簡易檢索 / 詳目顯示

研究生: 黃生華
Huang, Sheng-Hua
論文名稱: 三角管置於矩形空腔內的三維自然對流熱傳研究
Study on 3D Natural Convection Heat Transfer for Triangular Tube in a Rectangular Cavity
指導教授: 陳寒濤
Chen, Han-Taw
張錦裕
Jang, Jiin-Yuh
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 91
中文關鍵詞: 逆向數值方法CFD三角加熱管自然對流
外文關鍵詞: Inverse numerical method, CFD, triangular heating tube, natural convection
相關次數: 點閱:157下載:23
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文以實驗溫度及逆算法搭配CFD軟體得出在三角熱管於空腔中之自然對流時的熱傳及流場特性,並探討鰭片高度 s 與旋轉角度 θ 對上述流場特性之影響,以期得到最佳散熱之形式,以及探討空腔之幾何形狀對Nu圖產生之影響。結果顯示於模擬中選用RNG k-ε紊流模型處理較為符合實驗結果與趨勢,並且當鰭片高度增加時與空腔之距離縮短阻礙了空氣間的對流,過高的鰭片高度則會影響三角管的散熱效率。以及三角管平均溫度則在θ=60°與θ=180°時,因浮力對流效應增強對流範圍變大,熱邊界層之高溫範圍也更廣,頂部空氣有著較強的渦流,熱傳效果較為理想。而當模型在s =30 mm及θ=180°時,總平均熱傳係數最高,代表在此時的熱傳效率最好,與最低效率的模型相比有了19.5%的提升。最後與相關文獻的比較可以得到,在特定瑞利數範圍中之Nusselt number圖,趨勢部分主要仍是受加熱管之幾何形狀所主導。

    In this study, the experimental temperature and inverse algorithm are combined with CFD software to obtain the heat transfer and flow field characteristics of the triangular heat pipe during natural convection in the cavity. The effects of the fin height s and the rotation angle θ on the above flow field characteristics are discussed. In order to get the best form of heat dissipation. Discuss the effect of cavity geometry on Nu chart.
    The results show that using the RNG k-ε turbulence model in the simulation is more in line with the experimental results and trends. When the height of the fins increases, the distance from the cavity is reduced, which hinders the convection between the air. Excessive fin height will affect the heat dissipation efficiency of the triangular tube. When the average temperature of the triangular tube is θ = 60° and θ = 180°, the convection range becomes larger due to the enhanced buoyant convection effect. The high temperature range of the thermal boundary layer is also wider. The top air has a strong vortex. The heat transfer effect is ideal. When the model is at s = 30 mm and θ = 180°, the overall average heat transfer coefficient is the highest. It represents the best heat transfer efficiency at this time, which is a 19.5% improvement compared to the least efficient model. Finally, a comparison with related literature can be obtained. The trend portion of the Nusselt number chart in a specific Rayleigh number range is still dominated by the geometry of the heating tube.

    目錄 摘要 I 目錄 IX 誌謝 XI 表目錄 XII 圖目錄 XIII 符號說明 XV 第一章 緒論 1 1-1 研究背景 1 1-2 文獻回顧 2 1-3 研究目的與方法 4 1-4 本文架構 6 第二章 逆向數值方法 7 2-1 簡介 7 2-2 基本假設 8 2-3 流動模型之統御方程組 8 2-4 層流模式 9 2-5 紊流模式 10 2-5-1 零方程式模式 11 2-5-2 RNG k-ε紊流模式 12 2-5-3 SST k-ω紊流模型 18 2-6 最小平方法之理論分析 21 2-7 RMSE 分析 23 2-8 Nusselt number理論分析 24 第三章 計算流體力學軟體分析 25 3-1 簡介 25 3-2 幾何模型 27 3-3 邊界條件 29 3-4 網格品質 31 3-5 數值方法 33 3-6 收斂條件 34 3-7 網格測試 35 第四章 實驗架設與操作 37 4-1 簡介 37 4-2 實驗設備 38 4-2-1 矩形封閉空腔 38 4-2-2 管式熱交換器 40 4-2-3 溫度擷取系統 41 4-3 實驗步驟 43 第五章 結果與討論 45 5-1 簡介 45 5-2 流動模式之選定 46 5-3 鰭片高度變化之影響 48 5-4 旋轉角度之影響 49 5-5 相關文獻之比較 50 第六章 結論與建議 84 6-1 結論 84 6-2 建議與未來展望 85 參考文獻 87

    [ 1 ]
    C. Shu, Y. D. Zhu, Efficient computation of natural convection in a concentric annulus between an outer square cylinder and an inner circular cylinder, International journal for numerical methods in fluids 38(5) (2002) 429-445.
    [ 2 ]
    D. Angeli, P. Levoni, G. Barozzi, Numerical predictions for stable buoyant regimes within a square cavity containing a heated horizontal cylinder, International journal of heat and mass transfer 51(3-4) (2008) 553–565.
    [ 3 ]
    H.S. Yoon, M.Y. Ha, B.S. Kim, D.H. Yu, Effect of the position of a circular cylinder in a square enclosure on natural convection at Rayleigh number of 107, Phys. Fluids 21(4) (2009) 047101.
    [ 4 ]
    O. Reymond, D.B. Murray, T.S. O’Donovan, Natural convection heat transfer from two horizontal cylinders, Experimental Thermal and Fluid Science 32(8) (2008) 1702–1709.
    [ 5 ]
    S. Narayan, A.K. Singh, A. Srivastava, Interferometric study of natural convection heat transfer phenomena around array of heated cylinders, International Journal of Heat and Mass Transfer 109 (2017) 278-292.
    [ 6 ]
    G.S. Mun, Y.G. Park, H.S. Yoon, M. Kim, M.Y. Ha, Natural convection in a cold enclosure with four hot inner cylinders based on diamond arrays (Part-I: Effect of horizontal and vertical equal distance of inner cylinders), International journal of heat and mass transfer 111 (2017) 755–770.
    [ 7 ]
    J. R. Lai, Study of heat-transfer characteristics on the fin of four-tube plate finned-tube heat exchangers, National Cheng Kung University, Mechanical Engineering, Taiwan, 2011.
    [ 8 ]
    C. H. Lu, Effect of flow model on heat transfer characteristics of staggered plate fin and tube heat exchangers, National Cheng Kung University, Mechanical Engineering, Taiwan, 2013.
    [ 9 ]
    A. Mohammed, Natural convection heat transfer inside horizontal circular enclosure with triangular cylinder at different angles of inclinatoin, Journal of Thermal Engineering 7(1) (2021) 240-254.
    [ 10 ]
    M.N. Özisik, Heat Conduction, 2nd ed., Wiley, Chapter 14 (1993).
    [ 11 ]
    K. Kurpisz, A.J. Nowak, Inverse Thermal Problems, Computational Mechanics Publications, Southampton, 1995.
    [ 12 ]
    J.H Lin, C.K. Chen, Y.T. Yang, The inverse estimation of the thermal boundary behavior of a heated cylinder normal to a laminar air stream, International journal of heat and mass transfer 43(21) (2000) 3991-4001.
    [ 13 ]
    H.T. Chen, J.P. Song, Y.T. Wang, Prediction of heat transfer coefficient on the fin inside one-tubeplate finned-tube heat exchangers, International journal of heat and mass transfer 48(13) (2005) 2697-2707.
    [ 14 ]
    H.T .Chen, J.C. Chou, Investigation of natural-convection heat transfer coefficient on a vertical square fin of finned-tube heat exchangers, International journal of heat and mass transfer 49(17-18) (2006) 3034-3044.
    [ 15 ]
    M.S. Mon, U. Gross, Numerical study of fin-spacing effects in annular-finned tube heat exchangers, International journal of heat and mass transfer 47(8-9) (2004) 1953-1964.
    [ 16 ]
    H.T. Chen, Y.J. Chiu, C.S. Liu, J.R Chang, Numerical and experimental study of natural convection heat transfer characteristics for vertical annular finned tube heat exchanger, International journal of heat and mass transfer 109 (2017) 378-392.
    [ 17 ]
    H.T. Chen, Y.L. Hsieh, Y.F. Lin, K.C. Liu, Numerical simulation of natural convection heat transfer for annular elliptical finned tube heat exchanger with experimental data, International Journal of Heat and Mass Transfer 127 (2018) 541-554.
    [ 18 ]
    H.T. Chen, H.Y. Chou, H.C. Tseng, J.R. Chang, Numerical study on natural convection heat transfer of annular finned tube heat exchanger in chimney with experimental data, International Journal of Heat and Mass Transfer 127 (2018) 483-496.
    [ 19 ]
    H.T. Chen Y.L. Chang, P.Y. Lin, Y.J. Chiu, J.R. Chang, Numerical study of mixed convection heat transfer for vertical annular finned tube heat exchanger with experimental data and different tube diameters, International Journal of Heat and Mass Transfer 118 (2018) 931-947.
    [ 20 ]
    H.T. Chen, W.X. Ma, P.Y. Line, Natural convection of plate finned tube heat exchangers with two horizontal tubes in a chimney: experimental and numerical study, International Journal of Heat and Mass Transfer 147 (2020) 118948.
    [ 21 ]
    H.T. Chen, Y.S. Lin, P.C. Chen, J.R. Chang, Numerical and experimental study of natural convection heat transfer characteristics for vertical plate fin and tube heat exchangers with various tube diameters, International Journal of Heat and Mass Transfer 100 (2016) 320-331.
    [ 22 ]
    X. Xu, G. Sun, Z. Yu, Y. Hu, L. Fan, and K. Cen, Numerical investigation of laminar natural convective heat transfer from a horizontal triangular cylinder to its concentric cylindrical enclosure. International Journal of Heat and Mass Transfer 52(13-14) (2009) 3176-3186.
    [ 23 ]
    X. Xu, Z. Yu, Y. Hu, L. Fan, and K. Cen, A numerical study of laminar natural convective heat transfer around a horizontal cylinder inside a concentric air-filled triangular enclosure, International Journal of Heat and Mass Transfer 53(1-3) (2010) 345-355.
    [ 24 ]
    Z. T. Yu, X. Xu, Y. C. Hu, L. W. Fan, and K. F. Cen, Transient natural convective heat transfer from a heated triangular cylinder to its air-filled coaxial cylindrical enclosure, International Journal of Heat and Mass Transfer 53(19-20) (2010) 4296-4303.
    [ 25 ]
    Z. T. Yu, X. Xu, Y. C. Hu, L. W. Fan, and K. F. Cen, Transient natural convective heat transfer of a low-Prandtl-number fluid inside a horizontal circular cylinder with an inner coaxial triangular cylinder, International Journal of Heat and Mass Transfer 53(23-24) (2010) 5102-5110.
    [ 26 ]
    X. Xu, Z. T. Yu, Y. C. Hu, L. W. Fan, and K. F. Cen, Transient natural convective heat transfer of a low-Prandtl-number fluid from a heated horizontal circular cylinder to its coaxial triangular enclosure, International Journal of Heat and Mass Transfer 55(4) (2012) 995-1003.
    [ 27 ]
    ANSYS Fluent Theory Guide, ANSYS, Inc., 275 Technology Drive Canonsburg., PA 15317, 2013.
    [ 28 ]
    Q. Chen, W. Xu, A zero-equation turbulence model for indoor airflow simulation, Energy and Buildings 28(2) (1998) 137-144.
    [ 29 ]
    L. Prandtl, 7. Bericht über Untersuchungen zur ausgebildeten Turbulenz, ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 5(2) (1925) 136- 139.
    [ 30 ]
    B.E. Launder, D.B. Spalding, Mathematical Method of Turbulence, Academic, London, (1972) 3-51.
    [ 31 ]
    V. Yakhot, S.A. Orszag, Renormalization group analysis of turbulence. I. Basic theory., Journal of Scientific Computing 1(1) (1986) 3-51.
    [ 32 ]
    S. Sarkar and B. Lakshmanan, Application of a Reynolds stress turbulence model to the compressible shear layer, AIAA Journal 29(5) (1991) 743-749.
    [ 33 ]
    B.E. Launder, D.B. Spalding, The Numerical Computation of Turbulent Flows, Computer Methods in Applied Mechanics Eng. 3 (1974) 269-289.
    [ 34 ]
    F.R. Menter, Two-equation eddy-viscosity turbulence models for engineering applications, AIAA Journal 32(8) (1994) 1598-1605.
    [ 35 ]
    D.C. Wilcox, Reassessment of the scale-determining equation for advanced turbulence models, AIAA Journal 26(11) (1988) 1299-1310.
    [ 36 ]
    M.N. Özışık, Heat Conduction. , Wiley, 1993.
    [ 37 ]
    V.S. Arpaci, S.H. Kao, and A. Selamet, Introduction to Heat Transfer, Prentice Hall , 1999.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE