| 研究生: |
吳莉婷 Wu, Li-Ting |
|---|---|
| 論文名稱: |
肺癌細胞中過量表達的ZNF322A促使腫瘤血管新生 Overexpression of ZNF322A in lung cancer cells promotes neo-angiogenesis |
| 指導教授: |
王憶卿
Wang, Yi-Ching |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 藥理學研究所 Department of Pharmacology |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 67 |
| 中文關鍵詞: | 肺癌 、ZNF322A 、音蝟因子(Sonic hedgehog) 、腫瘤血管新生 |
| 外文關鍵詞: | Lung cancer, ZNF322A, sonic hedgehog, angiogenesis. |
| 相關次數: | 點閱:86 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
研究背景: 文獻研究指出癌症細胞與周圍細胞會相互溝通進一步促進癌症進程。本研究室過去發現致癌性鋅指蛋白 (zinc finger protein) ZNF322A會藉由轉錄層次調控癌症相關基因導致肺癌惡化;而先前本研究室以ZNF322A為主的基因體染色質免疫沉澱測序 (chromatin immunoprecipitation-sequencing) 及全核糖核酸測序 (RNA-seqencing) 資料庫的細胞路徑分析 (pathway analyses),發現許多ZNF322A下游基因參與血管新生 (angiogenesis) 路徑,暗示著ZNF322A也許會參與腫瘤血管生成,進而促使肺癌進程。
研究目的: 本研究旨在探討以肺癌細胞及動物模式中過度表現的致癌蛋白ZNF322A參與調控腫瘤血管新生之機制及其轉錄目標基因,並以肺癌病人檢體研究闡明肺癌細胞與內皮細胞在腫瘤微環境的交互作用。
研究結果: 大量表達ZNF322A於肺癌細胞,會促使共同培養之人類臍帶血管內皮細胞 (human umblical vein endothelail cell, HUVEC) 遷移 (migration) 及管狀形成 (tube formation)。我們利用冷光啟動子分析 (luciferase promoter activity)、染色質免疫沉澱-即時聚合酶連鎖反應 (ChIP-qPCR)、即時逆轉錄聚合酶連鎖反應 (qRT-PCR) 及西方墨點法 (Western blot),發現ZNF322A透過正向調控音蝟因子 (Sonic hedgehog, Shh) 基因啟動子區域進而促進Shh表現;然而,若降低Shh表現則可抑制由ZNF322A促進的HUVEC遷移及管狀形成的現象。在動物實驗中,我們利用Matrigel plug angiogenesis assay發現若抑制肺癌細胞中Shh表現會減少由ZNF322A所促使之in vivo 血管新生現象,證明ZNF322A-Shh路徑確實有促腫瘤血管新生的作用。在臨床檢體研究,我們透過免疫組織染色化學法發現ZNF322A、Shh及代表血管新生的標記 CD31的表現在肺癌病人中具有正相關,其中ZNF322A與CD31同時高表現的病人有明顯較差的預後 (prognosis)。
結論: 我們的細胞及動物研究提出了ZNF322A參與在肺癌形成中促腫瘤血管新生的角色,其機制是因ZNF322A透過正向調控Shh啟動子區域進而促進其表現以導致腫瘤血管新生,肺癌病人癌組織中ZNF322A與CD31同時高表現可作為獨立預後危險預測因子。
Background: Accumulating evidence indicates that the crosstalks between cancer cells and surrounding cells (tumor associated cells) contribute to tumor progression. Our lab previously identified a novel oncogenic zinc finger transcription factor ZNF322A, which promotes lung tumorigenesis through transcriptionally dysregulating expression of cancer-related genes. Notably, pathway analysis of ZNF322A downstream genes identified by our genome-wide chromatin immunoprecipitation (ChIP)-sequencing and RNA-sequencing datasets showed a significant enrichment in angiogenesis, implicating that ZNF322A may participate in neo-angiogenesis to promote lung cancer progression.
Purpose: This study aims to investigate whether ZNF322A involves in angiogenesis and to reveal the underlying mechanism of angiogenesis promotion mediated by ZNF322A overexpression in lung cancer cells and animal models. In addition, the interplay between lung cancer cells and endothelial cells will be elucidated in clinical study.
Results: Our conditioned medium culture data showed that overexpression of ZNF322A in lung cancer cells promoted HUVEC (human umbilical vein endothelial cell) migration and tube formation abilities. Among the ZNF322A potential transcriptional targets in angiogenesis pathway, we validated that ZNF322A upregulated the expression of sonic hedgehog (Shh) through targeting to its promoter region by luciferase promoter assay, ChIP-qPCR, quantitative reverse transcriptase-PCR and Western blot assays. Reconstitution experiments by knocking down of Shh in ZNF322A expressing cancer cells indeed decreased ZNF322A-promoted HUVEC migration and tube formation abilities. Furthermore, knockdown of Shh in lung cancer cells attenuated ZNF322A-promoted in vivo angiogenesis by Matrigel plug angiogenesis assay. These cell and xenograft data confirmed the ZNF322A-Shh signaling axis in angiogenesis. Clinically, ZNF322A protein expression positively correlated with Shh and CD31, an endothelial cell marker, in 133 lung cancer patients using immunohistochemistry analysis. Notably, patients with concordantly high expression of ZNF322A and CD31 correlated with poor prognosis.
Conclusions: Our study provides cell, animal and clinical evidences of pro-angiogeneic role of ZNF322A in lung cancer. ZNF322A transcriptionally upregulates Shh expression through targeting to its promoter region and thus induces angiogenesis. ZNF322Ahigh/CD31high expression profile is a prognostic biomarker for lung cancer.
Arany Z , Foo SY, Ma Y, Ruas JL, Bommi-Reddy A, Girnun G, Cooper M, Laznik D, Chinsomboon J, Rangwala SM, Baek KH, Rosenzweig A, Spiegelman BM. HIF-independent regulation of VEGF and angiogenesis by the transcriptional coactivator PGC-1alpha. Nature. 2008; 451(7181): 1008-12.
Bailey JM , Mohr AM, Hollingsworth MA. Sonic hedgehog paracrine signaling regulates metastasis and lymphangiogenesis in pancreaticcancer. Oncogene. 2009; 28(40): 3513-25.
Beachy PA , Karhadkar SS, Berman DM. Tissue repair and stem cell renewal in carcinogenesis. Nature. 2004; 432(7015): 324-31.
Birbrair A, Zhang T, Wang ZM, Messi ML, Mintz A, Delbono O Pericytes at the intersection between tissue regeneration and pathology. Clin Sci (Lond). 2015; 128(2): 81-93.
Blons H, Côté JF, Le Corre D, Riquet M, Fabre-Guilevin E, Laurent-Puig P, Danel C. Epidermal growth factor receptor mutation in lung cancer are linked to bronchioloalveolar differentiation. Am J Surg Pathol. 2006; 30(10): 1309-15.
Brandao GD, Brega EF, Spatz A. The role of molecular pathology in non-small-cell lung carcinoma-now and in the future. Curr Oncol. 2012; 19(Suppl 1): S24–32.
Carmeliet P. Developmental biology. Controlling the cellular brakes. Nature. 1999; 401(6754): 657-8.
Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature. 2000; 407(6801): 249-57.
Casey D, Demko S, Shord S, Zhao H, Chen H, He K, Putman A, Helms W, Keegan P, Pazdur R. FDA approval summary: Sonidegib for locally advanced basal cell carcinoma. Clin Cancer Res. 2017; 23(10): 2377-81.
Chen W, Tang T, Eastham-Anderson J, Dunlap D, Alicke B, Nannini M, Gould S, Yauch R, Modrusan Z, DuPree KJ, Darbonne WC, Plowman G, de Sauvage FJ, Callahan CA. Canonical hedgehog signaling augments tumor angiogenesis by induction of VEGF-A in stromal perivascular cells. Proc Natl Acad Sci U S A. 2011; 108(23): 9589-94.
Chinchilla P, Xiao L, Kazanietz MG, Riobo NA. Hedgehog proteins activate pro-angiogenic responses in endothelial cells through non-canonical signaling pathways. Cell Cycle. 2010; 9(3): 570-79.
Choe JY , Yun JY, Jeon YK, Kim SH, Choung HK, Oh S, Park M, Kim JE . Sonic hedgehog signalling proteins are frequently expressed in retinoblastoma and are associated with aggressive clinicopathological features. J Clin Pathol. 2015; 68(1): 6-11.
Du WZ, Feng Y, Wang XF, Piao XY, Cui YQ, Chen LC, Lei XH, Sun X, Liu X, Wang HB, Li XF, Yang DB, Sun Y, Zhao ZF, Jiang T, Li YL, Jiang CL. Curcumin suppresses malignant glioma cells growth and induces apoptosis by inhibition of SHH/GLI1 signaling pathway in vitro and vivo. CNS Neurosci Ther. 2013; 19(12): 926-36.
Fleury A, Martinez MC, Le Lay S. Extracellular vesicles as therapeutic tools in cardiovascular diseases. Front Immunol. 2014; 5: 370
Gamsjaeger R, Liew CK, Loughlin FE, Crossley M, Mackay JP. Sticky fingers: zinc-fingers as protein-recognition motifs. Trends Biochem Sci. 2007; 32(2): 63-70.
Guru SK, Pathania AS, Kumar S, Ramesh D, Kumar M, Rana S, Kumar A, Malik F, Sharma PR, Chandan BK, Jaglan S, Sharma JP, Shah BA, Tasduq SA, Lattoo SK5, Faruk A, Saxena AK, Vishwakarma RA, Bhushan S. Secalonic Acid-D Represses HIF1α/VEGF-Mediated Angiogenesis by Regulating the Akt/mTOR/p70S6K Signaling Cascade. Cancer Res. 2015; 75(14): 2886-96.
Hanna A, Shevde LA. Hedgehog signaling: modulation of cancer properties and tumor mircroenvironment. Mol Cancer. 2016; 15: 24.
Hou J, Aerts J, den Hamer B, van Ijcken W, den Bakker M, Riegman P, van der Leest C, van der Spek P, Foekens JA, Hoogsteden HC, Grosveld F, Philipsen S. Gene expression-based classification of non-small cell lung carcinomas and survival prediction. PLoS One 2010; 5: e10312.
Ingham PW, McMahon AP. Hedgehog signaling in animal development: paradigms and principles. Genes Dev. 2001; 15(23): 3059-87.
Jain S, Song R, Xie J. Sonidegib: mechanism of action, pharmacology, and clinical utility for advanced basal cell carcinomas. Onco Targets Ther. 2017; 10: 1645-53
Jen J, Lin LL, Chen HT, Liao SY, Lo FY, Tang YA, Su WC, Salgia R, Hsu CL, Huang HC, Juan HF, Wang YC. Oncoprotein ZNF322A transcriptionally deregulates alpha-adducin, cyclin D1 and p53 to promote tumor growth and metastasis in lung cancer. Oncogene. 2016; 35(18): 2357-69.
Jeon BN, Kim MK, Yoon JH, Kim MY, An H, Noh HJ, Choi WI, Koh DI, Hur MW. Two ZNF509 (ZBTB49) isoforms induce cell-cycle arrest by activating transcription of p21/CDKN1A and RB upon exposure to genotoxic stress. Nucleic Acids Res 2014; 42: 11447-61.
Jia Y, Juarez J, Li J, Manuia M, Niederst MJ, Tompkins C, Timple N, Vaillancourt MT, Pferdekamper AC, Lockerman EL, Li C, Anderson J, Costa C, Liao D, Murphy E, DiDonato M, Bursulaya B, Lelais G, Barretina J, McNeill M, Epple R, Marsilje TH, Pathan N, Engelman JA, Michellys PY, McNamara P, Harris J, Bender S, Kasibhatla S. EGF816 exerts anticancer effects in non-small cell lung cancer by irreversibly and selectively targeting primary and acquired activating mutations in the EGF receptor. Cancer Res. 2016; 76(6): 1591-602.
Kasperczyk H, Baumann B, Debatin KM, Fulda S. Characterization of sonic hedgehog as a novel NF-kappaB target gene that promotes NF-kappaB-mediated apoptosis resistance and tumor growth in vivo. FASEB J. 2009; 23(1): 21-33.
Kerbel RS. Tumor angiogenesis: past, present and the near future. Carcinogenesis. 2000;21(3): 505-15.
Kieran MW. Targeted treatment for sonic hedgehog-dependent medulloblastoma. Neuro Oncol. 2014; 16(8): 1037-47.
Lam SK, Mak JC, Zheng CY, Li YY, Kwong YL, Ho JC. Downregulation of thymidylate synthase with arsenic trioxide in lung adenocarcinoma. Int J Oncol. 2014; 44(6): 2093-102.
Lee YJ, Kim JH, Kim SK, Ha SJ, Mok TS, Mitsudomi T, Cho BC. Lung cancer in never smokers: change of a mindset in the molecular era. Lung Cancer. 2011; 72(1): 9-15
Lemoinne S, Cadoret A, Rautou PE, El Mourabit H, Ratziu V, Corpechot C, Rey C, Bosselut N, Barbu V, Wendum D, Feldmann G, Boulanger C, Henegar C, Housset C, Thabut D. Portal myofibroblasts promote vascular remodeling underlying cirrhosis formation through the release of microparticles. Hepatology. 2015; 61(3): 1041-55.
Lesage J, Suarez-Carmona M, Neyrinck-Leglantier D, Grelet S, Blacher S, Hunziker W, Birembaut P, Noël A, Nawrocki-Raby B, Gilles C, Polette M. Zonula occludens-1/NF-κB/CXCL8: a new regulatory axis for tumor angiogenesis. FASEB J. 2017; 31(4): 1678-88.
Liu Q ,Li A, Tian Y, Wu JD, Liu Y, Li T, Chen Y, Han X, Wu K. The CXCL8-CXCR1/2 pathways in cancer. Cytokine Growth Factor Rev. 2016; 31: 61-71.
Li Y, Wang Y, Zhang C, Yuan W, Wang J, Zhu C, Chen L, Huang W, Zeng W, Wu X, Liu M. ZNF322, a novel human C2H2 Kruppel-like zinc-finger protein, regulates transcriptional activation in MAPK signaling pathways. Biochem Biophys Res Commun. 2004; 325: 1383-92.
Lo FY, Chang JW, Chang IS, Chen YJ, Hsu HS, Huang SF, Tsai FY, Jiang SS, Kanteti R, Nandi S, Salgia R, Wang YC. The database of chromosome imbalance regions and genes resided in lung cancer from Asian and Caucasian identified by array-comparative genomic hybridization. BMC Cancer. 2012; 12: 235.
Maitah MY, Ali S, Ahmad A, Gadgeel S, Sarkar FH. Up-regulation of sonic hedgehog contributes to TGF-β1-induced epithelial to mesenchymal transition in NSCLC cells. PLoS One. 2011; 6(1): e16068.
Maity G, Mehta S, Haque I, Dhar K, Sarkar S, Banerjee SK, Banerjee S. Pancreatic tumor cell secreted CCN1/Cyr61 promotes endothelial cell migration and aberrant neovascularization. Sci Rep. 2014; 4: 4995.
Memmi EM , Sanarico AG, Giacobbe A, Peschiaroli A, Frezza V, Cicalese A, Pisati F, Tosoni D, Zhou H, Tonon G, Antonov A, Melino G, Pelicci PG, Bernassola F..p63 sustains self-renewal of mammary cancer stem cells through regulation of Sonic Hedgehog signaling. Proc Natl Acad Sci U S A. 2015; 112(11): 3499–504.
Meruvu S, Hugendubler L, Mueller E. Regulation of adipocyte differentiation by the zinc finger protein ZNF638. J Biol Chem 2011; 286: 26516-23.
Mimeault M, Batra SK. Frequent deregulations in the hedgehog signaling network and cross-talks with the epidermal growth factor receptor pathway involved in cancer progression and targeted therapies. Pharmacol Rev. 2010; 62(3): 497-524.
Ministry of Health and Welfare, R.O.C.T. General Health Statistics. 2016. http://www.mohw.gov.tw/DOS/np-1776-113.html
Minna JD, Roth JA, Gazdar AF. Focus on lung cancer. Cancer Cell 2002; 1: 49-52.
Ok CY, Singh RR, Vega F. Aberrant activation of the hedgehog signaling pathway in malignant hematological neoplasms. Am J Pathol. 2012; 180(1): 2-11.
Pathi S, Pagan-Westphal S, Baker DP, Garber EA, Rayhorn P, Bumcrot D, Tabin CJ, Blake Pepinsky R, Williams KP. Comparative biological responses to human Sonic, Indian, and Desert hedgehog. Mech Dev. 2001; 106(1-2):107-17.
Renault MA, Roncalli J, Tongers J Thorne T, Klyachko E, Misener S, Volpert OV, Mehta S, Burg A, Luedemann C, Qin G, Kishore R, Losordo DW. Sonic hedgehog induces angiogenesis via Rho kinase-dependent signaling in endothelial cells. J Mol Cell Cardiol. 2010; 49(3): 490-8.
Rimkus TK, Carpenter RL, Qasem S, Chan M, Lo HW. Targeting the sonic hedgehog signaling pathway: Review of smoothened and GLI inhibitors. Cancers (Basel). 2016; 8(2). pii: E22. doi: 10.3390
Savani, Guo, David P. Carbone, and Csiki. Sonic hedgehog pathway expression in non-small cell lung cancer. Ther Adv Med Oncol. 2012; 4(5): 225–233.
Sekido Y, Fong KM, Minna JD. Molecular genetics of lung cancer. Annu Rev Med. 2003; 54: 73-87.
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016; 66(1): 7-30.
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin. 2015; 65 (1): 5-29.
Spuul P, Daubon T, Pitter B, Alonso F, Fremaux I, Kramer I, Montanez E, Génot E. VEGF-A/Notch-induced podosomes proteolyse basement membrane Collagen-IV during retinal sprouting angiogenesis. Cell Rep. 2016; 17(2): 484-500.
Srivastava RK, Kaylani SZ, Edrees N, Li C, Talwelkar SS1, Xu J, Palle K, Pressey JG, Athar M. GLI inhibitor GANT-61 diminishes embryonal and alveolar rhabdomyosarcoma growth by inhibiting Shh/AKT-mTOR axis. Oncotarget. 2014; 5(23): 12151-65.
Talasila KM, Røsland GV, Hagland HR1, Eskilsson E, Flønes IH, Fritah S, Azuaje F, Atai N, Harter PN, Mittelbronn M, Andersen M, Joseph JV, Hossain JA, Vallar L, Noorden CJ, Niclou SP, Thorsen F, Tronstad KJ, Tzoulis C, Bjerkvig R, Miletic H. The angiogenic switch leads to a metabolic shift in human glioblastoma. Neuro Oncol. 2017; 19(3): 383-93.
Trinh TN, McLaughlin EA, Gordon CP, McCluskey A. Hedgehog signalling pathway inhibitors as cancer suppressing agents. Med Chem Commun. 2014; 5, 117.
Valenti G, Quinn HM, Heynen GJJE, Lan L, Holland JD, Vogel R, Wulf-Goldenberg A, Birchmeier W. Cancer stem cells regulate cancer-associated fibroblasts via activation of hedgehog signaling in mammary gland tumors. Cancer Res. 2017; 77(8): 2134-47.
Valverde Lde F, Pereira Tde A, Dias RB, Guimarães VS, Ramos EA, Santos JN, Gurgel Rocha CA. Macrophages and endothelial cells orchestrate tumor-associated angiogenesis in oral cancer viahedgehog pathway activation. Tumour Biol. 2016; 37(7): 9233-41.
Wang X, Goldstein D, Crowe PJ, Yang JL. Next-generation EGFR/HER tyrosine kinase inhibitors for the treatment of patients with non-small-cell lung cancer harboring EGFR mutations: a review of the evidence. Onco Targets Ther. 2016; 9: 5461-73.
Wu F, Zhang Y, Sun B, McMahon AP, Wang Y. Hedgehog Signaling: From Basic Biology to Cancer Therapy. Cell Chem Biol. 2017; 24(3): 252-80.
Wu JB, Yin L, Shi C, Li Q, Duan P, Huang JM, Liu C, Wang F, Lewis M, Wang Y, Lin TP, Pan CC, Posadas EM, Zhau HE, Chung LW. MAOA-dependent activation of Shh-IL6-RANKL signaling network promotes prostate cancer metastasis by engaging tumor-stromal cell interactions. Cancer Cell. 2017; 31(3): 368-82.
Xie J, Bartels CM, Barton SW, Gu D. Targeting hedgehog signaling in cancer: research and clinical developments. Onco Targets Ther. 2013; 6: 1425-35.
Yam PT, Charron F. Signaling mechanisms of non-conventional axon guidance cues: the Shh, BMP and Wnt morphogens. Curr Opin Neurobiol. 2013; 23(6): 965-73
Yao Q, Renault MA, Chapouly C, Vandierdonck S, Belloc I, Jaspard-Vinassa B, Daniel-Lamazière JM, Laffargue M, Merched A, Desgranges C, Gadeau AP. Sonic hedgehog mediates a novel pathway of PDGF-BB-dependent vessel maturation. Blood. 2014; 123(15): 2429-37.