簡易檢索 / 詳目顯示

研究生: 黃智偉
Huang, Chih-Wei
論文名稱: 具有螢光能量轉移特性之靜電紡絲奈米纖維製備與在重金屬離子及酸鹼值環境感測之應用
Fabrication of Electrospun Nanofibers with Forster Resonance Energy Transfer for Application in Heavy Metal-ion and pH Sensing
指導教授: 吳文中
Wu, Wen-Chung
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 117
中文關鍵詞: 螢光感測器靜電紡絲纖維汞離子銅離子螢光共振能量轉移
外文關鍵詞: Fluorescent sensor, Electron spinning, Nanofibers, Copper ions, Mercury ions, Förster Resonance Energy Transfer
相關次數: 點閱:101下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用兩種對於Hg2+及Cu2+與酸鹼雙重感測性之螢光單體1-Benzoyl-3-[2-(2-allyl-1,3-dioxo-2,3-dihydro-1Hbenzo[de]isoquinolin-6-ylamio)-ethyl]-thiourea (BNAPTU)及(3-hydroxy-4-methylphenyl methacrylate) Rhod -amine B hydrazone(RB),將其各別與N-isopropylacrylamide(NIPAAm)、N-hydroxymethylacrylamide(NMA)以自由基聚合法合成不同單體比例之共聚高分子poly(NIPAAm-co-NMA-co-BANPTU (P1、P2, Donor)及poly (NIPAAm-co-NMA -co-RB (P3、P4, Acceptor),使用靜電紡絲技術將兩種不同高分子混紡成具有螢光能量轉移特性(Förster resonance energy transfer, FRET)高比表面積之奈米纖維,鏈中PNIPAAM為具有親水性,可使纖維於水溶液中膨潤而有利於重金屬離子與螢光感測集團之相互作用;PNMA為奈米纖維之化學交聯鏈段,經過熱交聯後能穩定纖維型態在溶液中保持穩定。
    中性環境加入Hg2+後,會誘導BNAPTU結構上的硫脲,形成不可逆的分子內環化反應,造成吸收及螢光放光波長藍移,其螢光顏色從綠色變成藍色。於酸性環境(pH2)加入Cu2+,RB螢光強度會隨Cu2+濃度提高而下降,產生電子轉移,導致螢光淬滅,形成一ON-OFF之螢光感測器。利用靜電紡絲製成之奈米纖維,其高分子鏈在纖維間的距離會較溶液態靠近,因此隨pH值降低,會產生高效之FRET效率,而使螢光放光轉移,其螢光放光顏色會從綠色變為橘紅色,更隨著環境中酸鹼值與重金屬離子組成,其螢光顏色也會有對應之螢光表現,如中性及酸性銅離子之下螢光顏色為綠光、中性汞離子環境之下為藍色、酸性汞離子環境之下為紫色等等,因此結合此FRET機制之奈米纖維將可以作為一種對於pH敏感、汞離子及銅離子感測之新型感測器。

    The sensing nanofibers (B1、B2、B3、B4 and B5) were prepared by electrospinning technique from the blending solution of two copolymers [poly(NIPAAm-co-NMA- co-BNAPTU), P1, P2] and [poly(NIPAAm-co-NMA -co-RB), P3, P4] with different compositions. The BNAPTU, RB, NIPAAm, and NMA moieties were designed to facilitate fluorescent sensing for mercury ions, fluorescent sensing for coppor ions and pH, good swelling of the nanofibers in aqueous solution, and thermal crosslinkable moieties to stabilize the fibrous morphology in aqueous solution, respectively.
    The nanofibers showed emissive color change from yellowish green to blue in the presence of mercury ions due to the intramolecular cyclization of thioureas in the BNAPTU moieties. The nanofibers could also be used as an ‘‘ON-OFF’’ sensor through PET mechanism after addition of copper ions in acidic environment (pH2), where the intensity of fluorescence was decreased linearly as the concentration of copper ions increased, and the fluorescence emission were changing from red fluorescence to nonfluorescence. The distances between BNAPTU and RB in nanofibers were much closer than those in solution state, therefore, the FRET efficiency will be much higher than that in solution state under the pH diversification, and the fluorescence emission was shifted from green to red. The fluorescence emission color of electrospinning (ES) fiber included green, red, blue and purple depending on the particular pH, copper ions and mecury ions concentration combination of the solution. Thus, the ES nanofibers with FRET mechanism prepared from P2/P4 with on/off swithchable ability characteristics can be used as a multifunctional sensory device for specific heavy metal-ion in aqueous solution.

    摘要 I Abstrate II 誌謝 XIII 目錄 XIV 圖目錄 XVII 表目錄 XXI 第一章 、緒論 1 1.1 研究背景與文獻回顧 1 1.1.1 環境汙染源種類 1 1.1.1.1 重金屬汙染來源 1 1.1.1.2 重金屬汙染對環境及人體的危害 2 1.1.2 螢光原理 4 1.1.2.1 光致冷發光(photoluminescence) 4 1.1.2.2 激發態分子之去激發機制 5 1.1.2.3 影響螢光之變數 8 1.1.2.4 螢光淬滅機制 12 1.1.3 感測器 13 1.1.3.1 螢光感測器 14 1.1.4 1,8-naphthalimide based感測器在檢測金屬離子上之應用 20 1.1.5 Rhodamine-based感測器在檢測金屬離子上之應用 22 1.1.6 環境應答型高分子 25 1.1.7 靜電紡絲技術 33 1.1.7.1 靜電紡絲簡介 33 1.1.7.2 靜電紡絲原理與裝置 33 1.1.7.3 影響靜電紡絲之參數 34 1.2 研究動機與目的 43 第二章 、實驗 45 2.1 實驗藥品 45 2.2 實驗方法 46 2.2.1 螢光單體1-Benzoyl-3-[2-(2-allyl-1,3-dioxo-2,3-dihydro-1Hbenzo [de]isoquinolin-6-ylamino)-ethyl]-thiourea (BNAPTU)合成 46 2.2.2 螢光單體 (3-hydroxy-4-methylphenyl methacrylate)Rhodamine B hydrazone (RB)合成 48 2.2.3 Poly(NIPAAm-co-NMA-co-BNAPTU)合成 51 2.2.4 Poly(NIPAAm-co-NMA-co-RB)合成 53 2.2.5 靜電紡絲奈米纖維(Electrospinning of nanofibers)製備 54 2.2.6 吸收與螢光光譜之量測 55 2.3 儀器鑑定 57 2.3.1 Nuclear Magnetic Resonance (NMR) 57 2.3.2 Gel permeation chromatography (GPC) 58 2.3.3 Ultraviolet-visible spectra (UV-vis. spectra) 58 2.3.4 Fluorescence Spectrophotometer (FL) 59 2.3.5 High Resolution Field Emission Scanning Electron Microscope (HR FE-SEM) 59 第三章 、結果與討論 60 3.1 單體合成與高分子聚合之鑑定 60 3.1.1 BNA-Br鑑定 60 3.1.2 BNA-NH2鑑定 61 3.1.3 BNAPTU鑑定 62 3.1.4 Rhodamine B hydrazide鑑定 63 3.1.5 Rhodamine hydrazone鑑定 64 3.1.6 RB monomer鑑定 65 3.1.7 Poly(NIPAAm-co-NMA-co-BNAPTU)共聚高分子鑑定 66 3.1.8 Poly(NIPAAm-co-NMA-co-RB)共聚高分子鑑定 67 3.2 螢光感測高分子之光學性質探討 69 3.2.1 小分子溶液之感測性探討 71 3.2.1.1 螢光單體BNAPTU對金屬離子之選擇性 71 3.2.1.2 螢光單體RB monomer對金屬離子之選擇性 71 3.2.1.3 螢光單體RB monomer對酸鹼值環境之影響 72 3.2.2 高分子溶液之感測性探討 73 3.2.2.1 高分子Poly(NIPAAm-co-NMA-co-BNAPTU)溶液對金屬離子之選擇性 73 3.2.2.2 高分子Poly(NIPAAm-co-NMA-co-BNAPTU)溶液對金屬離子之感測性 75 3.2.2.3 高分子Poly(NIPAAm-co-NMA-co-RB)溶液對金屬離子之選擇性 79 3.2.2.4 高分子Poly(NIPAAm-co-NMA-co-RB)溶液對酸鹼值環境之影響 80 3.2.2.5 高分子Poly(NIPAAm-co-NMA-co-RB)溶液對離子感測性 82 3.2.2.6 混和高分子Poly(NIPAAm-co-NMA-co-BNAPTU)及Poly(NIPAAm- co-NMA-co-RB)溶液之環境探討 85 3.2.3 靜電紡織纖維之感測性探討 87 3.2.3.1 靜電紡織纖維之pH值環境探討 88 3.2.3.2 靜電紡織纖維之金屬離子感測 90 3.2.3.3 新型感測器之探討 97 3.2.4 靜電紡絲纖維之溫度應答探討 100 3.2.5 靜電紡絲纖維之可再利用性(Reusability)探討 102 3.2.6 靜電紡絲纖維結構鑑定分析 104 第四章 、結論與未來工作 109 參考文獻 111

    [1] Carvalho, C. M., Chew, E. H., Hashemy, S. I., Lu, J., & Holmgren, A. (2008). Inhibition of the human thioredoxin system a molecular mechanism of mercury toxicity. Journal of Biological Chemistry, 283(18), 11913-11923.
    [2] Clarkson, T. W., Magos, L., & Myers, G. J. (2003). The toxicology of mercury—current exposures and clinical manifestations. New England Journal of Medicine, 349(18), 1731-1737.
    [3] Xu, J., Hou, Y., Ma, Q., Wu, X., Feng, S., Zhang, J., & Shen, Y. (2014). A highly selective fluorescent probe for Cu2+ based on rhodamine B derivative. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 124, 416-422.
    [4] Dong, M., Ma, T. H., Zhang, A. J., Dong, Y. M., Wang, Y. W., & Peng, Y. (2010). A series of highly sensitive and selective fluorescent and colorimetric “off-on” chemosensors for Cu (II) based on rhodamine derivatives. Dyes and pigments, 87(2), 164-172.
    [5] Chen, L. N., Chiu, Y. C., Hung, J. J., Kuo, C. C., & Chen, W. C. (2014). Multifunctional Electrospun Nanofibers Prepared from Poly ((N‐isopropylacrylamide)‐co‐(N‐hydroxymethylacrylamide)) and Their Blends with 1, 2‐Diaminoanthraquinone for NO Gas Detection. Macromolecular Chemistry and Physics, 215(3), 286-294.
    [6] Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K., & Sutton, D. J. (2012). Heavy metal toxicity and the environment. In Molecular, clinical and environmental toxicology (pp. 133-164). Springer, Basel.
    [7] Slassi, S., Aarjane, M., El-Ghayoury, A., & Amine, A. (2019). A highly turn-on fluorescent CHEF-type chemosensor for selective detection of Cu2+ in aqueous media. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 215, 348-353.
    [8] Kim, M. S., Jo, T. G., Yang, M., Han, J., Lim, M. H., & Kim, C. (2019). A fluorescent and colorimetric Schiff base chemosensor for the detection of Zn2+ and Cu2+: Application in live cell imaging and colorimetric test kit. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 211, 34-43.
    [9] Mani, K. S., Rajamanikandan, R., Murugesapandian, B., Shankar, R., Sivaraman, G., Ilanchelian, M., & Rajendran, S. P. (2019). Coumarin based hydrazone as an ICT-based fluorescence chemosensor for the detection of Cu2+ ions and the application in HeLa cells. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 214, 170-176.
    [10] Masindi, Vhahangwele, and Khathutshelo L. Muedi. "Environmental Contamination by Heavy Metals." Heavy Metals. IntechOpen, 2018.
    [11] Rajeswari, T. Raja, and Namburu Sailaja. "Impact of heavy metals on environmental pollution." Journal of Chemical and Pharmaceutical Sciences 3 (2014): 175-181.
    [12] Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B. B., & Beeregowda, K. N. (2014). Toxicity, mechanism and health effects of some heavy metals. Interdisciplinary toxicology, 7(2), 60-72.
    [13] Cheng, Jinghui, Xiangge Zhou, and Haifeng Xiang. "Fluorescent metal ion chemosensors via cation exchange reactions of complexes, quantum dots, and metal–organic frameworks." Analyst 140.21 (2015): 7082-7115.
    [14] Thomas, Samuel W., Guy D. Joly, and Timothy M. Swager. "Chemical sensors based on amplifying fluorescent conjugated polymers." Chemical reviews 107.4 (2007): 1339-1386.
    [15] Liam Critchley, M.Sc. "What is the Difference Between Fluorescence and Phosphorescence? " azooptics 2018
    [16] Dynamics and kinetics of molecular processes Group (M.Weik). "Photophysics of fluorescent proteins." Institut de Biologie Structurale
    [17] Rettig, W., Strehmel, B., Schrader, S., & Seifert, H. (Eds.). (2012). Applied fluorescence in chemistry, biology and medicine. Springer Science & Business Media.
    [18] Mozzanega, Henri, Jean Marie Herrmann, and Pierre Pichat. "Ammonia oxidation over UV-irradiated titanium dioxide at room temperature." Journal of Physical Chemistry 83.17 (1979): 2251-2255.
    [19] Josiah Isett. Electronic Spectroscopy of molecules. 2015
    [20] Zielinski, T. J., Harvey, E., Sweeney, R., & Hanson, D. M. (2005). Quantum states of atoms and molecules.
    [21] Fraiji, Lee K., David M. Hayes, and T. C. Werner. "Static and dynamic fluorescence quenching experiments for the physical chemistry laboratory." Journal of chemical education 69.5 (1992): 424.
    [22] Marras, Salvatore AE, Fred Russell Kramer, and Sanjay Tyagi. "Efficiencies of fluorescence resonance energy transfer and contact‐mediated quenching in oligonucleotide probes." Nucleic acids research 30.21 (2002): e122-e122.
    [23] Johansson, M. K., Fidder, H., Dick, D., & Cook, R. M. (2002). Intramolecular dimers: a new strategy to fluorescence quenching in dual-labeled oligonucleotide probes. Journal of the American Chemical Society, 124(24), 6950-6956.
    [24] Wei Jiang. "Development of novel fluorescent sensors for the detection of functional and bio-interesting small molecules and metal ions." 2-9-2010
    [25] Bourson, Jean, and Bernard Valeur. "Ion-responsive fluorescent compounds. 2. Cation-steered intramolecular charge transfer in a crowned merocyanine." The Journal of Physical Chemistry93.9 (1989): 3871-3876.
    [26] Iwamoto, K., Araki, K., Fujishima, H., & Shinkai, S. (1992). Fluorogenic calix [4] arene. Journal of the Chemical Society, Perkin Transactions 1, (15), 1885-1887..
    [27] Zhang, Xiaolin, Yi Xiao, and Xuhong Qian. "A ratiometric fluorescent probe based on FRET for imaging Hg2+ ions in living cells." Angewandte Chemie International Edition 47.42 (2008): 8025-8029.
    [28] Marquis, Damien, and Jean-Pierre Desvergne. "A cooperative effect in sodium cation complexation by a macrocyclic bis (9, 10) anthraceno-crown ether in the ground state and in the excited state." Chemical physics letters 230.1-2 (1994): 131-136.
    [29] Kim, H. N., Lee, M. H., Kim, H. J., Kim, J. S., & Yoon, J. (2008). A new trend in rhodamine-based chemosensors: application of spirolactam ring-opening to sensing ions. Chemical Society Reviews, 37(8), 1465-1472.
    [30] KyungáKwon, Soo, and Ha NaáLee. "Boronic acid-linked fluorescent and colorimetric probes for copper ions." Chemical Communications 45 (2008): 5915-5917.
    [31] Xiang, Yu, and Aijun Tong. "A new rhodamine-based chemosensor exhibiting selective FeIII-amplified fluorescence." Organic Letters 8.8 (2006): 1549-1552.
    [32] Wang, Shuxin, Xiangming Meng, and Manzhou Zhu. "A naked-eye rhodamine-based fluorescent probe for Fe (III) and its application in living cells." Tetrahedron letters 52.22 (2011): 2840-2843.
    [33] Panchenko, Pavel Alexandrovich, Olga Anatol'evna Fedorova, and Yu V. Fedorov. "Fluorescent and colorimetric chemosensors for cations based on 1, 8-naphthalimide derivatives: design principles and optical signalling mechanisms." Russian Chemical Reviews 83.2 (2014): 155.
    [34] Liu, Bin, and He Tian. "A selective fluorescent ratiometric chemodosimeter for mercury ion." Chemical Communications 25 (2005): 3156-3158.
    [35] Srivastava, P., Ali, R., Razi, S. S., Shahid, M., & Misra, A. (2013). Thiourea based molecular dyad (ANTU): Fluorogenic Hg2+ selective chemodosimeter exhibiting blue–green fluorescence in aqueous-ethanol environment. Sensors and Actuators B: Chemical, 181, 584-595.
    [36] Zhou, Z., Yu, M., Yang, H., Huang, K., Li, F., Yi, T., & Huang, C. (2008). FRET-based sensor for imaging chromium (III) in living cells. Chemical communications, (29), 3387-3389.
    [37] Jeong, Byeongmoon, and Anna Gutowska. "Lessons from nature: stimuli-responsive polymers and their biomedical applications." TRENDS in Biotechnology 20.7 (2002): 305-311.
    [38] De las Heras Alarcón, Carolina, Sivanand Pennadam, and Cameron Alexander. "Stimuli responsive polymers for biomedical applications." Chemical Society Reviews 34.3 (2005): 276-285.
    [39] Liu, Fang, and Marek W. Urban. "Recent advances and challenges in designing stimuli-responsive polymers." Progress in polymer science 35.1-2 (2010): 3-23.
    [40] Phillips, Daniel J., and Matthew I. Gibson. "Towards being genuinely smart:‘isothermally-responsive’polymers as versatile, programmable scaffolds for biologically-adaptable materials." Polymer Chemistry 6.7 (2015): 1033-1043.
    [41] Lanzalaco, Sonia, and Elaine Armelin. "Poly (n-isopropylacrylamide) and copolymers: A review on recent progresses in biomedical applications." Gels 3.4 (2017): 36.
    [42] Zhang, Guangzhao, and Chi Wu. "The water/methanol complexation induced reentrant coil-to-globule-to-coil transition of individual homopolymer chains in extremely dilute solution." Journal of the American Chemical Society 123.7 (2001): 1376-1380.
    [43] Chuang, Wen-Ju, and Wen-Yen Chiu. "Thermo-responsive nanofibers prepared from poly (N-isopropylacrylamide-co-N-methylol acrylamide)." Polymer 53.14 (2012): 2829-2838.
    [44] Volfova, P., Chrastova, V., Cernakova, L., Mrenica, J., & Kozankova, J. (2001, June). Properties of polystyrene/poly (butyl acrylate) core/shell polymers modified with N‐methylol acrylamide. In Macromolecular Symposia (Vol. 170, No. 1, pp. 283-290). Weinheim: WILEY‐VCH Verlag GmbH.
    [45] Kuckling, Dirk, Marianne E. Harmon, and Curtis W. Frank. "Photo-cross-linkable PNIPAAm copolymers. 1. Synthesis and characterization of constrained temperature-responsive hydrogel layers." Macromolecules 35.16 (2002): 6377-6383.
    [46] Brown, Nicole R., and Charles E. Frazier. "Cross-linking poly [(vinyl acetate)-co-N-methylolacrylamide] latex adhesive performance part I: N-methylolacrylamide (NMA) distribution." International journal of adhesion and adhesives 27.7 (2007): 547-553.
    [47] Wu, Xue Shen, Allan S. Hoffman, and Paul Yager. "Synthesis and characterization of thermally reversible macroporous poly (N‐isopropylacrylamide) hydrogels." Journal of Polymer Science Part A: Polymer Chemistry 30.10 (1992): 2121-2129.
    [48] Chuang, Wen-Ju, and Wen-Yen Chiu. "Thermo-responsive nanofibers prepared from poly (N-isopropylacrylamide-co-N-methylol acrylamide)." Polymer 53.14 (2012): 2829-2838.
    [49] Huang, S. R., Lin, K. F., Don, T. M., Lee, C. F., Wang, M. S., & Chiu, W. Y. (2016). Thermoresponsive conductive polymer composite thin film and fiber mat: Crosslinked PEDOT: PSS and P (NIPAAm‐co‐NMA) composite. Journal of Polymer Science Part A: Polymer Chemistry, 54(8), 1078-1087.
    [50] Saeed, Abdirahman, Dominique MR Georget, and Andrew G. Mayes. "Synthesis, characterisation and solution thermal behaviour of a family of poly (N-isopropyl acrylamide-co-N-hydroxymethyl acrylamide) copolymers." Reactive and Functional Polymers 70.4 (2010): 230-237.
    [51] Chen, B. Y., Lung, Y. C., Kuo, C. C., Liang, F. C., Tsai, T. L., Jiang, D. H., ... & Jeng, R. J. (2018). Novel Multifunctional Luminescent Electrospun Fluorescent Nanofiber Chemosensor-Filters and Their Versatile Sensing of pH, Temperature, and Metal Ions. Polymers, 10(11), 1259.
    [52] Lin, X., Tang, D., Yu, Z., & Feng, Q. (2014). Stimuli-responsive electrospun nanofibers from poly (N-isopropylacrylamide)-co-poly (acrylic acid) copolymer and polyurethane. Journal of Materials Chemistry B, 2(6), 651-658.
    [53] Bubel, K., Zhang, Y., Assem, Y., Agarwal, S., & Greiner, A. (2013). Tenside-free biodegradable polymer nanofiber nonwovens by “green electrospinning”. Macromolecules, 46(17), 7034-7042.
    [54] Martwiset, S., Nijpanich, S., Banturngsaksiri, A., Sriring, M., Pandhumas, T., & Youngme, S. (2013). Pyrene‐doped electrospun PMMA‐PVC fibers for ferric ion detection. Journal of Applied Polymer Science, 130(5), 3205-3211.
    [55] Li, Dan, and Younan Xia. "Electrospinning of nanofibers: reinventing the wheel?." Advanced materials 16.14 (2004): 1151-1170.
    [56] Huang, Z. M., Zhang, Y. Z., Kotaki, M., & Ramakrishna, S. (2003). A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites science and technology, 63(15), 2223-2253.
    [57] Reneker, Darrell H., and Iksoo Chun. "Nanometre diameter fibres of polymer, produced by electrospinning." Nanotechnology7.3 (1996): 216.
    [58] Tao, Jing, and Satya Shivkumar. "Molecular weight dependent structural regimes during the electrospinning of PVA." Materials letters 61.11-12 (2007): 2325-2328.
    [59] Nezarati, Roya M., Michelle B. Eifert, and Elizabeth Cosgriff-Hernandez. "Effects of humidity and solution viscosity on electrospun fiber morphology." Tissue Engineering Part C: Methods 19.10 (2013): 810-819.
    [60] Choi, J. S., Lee, S. W., Jeong, L., Bae, S. H., Min, B. C., Youk, J. H., & Park, W. H. (2004). Effect of organosoluble salts on the nanofibrous structure of electrospun poly (3-hydroxybutyrate-co-3-hydroxyvalerate). International Journal of Biological Macromolecules, 34(4), 249-256.
    [61] Fong, H., I. Chun, and D. H. Reneker. "Beaded nanofibers formed during electrospinning." Polymer 40.16 (1999): 4585-4592.
    [62] Cloupeau, M., and B. Prunet-Foch. "Electrostatic spraying of liquids in cone-jet mode." Journal of Electrostatics 22.2 (1989): 135-159.
    [63] Jalili, Rouhollah, SEYED ABD ALKARIM HOSSEINI, and Mohammad Morshed. "The effects of operating parameters on the morphology of electrospun polyacrilonitrile nanofibres." (2005): 1074-1081.
    [64] Zhang, C., Yuan, X., Wu, L., Han, Y., & Sheng, J. (2005). Study on morphology of electrospun poly (vinyl alcohol) mats. European polymer journal, 41(3), 423-432.
    [65] Wang, C., Chien, H. S., Hsu, C. H., Wang, Y. C., Wang, C. T., & Lu, H. A. (2007). Electrospinning of polyacrylonitrile solutions at elevated temperatures. Macromolecules, 40(22), 7973-7983..
    [66] Mit‐uppatham, Chidchanok, Manit Nithitanakul, and Pitt Supaphol. "Ultrafine electrospun polyamide‐6 fibers: effect of solution conditions on morphology and average fiber diameter." Macromolecular Chemistry and Physics 205.17 (2004): 2327-2338.
    [67] Liang, F. C., Kuo, C. C., Chen, B. Y., Cho, C. J., Hung, C. C., Chen, W. C., & Borsali, R. (2017). RGB-switchable porous electrospun nanofiber chemoprobe-filter prepared from multifunctional copolymers for Versatile sensing of pH and heavy metals. ACS applied materials & interfaces, 9(19), 16381-16396.
    [68] Zhao, Y., Zhang, X. B., Han, Z. X., Qiao, L., Li, C. Y., Jian, L. X., ... & Yu, R. Q. (2009). Highly sensitive and selective colorimetric and off− on fluorescent chemosensor for Cu2+ in aqueous solution and living cells. Analytical Chemistry, 81(16), 7022-7030..
    [69] Gil, E.S. and S.M. Hudson, Stimuli-reponsive polymers and their bioconjugates. Progress in Polymer Science, 2004. 29(12): p. 1173-1222.
    [70] Dai, S., P. Ravi, and K.C. Tam, pH-Responsive polymers: synthesis, properties and applications. Soft Matter, 2008. 4(3): p. 435-449.

    無法下載圖示 校內:2024-07-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE