研究生: |
游博文 Yu, Po-Wen |
---|---|
論文名稱: |
以分子動力學模擬向列型液晶在PI基板的方向性 Study on orientation of nematic liquid crystal at PI surface by molecular dynamic simulation |
指導教授: |
陳鐵城
Chen, Tei-Chen |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 91 |
中文關鍵詞: | 液晶 、分子動力學 、配向膜 、有序參數 、統一原子模型 |
外文關鍵詞: | liquid crystal, molecular dynamics, alignment layer, united atom model, order parameter |
相關次數: | 點閱:91 下載:6 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文採分子動力學方法模擬液晶在配向膜上配向情形,再用統一原子模型(united atom model)簡化液晶和聚亞醯胺(polyimide, PI)分子,統一原子模型的優點為減少龐大的計算量,節省運算時間,且兼顧模擬結果與現實的吻合。
液晶顯示器面版包括:玻璃基板、彩色濾光膜、偏光板及配向膜。其中配向膜的分子結構、溝槽形狀與液晶分子所產生的錨定作用,會影響未施加電場時配向膜上的液晶配向。故本文將探討聚亞醯胺分子所構成的配向膜與製作不同形狀的奈米溝槽(V形、方形)對於液晶配向的影響。
模擬結果顯示,液晶分子會平行於聚亞醯胺分子所構成的微溝槽,且溝槽的形狀會影響液晶之配向,而配向的優劣以有序參數代表,其中有序參數值為在V形槽的液晶有序參數大於方形槽的液晶有序參數。
In this study, we study on orientation of nematic liquid crystal at polyimide substrate by molecular dynamics simulation and use united atom model to simplify all hydrogen atoms of liquid crystal and polyimide. The advantage of united atom model greatly reduces computation times and increases computational efficiency which is in agreement with experiment.
The liquid crystal display contains glass substrate, color filter, polarizer, and alignment layer. The anchoring strength between the molecular structure of alignment layer and liquid crystal affects alignment of the liquid crystal on alignment layer when the electric field does not apply. This article discusses the effect of alignment layer composed of polyimide and the different shape of microgroove ( V- and square-shaped ) which influences the alignment of liquid crystal. The alignment of liquid crystal is represented by order parameter.
The result of this study shows that liquid crystal orients in a direction perpendicular to the polyimide main chain direction and the molecular orientation of liquid crystal is influenced by the shape of microgroove. For the V-shaped polyimide liquid crystal alignment layers, the order parameter of liquid crystal is higher compared with that from the square-shaped polyimide liquid crystal alignment layers.
[1] R. E. Rudd and J. Q. Broughton, “Coarse-grained Molecular Dynamics and Atomic Limit of Finite Elements”, Physical Review B, Vol. 58, No. 10, pp. R5893-R5896, 1998.
[2] J. M. Ilnytskyi and M. R. Wilson, “Molecular Models in Computer of
Liquid Crystals”, Journal of Molecular Liquids, Vol. 92, pp. 21-28, 2001.
[3] A. V. Zakharov and A. Maliniak, “Structure and Elastic Properties of a
Nematic Liquid Crystal: A Theorectical Treatment and Molecular Dynamics Simulation”, European Physical Journal E, Vol. 4, pp. 85-91, 2001.
[4] A. V. Komolkin, A. Laaksonen, and A. Maliniak, “Molecular Dynamics
Simulation of a Nematic Liquid Crystal”, Journal of Chemical Physics, Vol. 101, pp. 4103-4116, 1994.
[5] M. Yoneya and Y. Iwakabe, “Molecular Dynamics Simulations of Liquid
Crystal Molecules on a Polyimide Monolayer ”, Liquid Crystal, Vol. 21, No. 3 , 347-359, 1996.
[6] N. F. A van der Vegt, F. M. Plathe, A. Gelebus, and D. Johannsmann, “Orientation of Liquid Crystal Monolayers on Polyimide Alignment Layers: A Molecular Dynamics Simulation Study”, Journal of Chemical Physics, Vol. 115, No. 21, pp. 9935-9945, 2001.
[7] M. I. Capar and E. Cebe, “Molecular Dynamic Study of the Odd-Even Effect in Some 4-n-alkyl-4´-cyanobiphenyls”, Physical Review E, Vol. 73, pp. 061711, 2006.
[8] A. J. McDonald and S. Hanna, “Atomistic Simulation of a Model Liquid Crystal, Journal of Chemical Physics, Vol. 124, pp. 164906, 2006.
[9] M. A. Bates and C. Zannoni, “A Molecular Dynamics Simulation Study of the Nematic-isotropic Interface of a Gay-Berne Liquid Crystal”, Chemical Physics Letters, Vol. 280, pp. 40-45, 1997.
[10] E. Gwozdz, K. Pasterny and A. Brodka, “Molecular Dynamics
Simulation Study of Polar Liquid Crystal Molecules in Slit Pores”, Chemical Physics Letters, Vol. 329, pp. 106-111, 2000.
[11] E. Gwozdz, K. Pasterny and A. Brodka, “Planar Anchoring of Polar Liquid Crystal Molecules in Slit Pore-molecular Dynamics Simulation Study”, Chemical Physics Letters, Vol. 335, pp. 71-76, 2001.
[12] D. R. Binger and S. Hanna, “Computer Simulation of Interactions between Liquid Crystal Molecules and Polymer Surfaces I. Alignment of Nematic and Smectic A Phases”, Liquid Crystals, Vol. 26, No. 8, pp. 1205-1224, 1999.
[13] D. R. Binger and S. Hanna, “Computer Simulation of Interactions between Liquid Crystal Molecules and Polymer Surfaces III. Use of Pseudopotentials to Represent the Surface”, Liquid Crystals, Vol. 28, No. 8, pp. 1215-1234, 2001.
[14] H. Lange and F. Schmid, “Surface Anchoring on Liquid Crystalline Polymer Brushes”, Computer Physics Communications, Vol. 147, pp. 276-281, 2002.
[15] M. Kimura, Y. Ohta and T. Akahane, “Surface Azimuthal Anchoring Energy between the Trapezoid Grating Surface and Nematic Liquid Crystal Layer Studied by Finite Element Method”, Advances in Technology of Materials and Materials Processing, Vol. 7, No. 2, pp. 91-96, 2005.
[16] K. Kiyohara, K. Asaka, H. Monobe, N. Terasawa and Y. Shimizu, “Surface Anchoring of Rodlike Molecules on Corrugated Substrates”, Journal of Chemical Physics, Vol. 124, pp. 034704, 2006.
[17] J. I. Fukuda, M. Yoneya and H. Yokoyama, “Surface-Groove-Induced Azimuthal Anchoring of a Nematic Liquid Crystal: Berreman’s Model Reexamined”, Physical Review Letters, Vol. 98, pp. 187803, 2007.
[18] M. B. Hamaneh and P. L. Taylor, “Simulated Anchoring of a Nematic Liquid Crystal at a Polymer Surface”, Physical Review E, 021707, 2008.
[19] 劉威麟, “以分子動力學探討5CB液晶分子在具溝槽結構之PI基板上的配向機制”, 國立成功大學機械工程研究所碩士論文, 2008
[20] X. Li, T. Takeshi, M. Tetsuya and U. Tatsuo, “Order Parameters of the Liquid Crystal Interface Layer at a Rubbed Polymer Surface”, Journal of Applied Physics, Vol.96, No.4, 2004.
[21] Y. F. Lin, M. C. Tsou, R.P. Pan, “Alignment of Liquid Crystals by Ion Etched Grooved Glass Surfaces”, Chinese Journal of Physics, Vol. 43, No. 6, pp. 1066-1073, 2005.
[22] Y. F. Lin, S. Y. Lu, R. P. Pan, “Temperature Dependence of Azimuthal Anchoring Strength of Liquid Crystals on Microgrooved Glass Substrate”, Japanese Journal of Applied Physics, Vol. 44, No. 12, pp. 8552-8556, 2005.
[23] H. Hah, S. J. Sung, M. Han, S. Lee, J. K. Park, “Effect of the Shape of Imprinted Alignment Layer on the Molecular Orientation of Liquid Crystal ”, Materials Science and Engineering C, Vol. 27, pp. 798-801, 2007.
[24] 田民波, “TFT液晶顯示原理與技術”, 五南圖書出版公司, 台北, 2008
[25] 傅永貴, “液晶材料特性及顯示原理”, 國立成功大學, 教材, 2007
[26] J. H. Irving, and J. G. Kirkwood, “The Statistical Mechanical Theory of Transport Processes. IV. the Equations of Hydrodynamics”, Journal of Chemical Physics, Vol. 18, pp. 817-829, 1950.
[27] J. E. Lennard-Jones, “The Determination of Molecular Fields. I. From the Variation of Viscosity of a Gas with Temperature”, Proceeding of Royal Society of London A, Vol. 106, pp.441 ,1924
[28] J. E. Lennard-Jones, “The Determination of Molecular Fields. II. From the Equation of State of a Gas”, Proceeding of Royal Society of London A, Vol. 106, pp.463-447, 1924
[29] L. A. Girifalco and V. G. Weizer, “Application of the Morse Potential Function to Cubic Metals”, Physical Review, Vol. 114, pp.687-690, 1959
[30] J. M. Hailie, “Molecular Dynamics Simulation Elementary Methods”, New York: John Wiley & Sons. Inc., 1993.
[31] A. R. Leach, “Molecular Modelling Principles and Applications”, Addison Wesley Longman, London, 1996.
[32] S. J. Weiner, P. A. Kollman, D. A. Case, U. C. Singh, C. Ghio, G. Alagona, S. Profeta, Jr. and P. Weiner, “A New Force Field for Molecular Mechanical Simulation of Nucleic Acids and Proteins”, Journal of the American Chemical Society, Vol. 106, pp. 765-784, 1984
[33] C. W. Cross and B. M. Fung, “A Simplified Approach to Molecular Dynamics Simulations of Liquid Crystals with Atom–Atom Potentials”, Journal of Chemical Physics, Vol. 101, 6839 ,1994
[34] L. G. Kazaryan, A. Ye. Azriel, V. A. Vasil'ev, N. G. Annenkova, N. K. Pinaeva and A. G. Chernova, “Structure and Properties of Polyalkanims”, Polymer Science U.S.S.R, Vol. 30, pp. 645-650, 1988
[35] S. Chandrasekhar, “Liquid Crystals”, Cambridge university press, Cambridge, 1992 , 2nd ed., p. 105.