簡易檢索 / 詳目顯示

研究生: 張瑋杰
Chang, Wei-Chieh
論文名稱: 有機朗肯循環熱交換器之電腦輔助設計軟體開發
Development of the Computer Aided-Design Softwares for Heat Exchanger of Organic Rankine Cycle (ORC)
指導教授: 張錦裕
Jang, Jiin-Yun
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 146
中文關鍵詞: 有機朗肯循環低溫廢熱回收熱交換器
外文關鍵詞: ORC, Low-Grade Waste Heat Utilization, Heat Exchangers
相關次數: 點閱:138下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 有機朗肯循環系統(Organic Rankine Cycle, ORC),能夠有效的回收廢熱,並將原本無用且可能造成環境污染的低溫廢熱,轉為高價值的電力。其工作原理主要利用廢熱來加熱熱水,輸送至ORC系統之蒸發器來加熱冷媒,使冷媒產生高壓推力,推動渦輪發電機以產生附加價值電力;冷凝器則是利用冷水將發電過後的冷媒冷凝,以利下一次循環使用;冷凝器出口產生的溫水則輸送至冷卻水塔,將剩餘熱量排放至大氣中。
    本論文乃依熱交換器設計中ε-NTU(effectiveness-Number of Transfer Unit)方法,於有機朗肯循環系統中的三種熱交換器:管式熱交換器(鰭管及裸管)、殼管式熱交換器、密閉式冷卻水塔,針對不同參數變化建立其熱液動性能之理論模式,並發展套用於個人電腦使用之交談式電腦輔助設計軟體。程式中提供各種流體包含水、空氣、熱媒油、Silicone Oil、R-245fa等冷媒,及廢熱氣成分 (包含CO2、CO、N2、O2、SO2、H2O) 輸入,方便使用者計算其所需物理性質,並將從事熱交換器熱液動能設計時必須使用的圖表和繁雜計算手續電腦化。透過軟體所提供友善的交談式操作介面,讓使用者能輕易且迅速地獲取可靠的計算結果以茲參考利用,來完成有機朗肯循環熱交換器的性能評估及尺寸設計工作。
    本程式設計可執行下列二項功能:
    (A)性能評估問題( Rating Problem):使用者輸入一熱交換器的實際尺寸及冷側和熱側流量、進口溫度,則可求出兩側出口溫度及壓力降等結果。
    (B)尺寸計算問題( Sizing Problem ):當告知熱交換器冷側和熱側流量和進口及出口溫度,即可計算出熱交換器有效性及相對應熱傳面積,根據使用者需求透過軟體輔助設計熱交換器尺寸,包含管數和外形幾何等尺寸大小等結果。

    An Organic Rankine Cycle (ORC) could recover waste heat effectively. It could translate low-grade waste heat which may cause environmental pollution to high-worth electric energy. The waste heat is used to be a heat source to heat fluids such as water, dowtherm or silicone oil, and the heated fluids are delivered to evaporator. The refrigerant in evaporator would be heated from the phase subcooled to superheated, and then it produce high pressure driving turbine to generate electric energy. The refrigerant exited from turbine would be delivered to condenser and cooled by cooling water to the subcooled phase for the using of next cycle. However, the warm water is rejected by condenser, and delivered to cooling tower, which could reject remaining heat to the atmosphere.
    This paper analyzed thermal-hydraulic performance of different types heat exchanger in ORC : tubular heat exchangers (fin tube and bare tube), shell and tube heat exchangers, closed-type cooling towers. Base on ε-NTU (effectiveness - Number of Transfer Unit) method, this paper also develop the computer aided-design softwares. The software provide several fluids and refrigerant such as water, air, dowtherm, silicone oil, R-245fa, and flue gas (which is composed of CO2, CO, N2, O2, SO2, and Steam) for user using. By software frendily and interactive interface, user could obtain reliable results and complete design work of the ORC heat exchanger easily and quickly.
    The software applies to
    (A) Rating Problem:Predict the performance when the dimensions of heat exchanger are given.
    (B) Sizing Problem:Determine the necessary size when given the required performance.

    中文摘要 I 英文摘要 II 誌謝 III 目錄 V 表目錄 VI 圖目錄 VII 符號說明 IX 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 2 1-3 研究目的 10 第二章 有機朗肯循環熱交換器理論分析 29 2-1 熱交換器設計理論 29 2-2 管式熱交換器 35 2-3 殼管式熱交換器 46 2-4 冷凝器 57 2-5 蒸發器 63 2-6 密閉式冷卻水塔 68 第三章 程式使用說明及驗證 76 第四章 結論 112 參考文獻 113 附錄一 冷媒性質表建立方法解說 120 附錄二 流體物理性質之方程式 124 自述 146

    1. Angelino, G., Gaia, M., and Macchi, E., “Medium Temperature 100 kW ORC Engine for Total Energy Systems- Experimental Results”, Commission of the European Communities, Report EUR 9236, 1, PP. 421.
    2. K. M. Lee, S. F. Kuo, M. L. Chien, and Y. S. Shih, “Parameters Analysis on Organic Rankine Cycle Energy Recovery System”, Energy Conversion and Management,Volume 28, No 2, PP. 129-136, 1988.
    3. M. J. Lee, D. L. Tien, C. T. Shao, “Thermophysical Capability of Ozone-Safe Working Fluids For an Organic Rankine Cycle System”, Heat Recovery Systems and CHP, Volume 13, No 5, PP. 409-418, 1993.
    4. T. C. Hung, T. Y. Shai and S.K. Wang, “A Review of Organic Rankine Cycles (ORCs) For the Recovery of Low-Grade Waste Heat”, Energy, Volume 22, No.7, PP. 661-667, 1997.
    5. Tzu-Chen Hung, “Waste heat recovery of organic Rankine cycle using dry fluids”, Energy Conversion and Management, Volume 42, PP. 539-553, 2001.
    6. Takahisa Yamamoto, Tomohiko Furuhata, Norio Arai, Koichi Mori, “Design and testing of the Organic Rankine Cycle”, Energy, Volume 26, Issue 3, PP. 239-251, 2001.
    7. Bo-Tau Liu, Kuo-Hsiang Chien and Chi-Chuan Wang, “Effect of working fluids on organic Rankine cycle for waste heat recovery”, Energy, Volume 29, PP. 1207-1217, 2004.
    8. Bahaa Saleh, Gerald Koglbauer, Martin Wendland, Johann Fischer, “Working fluids for low-temperature organic Rankine cycles”, Energy, Volume 32, PP. 1210-1221, 2007.
    9. Donghong Wei, Xuesheng Lu, Zhen Lu, Jianming Gu, “Performance analysis and optimization of organic Rankine cycle (ORC) for waste heat recovery”, Energy Conversion and Management, Volime 48, PP. 1113–1119, 2007.
    10. Pedro J. Mago, Louay M. Chamra, Kalyan Srinicasan, Chandramohan Somayaji, “An examination of regenerative organic Rankine cycles using dry fluids”, Applied Thermal Engineering, Volume 28, PP. 998-1007, 2008.
    11. P. J. Mago, K. K. Srinivasan, L. M. Chamra and C. Somayaji, “An examination of exergy destruction in organic Rankine cycles”, International Journal of Energy Reaserch, Volume 32, PP. 926-938, 2008.
    12. Rong-Ji Xu, Ya-Ling He, “A vapor injector-based novel regenerative organic Rankine cycle”, Applied Thermal Engineering, 2011.
    13. Kern, D. Q., “Mathematical Development of Loading in Horizontal Condensers”, AIChE J., PP. 157-160, 1958.
    14. Bell, K.J.,1963. Final report of the Cooperative Research Program on Shell and Tube Heat Exchangers, Bulletin No.5, University of Delaware Engineering Experiment Station, Newark, Delaware.
    15. Walker, W. H., Lewis, W. K., and McAdams, W. H., “Principles of Chemical Engineering”, McGraw-Hill, New York,1923.
    16. Merkel, F., “Verdunstungskuhlung”, VDI Forschungsarbeiten, No.275, Berlin, 1925.
    17. Simpson, W. M. and Sherwood, T. K., “Performance of Small Mechanical Draft Cooling Towers”, Refrigerating Engineering, Vol.52, No.6, PP. 535-543, 574-576, 1946.
    18. Hollands, K. G. T., “An Analysis of a Counterflow Spray Cooling Tower”, International J. of Heat Mass Transfer, Vol.17, No.10, PP. 1227-1239,1974.
    19. Mizushina, T., Ito, R., and Miyashita, H., “Experimental study of an evaporative cooler”, International Chemical Engineering, Vol.7, No.4, PP. 727-731, 1967.
    20. Mizushina, T., Ito, R., and Miyashita, H., “Characteristic and Methods of Thermal Design of Evaporative Coolers”, International Chemical Engineering, Vol.8, No.3, PP. 532-538,1968.
    21. Sen, G. N., “Heat Transfer During Air-Water Mist Flow Across Annular Finned Tube Bands”, Ph.D thesis, University of Strathclyde, Glasgow, 1973.
    22. Kreid, D. K., Parry, H. L., McGowan, L.J., and Johnson, B. M., “Performance of a Plate Fin Air-Cooled Heat Exchanger with Deluged Water Augmentation”, ASME, 1979.
    23. Sutherland, J. W., “Analysis of Mechanical-Draught Counterflow Air/Water Cooling Towers”, J. of Heat Transfer (ASME), Vol.105, PP. 576-583, 1983.
    24. Webb, R. L., “A Unified theoretical Approach for Thermal Analysis of Cooling Tower, Evaporative Condensers and Fluid Coolers”, ASHRAE Trans., Vol.90, Prat 2B, PP. 398-415, 1984.
    25. Webb, R. L. , and Villacres, A., “Algorithms for Performance Simulation of Cooling Towers, Evaporative Condensers and Fluid Coolers”, ASHRAE Trans., Vol.90, Prat 2B, PP. 416-458, 1984.
    26. Webb, R. L., and Villacres, A., “Performance Simulation of Evaporative Heat Exchangers (Cooling Towers, Fluid Coolers and Condensers)”, Heat Transfer Engineering, Vol.6, No.2, PP. 31-38, 1985.
    27. Yan, W. M., “Effects of Film Evaporation on Laminar Mixed Convection Heat and Mass Transfer in a Vertical Channel”, International J. Heat Mass transfer, Vol.35, No.12, PP. 3419-3429,1992.
    28. Bernier, M. A., “Thermal Performance of Cooling Towers”, ASHRAE J., PP. 56-61, Aprial, 1995.
    29. Wang, Z.J. and Jang, J. Y., “Heat and Mass Transfer Performance Testing and Analysis of Closed Type Cooling Tower”, Chinese Journal of heating, Refrigerating and Air Conditioning, Vol.6, No.2, PP. 10-22, 1997.
    30. Jorge Facao, Armando C. Oliveira, “Thermal Behaviour of Closed Wet Cooling Towers for Use with Chilled Ceilings”, Applied Thermal Engineering, Vol.20, PP. 1225-1236, 2000.
    31. G. Gan, S.B. Riffat, L. Shao, P. Doherty, “Appliecation of CFD to Closed-Wet Cooling Towers”, Applied Thermal Engineering, Vol.21, PP. 79-92, 2001.
    32. M. M. A. Sarker, E. Kim, C. G. Moon, J. I. Yoon, “Numerical Simulation of the Performance Characteristics of the Hybrid Closed Circuit Cooling Tower”, Nonlinear Analysis : Modelling and Control, Vol. 13, No. 1, PP.89-101, 2008.
    33. Kays, W. M. and London, A. L., “Compact Heat Exchangers”, Third Edition, McGraw-Hill Inc, New York, PP. 35-41, 1984.
    34. Baclic, B. S., “A Simplified Formula for Crossflow Heat Exchangers Effectiveness”, ASME Journal of Heat Transfer, Vol.100, PP. 746-747, 1978.
    35. Eckert, E. R. G. and Drake, R. M., “Heat and Mass Transfer ” McGraw-Hill Inc., New York,1959.
    36. Shah.K., “Heat Exchangers Basic Design Method, in Low Reynolds Number Flow Heat Exchangers”, edited by S. Kakas, R. K. Shah, and A. E. Bergles, PP. 21-72, Hemisphere/McGraw-Hill, Washington, D. C., 1983.
    37. Gnielinski, V. “New Equation for Heat and Mass Transfer in Turbulent Pipe and Channel Flow”, Industrial and Eng.Chemistry, Vol. 16, PP. 359-368, 1976.
    38. Taborek, J., “Heat Exchangers Design handbook”, Vol.13, Hemisphere Publishing Corporation, 1983.
    39. Zukauskas, A., Ulinskas, R., 1998. Banks of plain and finned tubes. In Heat Excahnger Design Books, ed. By Hewitt G.F., Chap.2.2.4. Begell house, inc.
    40. Briggs, D. E. and Young, E. H., “Convection Heat Transfer and Pressure Drop of Air Flowing Across Triangular Pitch Banks of Finned Tubes ”, Chem. Eng. Prog. Symp. Ser., Vol 59, No.41, PP. 1-10, 1963.
    41. Taborek,J., “ Ideal tube bank correlations for heat" transfer and pressure drop”, Thermal and hydraulic design of heat exchangers, Book3,3.3.7-1,1983.
    42. Shah, R. K., “Thermal Design Theory for Regenerators”, Heat Exchangers-thermodynamic Fundamentals and Design, edited by Kakac, S., Bergles, A. E. and Mayinger, F., PP. 721-763, Hemisphere co., Washingdon, D. C.1981.
    43. Schmidt, E., “Heat Transfer Calculations for Extended Surfaces”, Refigeration Engineering, PP. 351-367, April, 1949.
    44. Tinker, T., “Shell Side Characteristics of Shell Side Flow Pressure Drop and Heat Transfer by Stream Analysis Method”, Chem Eng. Prog. Symp. Ser, Vol. 65, No.92,1969.
    45. Butterworth, D., “Developments in the Design of Shell and Tube Condensers”, ASME paper 77-WA/HT-24, 1977.
    46. Butterworth, D., “The Correlation for Cross Flow Pressure Drop Data by Means of Permeability Concept”, AERE report R9435, 1983.
    47. Nusselt, W., “The Condensation of Steam on Cooled Surfaces”, Z.ver. Ttsch. Ing., PP. 541-546 and PP. 569-575, (Translated by Fullarton D.Chem.Eng.Fund., Vol.1, No.2, PP. 6-19), 1916.
    48. Guthrie, J.K., and Gregory, E.J., “Design of Base Load Evaporators for LNG”,Proc. Int. Conf. LNG, PP. 300-321, London, 1969.
    49. Kandlikar, S. G., “An Improved Correlation for Predicting Two Phase Flow Boiling Heat Transfer Coefficient in Horizontal and Vertical Tubes”, in: Heat Exchangers for Two Phase Flow Applications, ASME,New York,1983.
    50. Kandlikar, S. G., “A General Correlation for Saturated Two-Phase Flow Boiling Heat Transfer Inside Horizontal and Vertical Tubes”, ASME Journal of Heat Transfer, Vol.112, PP. 219-228, 1990.
    51. Friedel, L., “New Friction Pressure Drop Correlations for Upward, Horizontal and Downward Two-Phase Pipe Flow”, Presented at the HTFS Symposium, Oxford. (Hoechst AG Reference 372217/24 698), 1979.
    52. Hewitt, G. F., Shires, G. L., and Bott, T.R., “Process Heat Transfer”, Ch14, CRC Press, 1994.
    53. McAdams, W. H.,“Heat Transmission”3 rd Ed, McGraw-Hill,1954
    54. Mizushina, T., Ito, R., and Miyashita, H., “Characteristic and Methods of Thermal Design of Evaporative Coolers”, International Chemical Engineering, Vol.8, No.3, PP. 532-538, 1968.
    55. Kumer, H. 1984. The plate heat exchanger: construction and design,1st UK national heat transfer conference, university of Leeds, Inst. Chem. Symp., ser. No. 86, PP. 1275.
    56. Robinson, K. K. and Briggs, D. E., “Pressure Drop of Air Flowing Across Triangular Pitch Banks of Finned Tubes”, Chem. Eng. Prog. Symp. Ser., Vol.62, No.64, PP. 177-184, 1966.
    57. Rabas, T. J., Eckels, P. W., Sabatino, R. A., “The Effect of Density on the Heat Transfer and Pressure Drop Performance of Low Finned Tube Banks.” Chem.Eng.Communications, 10(1), PP. 127-147, 1981.
    58. Dittus, F. W. and Boelter, L. M. K., “Heat Transfer in Automobile Radiators of the Tubular Type”, University of California, Berkeley, Publications on Engineering, Vol.2, No.13, PP. 443-461, 1930.
    59. Petukhov, B. S., Irvine, T. F. and Hartnett, J. P., “Advances in Heat Transfer”, Vol.6, Academic Press, New York, 1970.
    60. Grimison, E. D., “Correlation and Utilization of New Data on Flow Resistance and Heat Transfer for Cross Flow of Gases Over Tube Banks”, Trans. ASME, Vol. 59, PP. 583-594, 1937.
    61. Kern, D. Q. , “Process Heat Transfer”, McGraw Hill, New York,1950.
    62. Heat Exchange Institute, “Standards for Steam Surface Condenser”, Eighth Edition, 1984.
    63. White, R. E., “Condensation of Refrigerant Vapors: Apparatus and Film Coefficients for F-12”, Refrig.Eng., vol.55, no.5, PP. 375, April, 1948.
    64. Goto, M., Hotta, H. and Tezuka, S., “Film Condensation of Refrigerant Vapors on a Horizontal Tube”, 15th, Int. Congr. Refrig. , Venice, Pap. PP. 1-20, 1979.
    65. Shah R. K., and Mueller, A. C., Handbook of Heat Transfer Applications, edit by Rohsenow, W. M. Hartnett, J. P., and Ganic, E. N., 1985.
    66. Erens, P.J., “Comparison of Some Design Choices for Evaporative Cooler Cores, Heat Transfer Engineering, Vol.9, No.2, PP. 29-35,1968.
    67. Fisher, U., Leidenfrost, W., and Li, J. ,“Hybrid Evaporative-Condenser Cooling Tower”, Heat Transfer Engineering, Vol.4, No.2, PP. 28-41,1983.

    下載圖示 校內:2013-07-11公開
    校外:2013-07-11公開
    QR CODE