281, 2016.
62. Elghanian, R.; Storhoff, J. J.; Mucic, R. C.; Letsinger, R. L.; Mirkin, C. A. (1997) Science, 277, 1078.
63. Gill, I.; Ballesteros, A. (1998) J. Am. Chem. Soc., 120, 8587.
64. Gill, L. (2004) Biodoped sol-gel polymer nanocomposites. In: Nalwa, H. S., ed. Encyclopedia of Nanoscience and Nanotechnology. California:American Scientific Publishers, Vol. 1, pp.269-292.
65. Gupta, A. K., Gupta, M. (2005) Biomaterials, 26, 3995.
66. He, X.; Lin, X.; Wang, K.; Chen, L.; Wu, P.; Yuan, Y. (2004) Biocompatiable core-shell nanoparticles for biomedicine. In: Nalwa, H. S., ed. Encyclopedia of Nanoscience and Nanotechnology. California:American Scientific Publishers, Vol. 1, pp.235-253.
67. Ji, Q.; Lloyd, C. R.; Ellis, W. R.; Jr., Eyring, E. M. (1998) J. Am. Chem. Soc., 120, 221.
68. Kadnikova, E. N.; Kostic, N. M. (2002) J. Mol. Catal. B, 18, 39.
69. Cao, Y. W.; Banin, U. (1999) Angew. Chem., Int. Ed., 38, 3692.
70. Dabbousi, B. O.; Rodriguez-Viejo, J.; Mikulec, F. V.; Heine, J. R.; Mattoussi, H.; Ober, R.; Jensen, K. F.; Bawendi, M. G. (1997) J. Phys. Chem. B, 101, 9463.
71. Danek, M.; Jensen, K. F.; Bawendi, M. G. (1996) Chem. Mater., 8, 173.
72. Hao, E.; Sun, H.; Zhou, Z.; Liu, J.; Yang, B.; Shen, J. (1999) Chem. Mater., 11, 3096.
73. Cao, Y. W.; Jin, R.; Mirkin, C. A. (2001) J. Am. Chem. Soc., 123, 7961.
74. Henglein, A. (2000) J. Phys. Chem., B 104, 2201.
75. Lu, L.; Wang, H.; Zhou, Y.; Xi, S.; Zhang, H.; Hu, J.; Zhao, B. (2002) Chem. Commun., 144.
76. Correa-Duarte, M. A.; Giersig, M.; Kotov, N. A.; Liz-Marzn, L. M. (1998) Langmuir, 14, 6430.
77. Correa-Duarte, M. A.; Giersig, M.; Liz-Marzn, L. M. (1998) Chem. Phys. Lett., 286, 497.
78. Giersig, M.; Liz-Marzn, L. M.; Ung, T.; Su, D.; Mulvaney, P. (1997) Ber. Bunsenges. Phys. Chem., 101, 1617.
79. Giersig, M.; Ung, T.; Liz-Marzn, L. M.; Mulvaney, P. (1997) Adv. Mater., 9, 570.
80. Pastoriza-Santos, I.; Koktysh, D. S.; Mamedov, A. A.; Giersig, M.; Kotov, N. A.; Liz-Marzn, L. M. (2000) Langmuir, 16, 2731.
81. 史宗淮 (1995) 微粉製程技術簡介,化工 42,28。
82. 朱屯,王福明,王習東 (2003) 奈米材料技術,臺北:五南。
83. 馬遠榮 (2002) 奈米科技,臺北:商周。
84. Pieter, B. R.; Williams, R. A.; Webb, C. (1992) Magnetic carrier technology. In:Williams, R. A., ed. Colloid and Surface Engineering: Applications in the process industries. Oxford:Butterworth- Heinemann, pp.248-286.
85. Xu, Z.; Liu, Q.; Finch, J. A. (1999) Engineering of nanosize superparamagnetic particles for use in magnetic carrier technology. In: Schwarz J A, Contescu C I, eds. Surfaces of Nanoparticles and Porous Materials. New York: Marcel Dekker, pp. 31-50.
86. 江宜蓁 (2008) 以有機金屬法合成兼具磁性光學特性之金屬複合奈米粒子,國立成功大學化學工程研究所博士論文。
87. Adschiri, T., Hakuta, Y., Arai, K. (2000) Ind. Eng. Chem. Res., 39, 4901.
88. Davies, M. J.; Bruce, I. J.; Smethurst, D. E. (1994) Magnetic solid phase supports for affinity purification of nucleic acids. In: Pyle D L, ed. Separations for Biotechnology 3. Cambridge: The Royal Society of Chemistry, pp. 152-158.
89. Ennis, M. P.; Wisdom, G. B. (1991) Appl. Biochem. Biotechnol., 30: 155.
90. Hfeli, U.; Schtt, W.; Teller, J.; Zborowski, M. (1997) Scientific and Clinical Applications of Magnetic Carriers. New York: Plenum Press.
91. Hirschbein, B. L.; Brown, D. W.; Whitesides, G. M. (1982) Chemtech., 12: 172.
92. Setchell, C. H. (1985) J. Chem. Tech. Biotechnol., 35B, 175.
93. Roath, S. (1993) J. Magn. Magn. Mater., 122, 329.
94. Šafařk, I. (1995) Wat. Res., 29, 101.
95. Oyama, K.; Kihara, K. (1984) Chemtech., 14, 100.
96. Denizli, A.; Tanyola, D.; Salih, B.; zdural, A. (1998) J. Chromatogr. A, 793, 47.
97. Denizli, A.; Say, R. (2001) J. Biomater. Sci. Polymer Edn., 12, 1059.
98. Bolto, B. A. (1982) Novel water treatment processes which involve polymers. In: Cooper A R, ed. Polymeric Separation Media. New York: Plenum Press, pp. 211.
99. Akgl, S.; Kaar, Y.; Denizli, A.; Arica, M. Y. (2001) Food Chem., 74, 281.
100. Bahar, T.; Celebi, S. S. (1999) J. Appl. Polym. Sci., 72, 69.
101. Garcia, A.; Oh, S.; Engler, C. R. (1989) Biotechnol. Bioeng., 33, 321.
102. Halling, P. J.; Dunnill, P. (1980) Enzyme Microb. Technol., 2, 2.
103. Hork, D.; Rittich, B.; Šafř, J.; Španov, A.; Lenfeld, J.; Beneš, M. J. (2001) Biotechnol. Prog., 17, 447.
104. Kondo, A.; Fukuda, H. (1997) J. Ferment. Bioeng., 84, 337.
105. Liu, C.; Honda, H.; Ohshima, A.; Shinkai, M.; Kobayashi, T. (2000) J. Biosci. Bioeng., 89, 420.
106. Rudge, S. R.; Kurtz, T. L.; Vessely, C. R.; Catterall, L. G.; Williamson, D. L. (2000) Biomaterials, 21, 1411.
107. Rudge, S.; Peterson, C.; Vessely, C.; Koda, J.; Stevens, S.; Catterall, L. (2001) J. Control. Release, 74, 335.
108. Widder, D. J.; Senyei, A. E.; Ranney, D. F. (1979) Adv. Pharmacol. Chemother., 16, 213.
109. Ghassabian, S.; Ehtezazi, T.; Forutan, S. M.; Mortazavi, S. A. (1996) Int. J. Pharm., 130, 49.
110. Gupta, P. K.; Hung, C. T. (1989) Life Sci., 44, 175.
111. Lster, K.; Seidel, S.; Kirstein, D.; Schneider, F.; Noll, F. (1992) J. Immunol. Methods, 148, 41.
112. Matsunaga, T.; Kawasaki, M.; Yu, X.; Tsujimura, N.; Nakamura, N. (1996) Anal. Chem., 68, 3551.
113. Richardson, J.; Hawkins, P.; Luxton, R. (2001) Biosens. Bioelectron., 16, 989.
114. Schtt, W.; Grttner, C.; Hfeli, U.; Zborowski, M.; Teller, J.; Putzar, H.; Schmichen, C. (1997) Hybridoma, 16, 109.
115. Krogh, T. N.; Berg, T.; Hjrup, P. (1999) Anal. Biochem., 274, 153.
116. Miyabayashi, A.; O’Shannessy, D. (1989) Biotechnol. Appl. Biochem., 11, 379.
117. Varlan, A. R.; Suls, J.; Jacobs, P.; Sansen, W. (1995) Biosens. Bioelectron., 10, 15.
118. Wang, J.; Xu, D.; Polsky, R. (2002) J. Am. Chem. Soc., 124, 4208.
119. Yang, M.; Li, H. L. (2001) Talanta, 55, 479.
120. Hilger, I.; Fruhauf, K.; Andra, W.; Hiergeist, R.; Hergt, R.; Kaiser, W. A. (2002) Acad. Radiol., 9, 198.
121. Jordan, A.; Wust, P.; Scholz, R.; Tesche, B.; Fahling, H.; Mitrovics, T.; Vogl, T.; Cervos-Navarro, J.; Felix, R. (1996) Int. J. Hyperthermia., 12, 705.
122. Moroz, P.; Jones, S. K.; Gray, B. N. (2002) Int. J. Hyperthermia., 18, 267.
123. Brigger, D. C.; Couvreur, P. (2002) Adv. Drug Del. Rev., 54, 631.
124. Halavaara, J.; Tervahartiala, P.; Isonieme, H.; Hockerstedt, K. (2002) Acta Radiologica, 43, 180.
125. Van-Beers, B. E.; Pringot, J.; Gallez, B. (1995) J. Radiol. 76, 991.
126. Iijima, S. (1991) Nature, 352, 56.
127. Zhao, Q.; Gan, Z.; Zhuang, Q. (2002) Electroanalysis, 14, 23.
128. Cohen, M. L. (2001) Mater. Sci. Eng. C, 15, 1.
129. Bekyarova, E.; Haddon, R. C.; Parpura, V. (2005) In : Kumar, C. ed. Biofunctionalization of Nanomaterials, Ch. 2, Weinheim: Wiley-VCH.
130. Terrones, M., Hsu, W. K., Kroto, H. W.; Walton, D. R. M. (1999) Top. Curr. Chem., 199, 189.
131. Dai, H. (2001) Surf. Sci., 500, 218.
132. Wang, N.; Tang, Z. K.; Li, G. D.; Chen, J. S. (2000) Nature, 408, 50.
133. Dresselhaus, M. S.; Dresselhaus, G.; Eklund, P. C. (1996) Science of Fullerenes and Carbon Nanotubes, Academic, San Diego.
134. http://en.wikipedia.org/wiki/Carbon-nanotube
135. Bekyarova, E.; Ni, Y.; Malarkey, E. B.; Montana, V.; McWilliams, J. L.; Haddon, R. C.; Parpura, V. (2005) J. Biomed. Nanotechnol., 1, 3.
136. Ebbesen, T. W.; Ajayan, P. M. (1992) Nature, 358, 220.
137. Ando, Y.; Iijima, S.; (1993) Jpn. J. Appl. Phys., 32,107
138. Iijima, S.; Ichihashi, T.; (1993) Nature, 363, 603
139. Guo, J.; Goasguen, S.; Lundstrom, M.; Datta, S.; (2002) Appl. Phys. Lett., 81, 1486
140. Colbert, D. T.; Zhang, J.; McClure, S. M.; Nikolaev, P.; Chen, Z.; Hafner, J. H.; Owens, D. W.; Kotula, P. G.; Carter, C. B.; Weaver, J. H.; Rinzler, A. G.; Smalley, R. E. (1994) Science, 266, 1218.
141. Ando, Y.; (1994) Fullerene Sci. Technol., 2, 173.
142. Zhao, X.; Ohkohchi, M.; Wang. M.; Iijima, S.; Ichihashi, T.; Ando, Y.; (1997) Carbon, 35, 775.
143. 李元堯 (2003) 21世紀的尖端材料-奈米碳管,化工技術 3月: 140。
144. Merkoi, A.; Pumera, M.; Llopis, X.; Prez, B.; Valle, M. d.; Alegret, S.; (2005) Trends Anal. Chem.; 24, 826.
145. Rao, C. N. R.; Sen, R.; Satishkumar, B. C.; Govindaraj, A.; (1998) Chem. Commun.; 15, 1998.
146. Liu, J.; Rinzler, A.G.; Dai, H.; Hafner, J. H.; Bradley, R. K.; Boul, P. J.; Lu, A.; Iverson, T.; Shelimov, K.; Huffman, C. B.; Rodriguez-Macias, F.; Shon, Y.-S.; Lee, T. R.; Colbert, D. T.; Smalley, R. E. (1998) Science, 280, 1253.
147. Chen,J. ; Hamon, M. A.; Hu, H.; Chen, Y.; Rao, A. M.; Eklund, P. C.; Haddon, R. C. (1998) Science, 282, 95.
148. Moore, V. C.; Strano, M. S.; Haroz, E. H.; Hauge, R. H.; Smalley, R. E.; Schmidt, J.; Talmon, Y. (2003) Nano Lett., 3, 1379.
149. Grunlan, J. C.; Liu, L.; Kim, Y. S. (2006) Nano Lett., 6, 911.
150. Grunlan, J. C.; Liu, L.; Regev, O. (2008) J. Colloid Interface Sci. 317, 346.
151. Balavoine, F.; Schultz, P.; Richard, C.; Mallouh, V.; Ebbesen, T. W.; Mioskowski, C. (1999) Angew. Chem. Int. Ed., 38, 1912.
152. Erlanger, B. F.; Chen, B. X.; Zhu, M.; Brus, L. (2001) Nano Lett., 1, 465.
153. Besteman, K.; Lee, J.-O; Wiertz, F. G. M.; Heering, H. A.; Dekker, C. (2003) Nano Lett., 3, 727.
154. Richard, C.; Balavoine, F.; Schultz, P.; Ebbesen, T. W.; Mioskowski, C. (2003) Science, 300, 775.
155. Zheng, M.; Jagota, A.; Strano, M. S.; Santos, A. P.; Barone, P.; Chou, S. G.; Diner, B. A.; Dresselhaus, M. S.; Mclean, R. S.; Onoa, G. B.; Samsonidze, G. G.; Semke, E. D.; Usrey, M. L.; Walls, D. J. (2003) Science, 302, 1545.
156. Zorbas, V.; Ortiz-Acevedo, A.; Dalton, A. B.; Yoshida, M. M.; Dieckmann, G. R.; Draper, R. K.; Baughman, R. H.; Jose-Yacaman, M.; Musselman, I. H.; (2004) J. Am. Chem., Soc. 126, 7222.
157. Zheng, M.; Jagota, A.; Semke, E. D.; Diner, B. A.; Mclean, R. S.; Lustig, S. R.; Richardson, R. E.; Tassi, N. G. (2003) Nature Mater., 2, 338.
158. Huang, W.; Taylor, S.; Fu, K.; Lin, Y.; Zhang, D.; Hanks, T. W.; Rao, A. M.; Sun, Y. P.(2002) Nano Lett., 2, 311.
159. Williams, K. A.; Veenhuizen, P. T. M.; Torre, B.G. de la; Eritja, R.; Dekker, C. (2002) Nature, 420, 761.
160. Gopel, W.; Hesse,J., Zemel, J. N. (1993) Sensors, Weingeim: WCH.
161. 徐章 (1993)高級感測器技術的發展理念,量測資訊,35期: 1。
162. Janata, P. P. (1989) Principles of chemical sensors, New York.
163. Liao, M. H.; Chen, D. H. (2002) J. Mater. Chem., 12, 3654.
164. Liao, M. H.; Chen, D. H. (2002) Biotechnol. Lett., 24, 1913.
165. Schmid,R. D.; Verger, R.; (1998) Angew. Chem. Int. Ed., 37 1608.
166. Villeneuve, P., Muderhwa, J. M., Graille, J., Haas, M. J. (2000) J. Mol. Catal. B: Enzym., 9 113.
167. Sharma, R., Chisti, Y., Banerjee, U. C. (2001) Biotechnol. Adv. 19 627.
168. 林瀚淵 (2002) 微水有機溶劑中利用脂肪分解酵素進行外消旋 naproxen 三氟乙酯之水解動態動力分割,國立成功大學化學工程研究所碩士論文。
169. Villeneuve, P.; Muderhwa, J. M.; Graille, J.; Haas, M. J. (2000) J. Mol. Catal. B: Enzym. 9, 113.
170. Yakabson, B. I.; Smally, R. E. (1997) Am. Sci., 85, 324.
171. Luo, H. X.; Shi, Z. J.; Li, N. Q.; Gu, Z. N.; Zhuang, Q. K. (2000) Chem. J. Chin. Univ., 21, 1372.
172. Luo, H. X.; Shi, Z. J.; Li, N. Q.; Gu, Z. N.; Zhuang, Q. K. (2001) Anal. Chem., 73, 195.
173. Wang, J. X.; Li, M. X.; Shi, Z. J.; Li, N. Q.; Gu, Z. N. (2001) Electrochim. Acta, 47, 651.
174. Britto, P. J.; Santhanam, K. S. V.; Ajayan, P. M. (1996) Bioelectrochem. Bioenerg. 41, 121.
175. Mosameh, M.; Wang, J.; Merkoci, A.; Lin, Y. (2002) Electrochem. Commun., 4, 743.
176. Rabianes, M. D.; Rivas, G. A. (2003) Electrochem. Commun., 5, 689.
177. Zhao, G.; Yin, Z.; Zhang, Li, Wei, X. (2005) Electrochem. Commun., 7, 256.
178. Salimi, A.; Banks, C. E.; Compton, R. G.. (2004) Analyst., 129, 225.
179. Snchez, S.; Fbregas, E.; Pumera, M. (2009) Phys. Chem. Chem. Phys., 11, 182.
180. Shen, J.; Hu, Y.; Qin, C.; Ye, M. (2008) Langmuir, 24, 3993.
181. Zhao, H.; Zhang, Y.; Yuan, Z. (2002) Anal. Chim. Acta, 454, 75.
182. Yao, H.; Sun, Y.; Lin, X.; Tang, Y.; Huang, L. (2007) Electrochim. Acta, 52, 6165.
183. Ren, W.; Luo, H. Q.; Li, N. B. (2006) Biosens. Bioelectron., 21, 1086.
184. Friedman, J. I.; Adler, D. N.; Davis, K. L. (1999) Biological Psychiatry 46, 1243.
185. Liu, A.; Honma, I.; Zhou, H. (2007) Biosens. Bioelectron., 23, 74.
186. Silva, R. P. D.; Lima, A. W. O.; Serrano, S. H. P. (2008) Anal. Chim. Acta, 612, 89.
187. Liu A. L.; Zhang, S. B.; Chen, W.; Lin, X. H.; Xia, X. H. (2008) Biosens. Bioelectron., 23, 1488.
188. Ye, B. X.; Xia, P.; Lin, L. (2000) Microchem. J., 64, 125.
189. Hawley, M. D.; Tatawawadi, S. V.; Piekarski, S.; Adams, R. N. (1967) J. Chem. Soc., 89, 447.
190. Wu, C. P.; Chen, H. Y.; Chen, H. Q. Chin. J. Anal. Chem., (1988) 16, 566.
191. Zhou, L.; Shang, F.; Pravda, M.; Glennon, J. D.; Luong, J. H. T. (2009) Electroanaly., 21, 797.
192. Xu, G. R.; Chang, H. Y.; Cho, H.; Meng, W.; Kang, I. K.; Bae, Z. U. (2004) Electrochim. Acta, 49,4069.
193. Jo, S.; Jeong, H.; Bae, S. R.; Jeon, S. (2008) Microchem. J., 88, 1.
194. Yao, H.; Sun, Y.; Lin, X.; Tang, Y.; Huang, L. (2007) Electrochim. Acta, 52, 6165.
195. Wei, M.; Li, M.; Li, N.; Gu, Z.; Duan, X. (2002) Electrochim. Acta. 47, 2673.
196. 龔吉合 (1998) 材料科學導論,臺中:滄海。
197. Kodama, R. H. (1999) J. Magn. Magn. Mater. 200, 359.
198. Billas, I. M. L.; Chtelain, A.; de Heer, W. A. (1994) Science 265, 1682.
199. Billas, I. M. L.; Chtelain, A.; de Heer, W. A. (1997) J. Magn. Magn. Mater. 168, 64.
200. Freeman, A. J.; Fu, C. L.; Ohnishi, S.; Weinert, M. (1985) In : R. Feder ed. Polarized Electrons in Surface Physics, Singapore : World Scientific, pp. 3-66.
201. 張正武 (2004) FePt及FePtB奈米晶薄帶磁性、相變化與交換藕合效應之研究,國立中正大學物理研究所碩士論文。
202. Sorensen, C. M. (2001) Magnetism. In:Klabunde, K. J., ed. Nanoscale Materials in Chemistry. New York:Wiley Interscience, pp.169-222.
203. Poole Jr., C. P.; Owens, F. J. (2003) Introduction to Nanotechnology. Hoboken:John Wiley & Sons.
204. Cullity, B. D. (1972) Introduction to Magnetic Materials. California:Addison-Wesley.
205. 張煦、李學養 譯 (1982) 磁性物理學,臺北:聯經。
206. 許克瀛 (2003) 單一散度高分子螯合顆粒之製備,私立中原大學化學工程研究所博士論文。
207. Langmuir, I. (1918) J. Am. Chem. Soc., 40, 1361.
208. Faust, S. D.; Aly, O. M. (1987) Adsorption Processes for Water Treatment. Boston:Butterworths, pp.16-21.
209. Kondo, A.; Fukuda, H. (1997) J. Ferment. Bioeng. 84, 337.
210. Pencreac'h, G.; Leullier, M.; Baratti, J. C. (1997) Biotechnol. Bioeng., 56, 181.
211. Peng, Z. G.; Hidajat, K.; Uddin, M. S. (2004) J. Colloid Interface Sci. 271, 277.
212. Xin, J. Y.; Hu, Y. X. X. X.; Cui, J. R.; Li, S. B.; Xia, C. G.; Zhu, L. M. (2002) J. Basic Microbiol., 42, 355.
213. Hung, T. C.; Giridhar, R.; Chiou, S. H.; Wu, W. T. (2003) J. Mol. Catal. B: Enzym. 26, 69.
214. Ngah, W. S. W.; Endud, C. S.; Mayanar, R. (2002) Funct. Polym. 50, 181.
215. Huang, S. H.; Liao, M. H.; Chen, D. H. (2006) Sep. Purif. Technol., 51, 113.
216. Chang, Y. C.; Chen, D. H. (2005) J. Colloid Interface Sci., 283,446.
217. Samal, S.; Das, R. R.; Dey, R. K.; Acharya, S. (2000) J. Appl. Polym. Sci., 77, 967.
218. Qu, R.; Wang, C.; Ji, C.; Sun, C.; Sun, X.; Cheng, G. (2005) J. Appl. Polym. Sci., 95, 1558.
219. Li, N.; Bai, R. (2005) Sep. Purif. Technol., 42, 237.
220. Banerjee, S. S., Chen, D. H. (2007) J. Hazard. Mater.; 147, 792.
221. Bayramoğlu, G.; Arıca, M. Y. (2005) Sep. Purif. Technol. 45, 192.
222. Chang, Y. C.; Chen, D. H. (2006) Gold Bull., 39, 98.
223. Bard, A. J.; Faulkner,L. R. (2001) Electrochemical Methods:Fundamentals and Applications , 2nd ed. New York: John Wiley & Sons.
224. 連加雯(2006) 網版印刷電極的活化及其電分析化學的應用 國立中興大學化學系研究所碩士論文
225. Brett, C. M. A.; Brett, A. M. O. Electrochemistry : Principles, Methods, and Applications, (1993) Oxford University Press, New York.
226. http://www.basinc.com/mans/EC_epsilon/Techniques/Pulse/pulse.html#differential
227. 林姿綺 (2001) 網板印刷電極應用在藥物分析上的研究,國立中興大學化學研究所碩士論文。
228. 白志虹 (2001) 毛細管電泳化學偵測法使用金汞膜微電極分析三有機錫化合物之研究,國立中山大學化學研究所碩士論文。
229. Bard, A. J. (1994) Integrated Chemical Systems: A Chemical Approach to Nanotechnology. New York: John Wiley & Sons.
230. Raj, C. R.; Okajima, T.; Ohsaka, T. (2003) J. Electroanal. Chem., 543, 127.
231. Raj, C. R.; Tokuda, K.; Ohsaka, T. (2001) Bioelectrochemistry, 53, 183.
232. Malem, F.; Mandler, D. (1993) Anal. Chem., 65, 37.
233. Lin, L.; Yao, H.; Huang, L.; Lin, X. (2009) J. Electroanal. Chem., 64, 189.
234. Roy, P. R.; Okajima, T.; Ohsaka, T. (2003) Bioelectrochemistry, 59, 11.
235. Jeong, H.; Kim, H.; Jeon, S. (2004) Microchem. J., 78, 181.
236. Lin, Y.; Lin, X. (2006) Sens. Actuators, B, 115, 134.
237. Zhao, H.; Zhang, Y. ; Yuan, Z. (2002) Electroanaly., 14, 445.
238. Li, Y.; Wang, L.; Lin, X. (2007) Biosens. Bioelectron., 22, 3120.
239. Ohnuki, Y.; Mastsuda, H.; Ohsaka, T.; Oyama, N. (1983) J. Electroanal. Chem., 158, 55.
240. Volkov, A.; Tourillon, G.; Lacaze, P. C.; Dubois, J. E. (1980) J. Electroanal. Chem., 115, 279.
241. Yang, Y.; Zhong, Z. ; Liu, H.; Zhu, T.; Wu, J.; Li, M.; Wang D. (2008) Electroanalysis, 20, 2621.
242. Lu, L. P.; Wang, S. Q.; Lin, X. Q. (2004) Anal. Chim. Acta, 519, 161.
243. Yang, X.; Lu, Y.; Ma, Y.; Liu, Z.; Du, F. (2007) Biotechnol. Lett.; 29, 1775.
244. Mehdinia, A. ; Kazemi, S. H. ; Bathaie, S. Z.; Alizadeh, A.; Shamsipur, M.; Mousavi, M. F. (2009) J. pharm. Biomed. Anal.; 49, 587.
245. Gu, T.; Hasebe, Y. (2004) Anal. Chim. Acta.; 525, 191.
246. Drummond, T.; Hill, M.; Barton, J. (2003) Nat. Biotechnol., 21, 1192.
247. Boon, E.; Jackson, N.; Wightman, M.; Kelley, S.; Hill, M.; Barton, J. (2003) J. phys. Chem. B, 107, 11805.
248. Giese, B.; Biland, A. (2002) Chem. Commun., 7, 667.
249. Giese, B.; Napp, M.; Jacques, O.; Boundebous, H.; Taylor, A.; Wirz, J. (2005) Angew. Chem. Int. Ed.; 44, 4073.
250. Lin, X. Q.; Lu, L. P.; Jiang, X. H. (2003) Microchim. Acta.; 143, 229.
251. Lin, X.; Jiang, X. (2004) Electrochem. Commun., 6, 873.
252. Lin, X.; Kang, G.; Lu, L. (2007) Bioelectrochemistry, 70, 235.
253. Zhang, F.; Wang, X.; Ai, S.; Sun, Z.; Wan, Q., Zhu, Z.; Xian, Y.; Jin, L.; Yamamoto, K. (2004) Anal. Chim. Acta., 519, 155.
254. Kang, X.; Mai, Z.; Zou, X.; Gai, P.; Mo, J. (2007) Anal. Biochem., 369, 71.
255. Zhu, X.; Yuri, I.; Gan, X.; Suzuki, I.; Li, G. (2007) Biosens. Bioelectron., 22, 1600.
256. Tasi, Y. C.; Huang, J. D.; Chiu, C. C. (2007) Biosens. Bioelectron., 22, 3051.
257. Wang, J. (2000) Analytical Electrochemistry , 2nd ed. New York: Wiley & VCH.
258. Baker, M. D.; Senaratne, C. (1994) In: Lipkowski, J.; Ross, P. N. ed Electrochemistry of Novel Materials: Frontiers of Electrochemistry , Ch. 7, New York: VCH.
259. Ghosh, O. K.; Bard, A. J. (1983) J. Am. Chem. Soc., 105, 5691.
260. Rubianes, M. D.; Rivas, G. A. (2003) Electrochem. Commun., 5, 689.
261. Gao, B.; Jiang, P.; Lei, H. (2006) Materials Letters, 60, 3398.
262. Zen, J. M.; Jou, J. J.; Ilangovan, G. (1998) Analyst., 123, 1345.
263. Malem, F.; Mandler, D. (1993) Anal. Chem.; 65,37.
264. Wang, Z.; Wang, Y.; Luo,G. (2002) Analyst., 127, 1353.
265. Zheng, L.; Wu, S.; Lin, X.; Nie, L.; Rui, L. (2001) Electroanalysis, 13, 1351.
266. Wang, G.; Liu, X.; Yu, B.; Luo, G. (2004) J. Electroanal. Chem., 567, 227.
267. Chen, W.; Lin, X.; Luo, H.; Huang, L. (2005) Electroanalysis, 17, 941.
268. Liu, A. L.; Zhanh, S. B.; Chen. W.; Lin, X. H.; Xia, X. H. (2008) Biosens. Bioelectron., 23, 1488.