簡易檢索 / 詳目顯示

研究生: 趙善倩
Chao, Shan-Chien
論文名稱: 尿調理素影響人類單核性細胞產生細胞激素之機制
Immunomodulatory Mechanisms of Uromodulin on the Cytokine Production of Human Mononuclear Cells
指導教授: 葉才明
Yeh, Trai-Ming
學位類別: 碩士
Master
系所名稱: 醫學院 - 微生物及免疫學研究所
Department of Microbiology & Immunology
論文出版年: 2002
畢業學年度: 90
語文別: 中文
論文頁數: 67
中文關鍵詞: 尿調理素脂多醣
外文關鍵詞: LPS, toll-like receptors, Uromodulin
相關次數: 點閱:58下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 尿調理素(uromodulin;URO)是一種由孕婦尿中純化之醣蛋白,分子量約 90-100 kDa。在過去的研究中,發現URO 可以誘發週邊血液單核性細胞(peripheral blood mononuclear cells;PBMC)產生發炎性細胞激素(inflammatory cytokine),並且可以抑制抗原專一性的 T 細胞增殖,但其免疫調節的機轉至今仍不清楚。本篇論文分成兩個方向探討這個問題,其一是探討 URO 是如何作用在 PBMC 上。其二是 URO 對 T 細胞分泌的細胞激素與表現輔助刺激因子(costimulatory molecules)的影響。
    我們利用矽藻土純化出 URO,再用蛋白酵素(protease)切除蛋白質部分製造出 UROp(URO 的醣類部份)。用 URO 與 UROp 作用在 PBMC 上,結果發現 UROp 與 URO 相似,皆能刺激 PBMC 的增殖,並且引起 CD14+ 的細胞族群相對的增加。這些相對增加的 CD14+ 細胞(單核球;monocyte)還表現輔助刺激分子CD80。除此之外,URO 與 UROp還可以活化人類 PBMC 釋出發炎性細胞激素,如腫瘤壞死因子 a(TNF-a)、介白素 1 號 b(IL-1b)及介白素 6 號(IL-6),以及趨化素(chemokine)介白素 8 號(IL-8)。同時我們發現,URO及 UROp 也可以使單核球上的TLR4(toll-like receptor 4)表現量增加,並且TLR4 抗體可以部分抑止 URO 及 UROp 所引起的 TNF-a 的產生。綜合上述實驗結果,我們認為 URO 及 UROp 可能經由 TLR4 刺激單核球引起類似發炎的免疫反應。
    有趣的是,雖然 URO 及 UROp 可以引起 PBMC 產生類似發炎的免疫反應,卻無法測得 IFN-g 的產生。即使用 RT-PCR 看 IFN-g mRNA 的表現,URO 與 UROp也只能刺激 PBMC 產生微量的 IFN-g mRNA。為了進一步了解為何URO無法使PBMC產生IFN-g,我們先觀察 URO 刺激 PBMC 後T 細胞活化情形。結果發現,經由 URO 或 UROp作用後的 PBMC,其 T 細胞表面分子 CD152 (CTLA-4)可被刺激而增高。若同時用純化的 T 細胞與 URO 或 UROp 作用,發現除了可以抑制 CD3 / CD28 所引起的T細胞增殖外,URO 與 UROp還可降低已活化T 細胞(CD45RO+)表面分子 CD28 及 CD152 的表現。另外,因為 IFN-g 的產生和單核球是否產生 IL-12 相關,因此我們使用一種類似單核球的細胞株 THP-1 與 URO 及 UROp 作用。結果發現,URO 並不能抑制由 LPS 刺激 THP-1 所引起的 IL-12 之產生,但 UROp 則可些微抑制 IL-12 的產生。
    總而言之,URO 和 UROp 可能可以經由 TLR4 刺激單核球增殖和產生發炎性細胞激素,但對於 T 細胞的活化則傾向抑止,進而影響 IFN-g 的產生,並且 URO 之免疫調理作用可能與其醣類的結構 UROp 有極大的關係。

    Uromodulin (URO) with molecular weight about 90-100kDa is the most abundant glycoprotein in the urine of pregnant women. URO can induce human monocytes to secrete proinflammatory cytokines. On the other hand, URO can also inhibit antigen-specific T cell proliferation. The mechanism of URO to modulate these two contrasting immune responses is unclear. In this study, URO was purified from urine using diatomaceous earth filter. Both URO and URO after protease digestion (UROp) were used to understand the mechanism of URO to regulate monocytes and T cells response. URO and UROp induced human peripheral blood mononuclear cells (PBMC) to proliferate and increased the percentage of CD14+ cells (monocytes). In addition, both CD80 and toll like receptor 4 (TLR4) expression of these monocytes was increased after URO or UROp stimulation. The production of proinflammatory cytokines such as TNF-a, IL-1b and IL-6 and chemokine (IL-8) by PBMC after URO or UROp stimulation was also increased. Antibodies against TLR4 could inhibit URO and UROp induced TNF-a production of PBMC. These results indicated that TLR4 might be involved in URO and UROp induced proinflammtory cytokines production of monocytes.
    Interestingly, unlike LPS, URO and UROp induced only trace amount of IFN-g production both protein and mRNA levels. In addition, using anti-CD3 and anti-CD28 coated plates, we found in the presence of URO and UROp, T cells proliferation was inhibited. In addition, active T cells (CD45RO+) were decreased and the costimulatory molecules CD28 and CD152 (CTLA-4) on these cells were down-regulated in the presence of URO or UROp. It is possible inhibition of costimulatory molecules expression of T cells by URO and UROp may contribute to the inhibition of T cell proliferation. In addition, to the costimulatory molecules, IL-12 produced by monocyte was also required for T cell to produce IFN-g. Therefore, a promonocytic cell line, THP-1 was used to understand the effect of URO and UROp on the production of IL-12 by monocytes. It was found UROp, like mannan, could inhibit LPS induced IL-12 production of THP-1 cells. However, URO was unable to do this. In summary, these results indicate the carbohydrate moiety of URO may play important roles in the immunomodulation induced by URO.

    總目錄 I 授權書 IV 口試合格證明 V 中文摘要 VI 英文摘要 VIII 致謝 X 圖目錄 XI 縮寫索引 XIII 第一章、緒論 1 第二章、材料與方法 9 第三章、結果 23 第四章、討論 33 參考文獻 40 圖附錄 48 自述 66

    1. Muchmore, A. V., and J. M. Decker. 1985. Uromodulin: a unique 85-kilodalton immunosuppressive glycoprotein isolated from urine of pregnant women. Science 229:479-481.
    2. Hession, C., J. M. Decker, A. P. Sherblom, S. Kumar, C. C. Yue, R. J. Mattaliano, R. Tizard, E. Kawashima, U. Schmeissner, S. Heletky, and et al. 1987. Uromodulin (Tamm-Horsfall glycoprotein): a renal ligand for lymphokines. Science 237:1479-1484.
    3. Dawnay, A., C. McLean, and W. R. Cattell. 1980. The development of a radioimmunoassay for Tamm--Horsfall glycoprotein in serum. Biochem J 185:679-687.
    4. Serafini-Cessi, F., G. Bellabarba, N. Malagolini, and F. Dall'Olio. 1989. Rapid isolation of Tamm-Horsfall glycoprotein (uromodulin) from human urine. J Immunol Methods 120:185-189.
    5. Pennica, D., W. J. Kohr, W. J. Kuang, D. Glaister, B. B. Aggarwal, E. Y. Chen, and D. V. Goeddel. 1987. Identification of human uromodulin as the Tamm-Horsfall urinary glycoprotein. Science 236:83-88.
    6. Kumar, S., and A. Muchmore. 1990. Tamm-Horsfall protein--uromodulin (1950-1990). Kidney Int 37:1395-1401.
    7. Smagula, R. M., H. Van Halbeek, J. M. Decker, A. V. Muchmore, C. E. Moody, and A. P. Sherblom. 1990. Pregnancy-associated changes in oligomannose oligosaccharides of human and bovine uromodulin (Tamm-Horsfall glycoprotein). Glycoconj J 7:609-624.
    8. Hallson, P. C., S. K. Choong, G. P. Kasidas, and C. T. Samuell. 1997. Effects of Tamm-Horsfall protein with normal and reduced sialic acid content upon the crystallization of calcium phosphate and calcium oxalate in human urine. Br J Urol 80:533-538.
    9. Kreft, B., W. J. Jabs, T. Laskay, M. Klinger, W. Solbach, S. Kumar, and G. van Zandbergen. 2002. Polarized expression of Tamm-Horsfall protein by renal tubular epithelial cells activates human granulocytes. Infect Immun 70:2650-2656.
    10. Su, S. J., K. L. Chang, T. M. Lin, Y. H. Huang, and T. M. Yeh. 1997. Uromodulin and Tamm-Horsfall protein induce human monocytes to secrete TNF and express tissue factor. J Immunol 158:3449-3456.
    11. Su, S. J., and T. M. Yeh. 1999. The dynamic responses of pro-inflammatory and anti-inflammatory cytokines of human mononuclear cells induced by uromodulin. Life Sci 65:2581-2590.
    12. Thomas, D. B., M. Davies, and J. D. Williams. 1993. Release of gelatinase and superoxide from human mononuclear phagocytes in response to particulate Tamm Horsfall protein. Am J Pathol 142:249-260.
    13. Horton, J. K., M. Davies, N. Topley, D. Thomas, and J. D. Williams. 1990. Activation of the inflammatory response of neutrophils by Tamm-Horsfall glycoprotein. Kidney Int 37:717-726.
    14. Yu, C. L., W. M. Lin, T. S. Liao, C. Y. Tsai, K. H. Sun, and K. H. Chen. 1992. Tamm-Horsfall glycoprotein (THG) purified from normal human pregnancy urine increases phagocytosis, complement receptor expressions and arachidonic acid metabolism of polymorphonuclear neutrophils. Immunopharmacology 24:181-190.
    15. Yu, C. L., C. Y. Tsai, W. M. Lin, T. S. Liao, H. L. Chen, K. H. Sun, and K. H. Chen. 1993. Tamm-Horsfall urinary glycoprotein enhances monokine release and augments lymphocyte proliferation. Immunopharmacology 26:249-258.
    16. Muchmore, A. V., N. Sathyamoorthy, J. Decker, and A. P. Sherblom. 1990. Evidence that specific high-mannose oligosaccharides can directly inhibit antigen-driven T-cell responses. J Leukoc Biol 48:457-464.
    17. Mishra, B. B., A. M. Fernandes, R. M. Blaese, and A. V. Muchmore. 1994. Characterization of T cell ligands for uromodulin: a possible role in costimulation. Cell Immunol 159:113-123.
    18. Thomas, D. B., M. Davies, J. R. Peters, and J. D. Williams. 1993. Tamm Horsfall protein binds to a single class of carbohydrate specific receptors on human neutrophils. Kidney Int 44:423-429.
    19. Toma, G., J. M. Bates, Jr., and S. Kumar. 1994. Uromodulin (Tamm-Horsfall protein) is a leukocyte adhesion molecule. Biochem Biophys Res Commun 200:275-282.
    20. Sherblom, A. P., N. Sathyamoorthy, J. M. Decker, and A. V. Muchmore. 1989. IL-2, a lectin with specificity for high mannose glycopeptides. J Immunol 143:939-944.
    21. Delves, P. J., and I. M. Roitt. 2000. The immune system. First of two parts. N Engl J Med 343:37-49.
    22. Old, L. J. 1988. Tumor necrosis factor. Sci Am 258:59-60, 69-75.
    23. Fiers, W. 1991. Tumor necrosis factor. Characterization at the molecular, cellular and in vivo level. FEBS Lett 285:199-212.
    24. Michie, H. R., K. R. Manogue, D. R. Spriggs, A. Revhaug, S. O'Dwyer, C. A. Dinarello, A. Cerami, S. M. Wolff, and D. W. Wilmore. 1988. Detection of circulating tumor necrosis factor after endotoxin administration. N Engl J Med 318:1481-1486.
    25. Soell, M., E. Lett, F. Holveck, M. Scholler, D. Wachsmann, and J. P. Klein. 1995. Activation of human monocytes by streptococcal rhamnose glucose polymers is mediated by CD14 antigen, and mannan binding protein inhibits TNF-alpha release. J Immunol 154:851-860.
    26. Lien, E., and R. R. Ingalls. 2002. Toll-like receptors. Crit Care Med 30:S1-11.
    27. Beutler, B., X. Du, and A. Poltorak. 2001. Identification of Toll-like receptor 4 (Tlr4) as the sole conduit for LPS signal transduction: genetic and evolutionary studies. J Endotoxin Res 7:277-280.
    28. Dziarski, R., and D. Gupta. 2000. Role of MD-2 in TLR2- and TLR4-mediated recognition of Gram-negative and Gram-positive bacteria and activation of chemokine genes. J Endotoxin Res 6:401-405.
    29. Beutler, B. 2000. Tlr4: central component of the sole mammalian LPS sensor. Curr Opin Immunol 12:20-26.
    30. Sherblom, A. P., J. M. Decker, and A. V. Muchmore. 1988. The lectin-like interaction between recombinant tumor necrosis factor and uromodulin. J Biol Chem 263:5418-5424.
    31. Sathyamoorthy, N., J. M. Decker, A. P. Sherblom, and A. Muchmore. 1991. Evidence that specific high mannose structures directly regulate multiple cellular activities. Mol Cell Biochem 102:139-147.
    32. Farrar, J. D., H. Asnagli, and K. M. Murphy. 2002. T helper subset development: roles of instruction, selection, and transcription. J Clin Invest 109:431-435.
    33. Bradley, L. M., K. Yoshimoto, and S. L. Swain. 1995. The cytokines IL-4, IFN-gamma, and IL-12 regulate the development of subsets of memory effector helper T cells in vitro. J Immunol 155:1713-1724.
    34. Delespesse, G., L. P. Yang, Y. Ohshima, C. Demeure, U. Shu, D. G. Byun, and M. Sarfati. 1998. Maturation of human neonatal CD4+ and CD8+ T lymphocytes into Th1/Th2 effectors. Vaccine 16:1415-1419.
    35. Seder, R. A., and W. E. Paul. 1994. Acquisition of lymphokine-producing phenotype by CD4+ T cells. Annu Rev Immunol 12:635-673.
    36. Carreno, B. M., and M. Collins. 2002. The B7 family of ligands and its receptors: new pathways for costimulation and inhibition of immune responses. Annu Rev Immunol 20:29-53.
    37. Slavik, J. M., J. E. Hutchcroft, and B. E. Bierer. 1999. CD28/CTLA-4 and CD80/CD86 families: signaling and function. Immunol Res 19:1-24.
    38. Nigou, J., C. Zelle-Rieser, M. Gilleron, M. Thurnher, and G. Puzo. 2001. Mannosylated lipoarabinomannans inhibit IL-12 production by human dendritic cells: evidence for a negative signal delivered through the mannose receptor. J Immunol 166:7477-7485.
    39. Muchmore, A. V., S. Shifrin, and J. M. Decker. 1987. In vitro evidence that carbohydrate moieties derived from uromodulin, an 85,000 dalton immunosuppressive glycoprotein isolated from human pregnancy urine, are immunosuppressive in the absence of intact protein. J Immunol 138:2547-2553.
    40. Matsuguchi, T., T. Musikacharoen, T. Ogawa, and Y. Yoshikai. 2000. Gene expressions of Toll-like receptor 2, but not Toll-like receptor 4, is induced by LPS and inflammatory cytokines in mouse macrophages. J Immunol 165:5767-5772.
    41. Medvedev, A. E., K. M. Kopydlowski, and S. N. Vogel. 2000. Inhibition of lipopolysaccharide-induced signal transduction in endotoxin-tolerized mouse macrophages: dysregulation of cytokine, chemokine, and toll-like receptor 2 and 4 gene expression. J Immunol 164:5564-5574.
    42. Abreu, M. T., P. Vora, E. Faure, L. S. Thomas, E. T. Arnold, and M. Arditi. 2001. Decreased expression of Toll-like receptor-4 and MD-2 correlates with intestinal epithelial cell protection against dysregulated proinflammatory gene expression in response to bacterial lipopolysaccharide. J Immunol 167:1609-1616.
    43. Tabeta, K., K. Yamazaki, S. Akashi, K. Miyake, H. Kumada, T. Umemoto, and H. Yoshie. 2000. Toll-like receptors confer responsiveness to lipopolysaccharide from Porphyromonas gingivalis in human gingival fibroblasts. Infect Immun 68:3731-3735.
    44. Shimazu, R., S. Akashi, H. Ogata, Y. Nagai, K. Fukudome, K. Miyake, and M. Kimoto. 1999. MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. J Exp Med 189:1777-1782.
    45. Chen, L., S. Ashe, W. A. Brady, I. Hellstrom, K. E. Hellstrom, J. A. Ledbetter, P. McGowan, and P. S. Linsley. 1992. Costimulation of antitumor immunity by the B7 counterreceptor for the T lymphocyte molecules CD28 and CTLA-4. Cell 71:1093-1102.
    46. Nikcevich, K. M., K. B. Gordon, L. Tan, S. D. Hurst, J. F. Kroepfl, M. Gardinier, T. A. Barrett, and S. D. Miller. 1997. IFN-gamma-activated primary murine astrocytes express B7 costimulatory molecules and prime naive antigen-specific T cells. J Immunol 158:614-621.
    47. Green, J. M., and C. B. Thompson. 1994. Modulation of T cell proliferative response by accessory cell interactions. Immunol Res 13:234-243.
    48. Medzhitov, R., and C. Janeway, Jr. 2000. Innate immunity. N Engl J Med 343:338-344.
    49. Astiz, M., D. Saha, D. Lustbader, R. Lin, and E. Rackow. 1996. Monocyte response to bacterial toxins, expression of cell surface receptors, and release of anti-inflammatory cytokines during sepsis. J Lab Clin Med 128:594-600.
    50. Aderem, A., and R. J. Ulevitch. 2000. Toll-like receptors in the induction of the innate immune response. Nature 406:782-787.
    51. Beutler, B., and A. Poltorak. 2001. Toll we meet again. Nat Immunol 2:9-10.
    52. Roger, T., M. P. Glauser, and T. Calandra. 2001. Macrophage migration inhibitory factor (MIF) modulates innate immune responses induced by endotoxin and Gram-negative bacteria. J Endotoxin Res 7:456-460.
    53. Puddu, P., L. Fantuzzi, P. Borghi, B. Varano, G. Rainaldi, E. Guillemard, W. Malorni, P. Nicaise, S. F. Wolf, F. Belardelli, and S. Gessani. 1997. IL-12 induces IFN-gamma expression and secretion in mouse peritoneal macrophages. J Immunol 159:3490-3497.
    54. Trinchieri, G. 1995. Interleukin-12: a proinflammatory cytokine with immunoregulatory functions that bridge innate resistance and antigen-specific adaptive immunity. Annu Rev Immunol 13:251-276.
    55. Serafini-Cessi, F., F. Dall'Olio, and N. Malagolini. 1984. High-mannose oligosaccharides from human Tamm-Horsfall glycoprotein. Biosci Rep 4:269-274.
    56. Janeway, C. A., Jr. 2002. A trip through my life with an immunological theme. Annu Rev Immunol 20:1-28.
    57. Sayegh, M. H., and L. A. Turka. 1998. The role of T-cell costimulatory activation pathways in transplant rejection. N Engl J Med 338:1813-1821.
    58. Chambers, C. A., M. S. Kuhns, J. G. Egen, and J. P. Allison. 2001. CTLA-4-mediated inhibition in regulation of T cell responses: mechanisms and manipulation in tumor immunotherapy. Annu Rev Immunol 19:565-594.
    59. Alegre, M. L., H. Shiels, C. B. Thompson, and T. F. Gajewski. 1998. Expression and function of CTLA-4 in Th1 and Th2 cells. J Immunol 161:3347-3356.
    60. Lucas, P. J., S. J. Kim, S. J. Melby, and R. E. Gress. 2000. Disruption of T cell homeostasis in mice expressing a T cell-specific dominant negative transforming growth factor beta II receptor. J Exp Med 191:1187-1196.
    61. Gorelik, L., and R. A. Flavell. 2000. Abrogation of TGFbeta signaling in T cells leads to spontaneous T cell differentiation and autoimmune disease. Immunity 12:171-181.
    62. Fiorentino, D. F., A. Zlotnik, T. R. Mosmann, M. Howard, and A. O'Garra. 1991. IL-10 inhibits cytokine production by activated macrophages. J Immunol 147:3815-3822.
    63. Ding, L., P. S. Linsley, L. Y. Huang, R. N. Germain, and E. M. Shevach. 1993. IL-10 inhibits macrophage costimulatory activity by selectively inhibiting the up-regulation of B7 expression. J Immunol 151:1224-1234.
    64. Murphy, E. E., G. Terres, S. E. Macatonia, C. S. Hsieh, J. Mattson, L. Lanier, M. Wysocka, G. Trinchieri, K. Murphy, and A. O'Garra. 1994. B7 and interleukin 12 cooperate for proliferation and interferon gamma production by mouse T helper clones that are unresponsive to B7 costimulation. J Exp Med 180:223-231.

    下載圖示 校內:2005-08-06公開
    校外:2007-08-06公開
    QR CODE