簡易檢索 / 詳目顯示

研究生: 王景宏
Wang, Jim-Hon
論文名稱: 相變化材料次微米膠囊製備與相關物性之研究
A Study of Fabrication and Properties of Sub-micro-encapsulated Phase Change Material
指導教授: 何清政
Ho, Ching-Jenq
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2010
畢業學年度: 99
語文別: 中文
論文頁數: 83
中文關鍵詞: 相變化材料乳化液相變化次微米膠囊粒徑
外文關鍵詞: Phase change material emulsion, Sub-Micro-Encapsulated PCM, diameter
相關次數: 點閱:122下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究係利用二十烷、水及界面活性劑調製並以機械力攪拌、乳化成內含相變化材料(Phase Change Material, PCM)的奈米微粒懸浮乳液;另以尿素與甲醛調配成所謂尿素甲醛樹酯,進而將兩者混合製成以二十烷為核心,尿素甲醛樹酯為外殼的相變化材料次微米膠囊懸浮液。並針對核心材料與外殼材料劑量一定時,不同製程(界面活性劑之比例、乳化時間與包覆時間不同)之次微米膠囊懸浮液之相關性質,諸如粒徑、介面電位、熔點、凝固點、殼厚及過冷度等進行實驗量測探討。實驗結果顯示,次微米膠囊之粒徑受界面活性劑多寡與乳化時間之影響;而PCM乳化懸浮液則是在加了界面活性劑後,始能達到奈米尺寸。添加與二十烷重量百分比為4︰1的界面活性劑並施以二十小時的超音波乳化後,次微米膠囊的粒徑有顯著的下降,最小可達約300 nm,並在黏度及熱傳導係數方面有所改善。

    In the present study, a mixture of PCM (Phase Change Material) suspension, emulsified from n-Eicosane, water, and the surfactant, and the so-called “Urea- Formaldehyde resin (U-F resin)” pre-polymer of mixture dispersed with urea and formaldehyde has been prepared. Then blend two to n-Eicosane as the core, U-F resin for the shell of a Sub-Micro-Encapsulated Phase Change Material suspension. And for the core material and shell material for a certain dose, different process (the ratio of surfactants, emulsifying time and covered different periods of time) of sub-micro-encapsulated PCM suspension of the related properties, such as particle size, zeta potential, melting/freezing points, shell thickness, coating rate and supercooling point, are then investigated experimentally. The results, capsules’ size by the amount of emulsifying surfactant time effect; and PCM emulsified suspension is the addition of surfactants before we achieve the nanometer size. Add 5 g (core material:surfactant = 4:1 ) of surfactant and imposed 20 hours of ultrasound emulsification, the size of capsules with significant improvement, the minimum size of about 300 nm, and the viscosity and thermal conductivity also have been improved.

    摘要............................I Abstract.......................II 致謝............................III 目錄............................IV 表目錄..........................VII 圖目錄..........................VIII 符號表..........................XII 第一章 緒論 1 1-1 研究背景與動機 1 1-2 文獻回顧 2 1-3 研究主題與目的 6 1-4 本文架構 6 第二章 相變化次微米膠囊之製備與實驗量測 7 2-1 次微米相變化(PCM)微膠囊之製備 7 2-1-1 界面活性劑與HLB 8 2-1-2 次微米相變化膠囊之製備 10 2-2 黏度量測 15 2-2-1 儀器與原理 15 2-2-2 實驗設備 17 2-2-3 實驗步驟 17 2-2-4 結果誤差分析 18 2-3 粒徑與Zeta電位量測 19 2-3-1 儀器與原理 19 2-3-2 結果表示 20 2-3-3 實驗步驟 22 2-4 DSC量測 23 2-4-1 儀器簡介 23 2-4-2 DSC曲線與熔點、凝固點及潛熱值 24 2-4-3 溫度校正 25 2-4-4 實驗步驟 27 2-5 pH值量測 28 2-6 熱傳導係數量測 29 2-6-1 儀器簡介 .................... 29 2-6-2 假設與原理 29 2-6-3 實驗步驟 31 2-7 密度量測 32 第三章 實驗量測與結果 33 3-1 粒徑量測 33 3-1-1 初步實驗結果 34 3-1-2超音波乳化時間長短對粒徑之影響 37 3-1-3均質機包覆時間長短對粒徑之影響 41 3-1-4懸浮及介面電位量測結果 45 3-2 DSC量測 48 3-2-1 實驗結果 54 3-2-2 次微米膠囊之殼厚 55 3-3 熱傳導係數量測 58 3-4 黏度量測 62 3-5 密度量測 71 第四章 結論與未來展望 75 參考文獻 77 附錄A 文獻回顧一覽表 81

    Banu, D., Feldman, D., and Hawes, D., “Evaluation of thermal storage as latent heat in phase change material wallboard by differential scanning calorimetry and lager scale thermal testing,” Thermochimica Acta, Vol. 317, pp. 39-45, 1998.

    Bullard, J.W., Pauli, A.T., Garboczi, E.J., and Martys, N.S., “A comparison of viscosity-concentration relationships for emulsions, ” Journal of Colloid and Interface Science, ” Vol. 330, pp. 186-193, 2009.

    Camirand, C. P., “Measurement of thermal conductivity by differential scanning calorimetry,” Thermochimica Acta, Vol. 417, pp. 1-4, 2004.

    Choi, C., Yoo, H. S., and Oh, J.M., “Preparation and heat transfer properties of nanoparticle-in-transformer oil dispersions as advanced energy-efficient coolants,” Current Applied Phisics Vol. 8 , pp. 710-712, 2008.

    Farah, M. A., Oliverira, R. C., Caldas, J. N., and Rajagopal, K., “Viscosity of water-in-oil emulsions: variation with temperature and water volume fraction,” Journal of Petroleum Science and Engineering, Vol. 48, pp. 169-184, 2005.

    Gschwander, S., Schossig, P., and Henning, H.–M., “Micro-encapsulated paraffin in phase-change slurries,” Solar Energy Materials & Solar Cells, Vol. 89, pp. 307-315, 2005.

    Guzman, J. J., and Braga, S. L., “Supercooling water in cylindrical capsules,” International Journal of Thermophysics, Vol. 26, pp. 1781-1802, 2005.

    Hawlader, M.N.A., Uddin, M.S., Khin, M.M., “Microencapsulated PCM thermal-energy storage system , ” Applied Energy, Vol. 74, pp. 195-202, 2003.

    Humphries, W. R., and Griggs, E. I., “A Design Handbook for Phase Change Thermal Control and Energy Storage Devices,” NASA Technical Paper 1074. , 1977.

    Kentish, S., Wooster, T.J., Ashokkumar, M., Balachandran, S., Mawson, R., and Simons, L., “The use of ultrasonics for nanoemulsion preparation, ” Innovative Food Science and Emerging Technologies, Vol.9 pp. 170-175, 2008.

    Kreith, F., and Bohn, M. S., Principles of Heat Transfer, 6th edition, BROOKS/COLE, 2001.

    Kudo, K., Nakata, K., Kuroda, A., and Oguma, M., “Study on super cooling of slurry containing phase change material,” Thermal Science and Engineering, Vol. 12, pp. 53-54, 2004.

    Li, X.F., Zhu, D.S., Wang, X.J., N., Gao, J.W., and Li, H., “Thermal conductivity enhancement dependent pH and chemical surfactant for Cu-H2O nanofluids, ” Thermochimica Acta, Vol. 468, pp. 98-103, 2008.

    Matson, G. W., “Microcapsules and process of making, ” United States Patent, US3516941, 1970.

    Moghadassi, A. R., Masoud Hosseini, S., and Henneke, D.E., “Effect of CuO Nanoparticles in Enhancing the Thermal Conductivities of Monoethylene Glycol and Paraffin Fluids,” Ind. Eng. Chem. Res., Vol. 176, pp. A-E, 2010.

    Mohamed, R., “Study of phase changing characteristics of granular composites using differential scanning calorimetry,”Energy Conversion and Management, Vol. 57, pp. 142-148, 2009.

    Montenegro, R., Antonietti, M., Mastai, Y., and Landfester, K., “Crystallization in miniemulsion droplet,” Journal of Physical Chemistry B, Vol. 107, pp. 5088-5094. , 2003

    Qi, W. H., “Size effect on melting temperature of nanosolids,” Physica B, Vol. 368, pp. 46-50, 2005.

    Salaun, F., Devaux, E., Bourbigot, S., and Rumeau, P., “Influence of process parameters on microcapsules loaded with n-hexadecane prepared by in stu polymerization,” Chemical Engineering Joural, Vol. 155, pp. 457-465, 2009.

    Sari, A., Alkan, C., and Karaipekli, A., “Preparation, characterization and thermal properties of PMMA/n-heptadecane microcapsules as novel solid-liquid microPCM for thermal energy storage,” Applied Energy, Vol. 87, pp.1529-1534, 2010.

    Solans, C., Izquierdo, P., Nolla, J., Azemar, N., and Garcia-Celma, M.J., “Nano-emulsions,” Current Opinion in Colloid and Interface Science, Vol.10, pp. 102-110, 2005.

    Su, J.F., Wang, L.X., Ren, L., Huang, Z., and Meng, X.W., ”Preparation and Characterization of Polyurethane Microcapsules Containing n-Octadecane with Styrene-Meleic Anhydride as a Surfactant by Interfacial Polycondensation, ” Journal of Applied Polymer Science, Vol. 102, pp. 4996-5006, 2006.

    Yang, C., Lai, H., Liu, Z., and Ma, P., “Densities and viscosities of diethyl carbonate + toluene, + methanol, and + 2-Propanol from (293.15 to 363.15) K,” Journal of Chemical and Engineering Data, Vol. 51, pp. 584-589, 2006.

    Yang, C., Yu, W., and Tang, D., “Densities and viscosities of binary mixtures of m-cresol with ethylene glycol or methanol over several temperatures,” Journal of Chemical Engineering Data, Vol. 51, pp. 935-939, 2006.

    Yen, H., Hwang, S. J., and Lin J. J., “Span / Tween as combined surfactants for emulsion of orange oil.” Colloid and Interface Science, Vol. 20, pp. 33-41, 1997.

    Zhang, Y., Xu, X., Di, H., Lin, K., and Yang, R., “Experimental study on the thermal performance of the shape-stabilized phase change material floor used in passive solar building,” Journal of Solar Energy Engineering, Vol. 128, pp. 255-257, 2006.

    Zhang, Z., Wu, W., Guo, K., Chen, J.-F., and Zhang, P.-Y., “Magnetic polymer enhanced hybrid capsules prepared from a novel Pickering emulsion polymerization and their application in controlled drug release, ” Colloids and surfaces A:Physicochemical and Engineering Aspects, Vol. 349, pp. 110-116, 2009.

    何泰安, “矩形容器內含懸浮相變化微粒之自然對流熱傳之特性實驗研究,” 國立成功大學機械工程研究所碩士論文, 1999.

    呂育翰, “相變材料顆粒與奈米流體混合液之相關熱物性質量測與分析,”國立成功大學機械工程研究所碩士論文, 2006.

    張榮弘, ”界面活性劑之乳化特論,” 中日合成化學公司, 第十五卷, 第三期, pp. 39-48, 1998.

    陳士琦, “相變化材料微粒懸浮流體之相關熱物性質實驗量測與分析,” 國立成功大學機械工程研究所碩士論文, 2002.

    黃俊博, “一水平圓管內PCM微粒/奈米微粒懸浮流體之熱發展強制對流熱傳特性研究,”國立成功大學機械工程研究所碩士論文, 2008.

    曾元宏, “相變材料微膠囊之製備及其特性分析,”國立成功大學化學工程研究所碩士論文, 2001.

    趙承琛, “乳化優劣的評估與其應用,” 界面科學, 第六卷, 第三期, pp. 2-5, 1983.

    趙承琛與陳翰样, “微乳液 (Microemulsion) (Ⅰ),” 界面科學, 第九卷, 第一期, pp. 42-45, 1986.

    鄭偉成, “毫米流道熱沉孔內奈米微粒/相變化微膠囊懸浮液之強制對流特性研究,”國立成功大學機械工程研究所碩士論文, 2010

    下載圖示 校內:2011-09-30公開
    校外:2011-09-30公開
    QR CODE