簡易檢索 / 詳目顯示

研究生: 洪仕勳
Hung, Shih-Hsun
論文名稱: 光介電泳平台之數值模擬與在乳化液滴操控之應用
Numerical Simulation of Optically-induced Dielectrophoresis Platform and Its Application on Manipulation of Emulsion Droplets
指導教授: 李國賓
Lee, Gwo-Bin
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 105
中文關鍵詞: 光介電泳介電泳數值模擬乳化液滴聚苯乙烯珠電壓轉換效率
外文關鍵詞: optically-induced dielectrophoresis, dielectrophoresis, numerical simulation, emulsion droplets, polystyrene beads, voltage transformation ratio
相關次數: 點閱:108下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來光介電泳平台(ODEP)廣泛的應用在微流體系統內進行微粒子和細胞之操控和分離。當以投影機光源投射在光導材料上時,此時因為電子施體(donor)-受體(acceptor)間之接觸面積較大,材料吸收光能轉換為激發子(exciton)後,能有效被分離(dissociation)成電子與電洞,在主動層中的電子與電洞將引發不均勻電場來對介電物質產生一排斥或吸引的力。藉由移動或改變光的圖案可以對細胞或微粒子進行操控。光介電泳平台在微流體相關應用是一個強大的工具,但卻很少有藉由理論分析模型來得到正確的光介電泳之力量大小。傳統的介電泳模型(DEP)無法套用在光介電泳平台(ODEP)。
    光介電泳平台有許多會影響力量大小的變數例如頻率、電壓大小的改變或者液體的種類等。對於開發一個可以準確預測光電泳力量大小的模型是重要且必須的,使得可以在實驗前就知道不同情況下力量大小的比較,以達到光介電泳平台的最佳化設計和提高其他相關應用的可行性。本研究提出一個嶄新的-“電壓轉換效率”模型計算跨在操控微粒子的液體層之有效的電壓來提高光介電泳力的數值分析的準確性。並採用高斯分布之邊界條件來設定光照射區域之虛擬電極分布有效區別傳統介電泳電極的邊界條件。在兩個已發表的操控結果-聚苯乙烯珠和本文的乳化液滴實驗,我們的模擬結果與實驗值合理的吻合,其中最大誤差範圍在低於百分之六點二五以下,這是傳統模擬光介電泳模型所難以達到的。未來此模型也可以應用在藉由增加光的強度和微調光波長或使用其他光導材料(例如高分子聚合物)或最佳化光導材料的厚度來計算增加電場大小和力量大小。“電壓轉換效率"模型對於未來光介電泳平台在微流體、微機電等相關應用提供一個可以用來預測光所導引出的電場分布及光介電泳力大小的可靠分析工具。
    本研究也成功地以光介電泳力來實現對水包油乳化液滴的操控和分離。藉由使用改變光不同的掃描速度,水包油乳化液滴能被高解析度的分離並且進行單顆的乳化液滴的操控,有別於傳統分離和操控乳化液滴技術。首先,不同大小的乳化液滴(40-43, 20-30, and 2-5微米)可以先成功地被粗分成三等份。以漸進梯度改變光的移動速度成功細分大小差異2.5微米的乳化液滴。為了避免液滴的碰撞和重疊現象影響分離效果,本研究提出一個新的設計-“光軌"來分配不同大小的乳化液滴在各自的光定義之移動軌道中來進行分離。根據此方式五種不同大小的乳化液滴 (30, 20, 10, 7.5, and 5微米)成功的分離開。最後,本研究也利用光介電泳平台針對在微流體乳化晶片中產生乳化液滴時伴隨著衛星液滴的困擾,成功地結合乳化晶片並將衛星液滴和主要液滴做有效的分離。此發展平台對於控制且提升高品質的乳化液滴有著很高的潛力,並且可以應用在許多乳化技術的產業例如化妝品工業、食物配製、藥物應用,與去氧核醣核酸膠囊、微米粒子的藥物傳遞系統、單分子酵素分析等相關應用。

    ODEP platform is a powerful light-based technique for microfluidic application. When illuminated by a projected light beam, the photo-induced charge carriers created by the electron transfer of excitons at a donor/acceptor interface in the photoconductive layer, disturbs the uniformly-distributed electric field applied on the ODEP devices. However, only a few attempts to characterize the induced ODEP forces yielded satisfactory accuracy. It is imperative to develop an effective model which can accurately simulate the ODEP force with consideration of the underlying parameters, like changes in frequency, voltage, medium, etc., which can significantly affect the capability of other applications in the ODEP platform. This study reports on the results from numerical simulation of the ODEP platform using a new model based on a voltage transformation ratio (VTR), which takes the effective electrical voltage into consideration and the ODEP force can be numerically calculated with a reasonable accuracy. Gaussian distribution of the light patterns was adopted to depict the light propagation on the ODEP electrode edge to distinguish with the conventional dielectrophoresis (DEP) electrodes. The ODEP forces for emulsion droplets and polystyrene beads were investigated. Results showed that the numerical simulation is in reasonably agreement with experimental data for the manipulation of polystyrene beads and emulsion droplets, with a variation less than 6.2%. The proposed model can be applied to simulations of the ODEP force and may provide a reliable tool for estimating induced dielectrophoretic forces and electric fields. In order to increase the electric field and the resulting ODEP force, one can increase the intensity of the light, fine-tune the wavelength of the light, use other photoconductive materials (such as polymers), or optimize the thickness of the photoconductive materials. The proposed VTR model provides a new approach to calculate the ODEP force to calibrate the voltage transformation ratio. This may provide researchers a useful tool for accurately predicting the force on beads, droplets or cells, which is crucial for microfluidic applications.
    A microfluidic platform for dynamic manipulation and separation of oil-in-water emulsion droplets by using optically-induced dielectrophoresis (ODEP) is also reported in this study. By utilizing different scanning speeds of a moving light beam, the oil-in-water emulsion droplets can be moved and separated with a high separation resolution. A first demonstration of this platform is pre-separation and fine separation of emulsion droplets. Three groups of droplets with different sizes (40-43, 20-30, and 2-8 m) can be roughly separated first. The fine separation of emulsion droplets with a radius difference of 2.5 m can be performed using a moving light beam with a gradual gradient of moving speeds. To avoid the collision and overlapping of the droplets, a new separation scheme - “light-track" to assign individual moving track for each droplet was adopted by using well-defined moving light patterns. Accordingly, droplets with five different sizes (30, 20, 10, 7.5, and 5 μm) can be successfully separated. The second demonstration is to separate satellite and master emulsion droplets generated from microfluidic emulsion chips. The ODEP force was also characterized by balanced with drag force. It was found that conductivity of the medium play an important role on the ODEP force. The bigger conductivity is, the less ODEP force is. The developed ODEP platform may be promising for enhancing the quality of the emulsions, which can be applied a variety of fields such as cosmetics, food preparation, and medicine applications, encapsulation of DNA, nano-particles for drug delivery system, single-molecule enzyme analysis.

    Abstract (Chinese)…………………………………………………...…………..….I Abstract (English)………………………………………………………………....IV Acknowledgment (Chinese) ………………………………………………….VII Table of Contents…………………………………………………………….….....IX List of Tables………………………………………………………….……………XIII List of figures……………………………………………………………………...XIV List of symbols……………………………………………………………………XIX Nomenclature…………………………………………………………………….XXII Chapter 1 Introduction.…………………………………………………………….1 1.1 Methods of micro-and nanopaticle manipulation…………………….1 1.2 Dielectrophoresis (DEP)………………………………………………………2 1.3 Optically-induced dielectrophoresis (ODEP)………………………………4 1.4 Photoconductive material (amorphous silicon)…………………8 1.5 Motivation and objectives………………………………………………13 1.5.1 Numerical simulation of ODEP force………………………….13 1.5.2 Dynamic separation/manipulation of oil-in-water emulsion droplets………….14 Chapter 2 Experimental setup and chip fabrication…………….17 2.1 DEP platform description……….……………………17 2.1.1 DEP chip experimental setup………………………….17 2.1.2 DEP chip fabrication…………………………………...18 2.2 ODEP platform description……………………...…………18 2.2.1 Experiment setup………………………………….……….18 2.2.2 ODEP chip fabrication………..……….20 Chapter 3 Numerical simulation and voltage-transformation-ratio (VTR) model …………………………………………………….21 3.1 Introduction…………………………21 3.1.1 The comparison between DEP and ODEP……………………21 3.1.2 Previous simulation models of ODEP platform…..23 3.2 The simulation cases……………………………………………..26 3.3 The CM factor of emulsion droplet and polystyrene bead…...29 3.4 VTR model description and device configuration…………………32 3.5 Numerical simulation of electric field and boundary condition………..….37 3.6 The limitation of ODEP platform resolution……………….40 3.7 Other effects in optoelectronic tweezers devices……………41 3.7.1 Non-specific interactions…………….………41 3.7.2 Electrothermal heating……………………………42 3.7.3 Light-induced AC electro-osmosis (LACE)……………43 3.7.4 Electrolysis……………………………………..45 3.7.5 Buoyancy effects…………………………….45 3.7.6 Electrophoresis force……..…….46 3.7.7 Brownian motion…………………………….46 3.7.8 Summary………………………………………….47 Chapter 4 Dynamic manipulation and Separation of oil-in-water emulsion droplets……………………………………...48 4.1 Introduction………………………………………..………..48 4.2 Materials and methods……………………………………………...50 4.2.1 The generation of uniform emulsion droplets…………51 4.2.2 Separation principle of emulsion droplets………………51 Chapter 5 Results and discussion………………………….53 5.1 Comparison between simulation data and experimental data……………….53 5.2 Dynamic separation of emulsion droplets……………………62 Chapter 6 Conclusions……………………………..71 6.1 Conclusions………………………………….………..……71 6.2 Future works…………………………………72 References……………………….……74 Appendix A - Electrostatic theory…………………………..…………....…90 Appendix B - Dipole approximation…………………………..……………….94 Appendix C - Polarization of Particles……………………….………….96 Appendix D - Derivation of Dielectrophoretic Force……….101 Personal information (Publication list)…………………………………104

    [1] N. Chronis and L. P. Lee, “Electrothermally activated SU-8 microgripper for single cell manipulation in solution,” Journal of Microelectromechanical Systems, vol. 14, pp. 857–863, 2005.
    [2] C. J. Kim, A. P. Pisano, and R. S. Muller, “Silicon-processed overhanging microgripper,” IEEE Journal of Microelectromechanical Systems, vol. 1, pp. 31–36, 1992.
    [3] D. D. Carlo, L. Y. Wu, and L. P. Lee, “Dynamic single cell culture array,” Lab on a Chip, vol. 6, pp. 1445–1449, 2006.
    [4] A. R. Wheeler, W. R. Throndset, R. J. Whelan, A. M. Leach, R. N. Zare, Y. H. Liao,K. Farrell, I. D. Manger, and A. Daridon, “Microfluidic device for single-cell analysis,”Analytical Chemistry, vol. 75, pp. 3581–3586, 2003.
    [5] A. Y. Fu, H. P. Chou, C. Spence, F. H. Arnold, and S. R. Quake, “An integrated micro-fabricated cell sorter,” Analytical Chemistry, vol. 74, pp. 2451–2457, 2002.
    [6] C. R. Cabrera and P. Yager, “Continuous concentration of bacteria in a microfluidic flow cell using electrokinetic techniques,” Electrophoresis, vol. 22, pp. 355–362, 2001.
    [7] C. R. Barry, J. Gu, and H. O. Jacobs, “Charging process and coulomb-force-directed printing of nanoparticles with sub-100-nm lateral resolution,” Nano Letters, vol. 5, pp. 2078–2084, 2005.
    [8] N. G. Loucaides, A. Ramos, and G. E. Georghiou, “Trapping and manipulation of nanoparticles by using jointly dielectrophoresis and AC electroosmosis,” Journal of Physics: Conference Series, vol. 100, 2008.
    [9] A. Y. Fu, C. Spence, A. Scherer, F. H. Arnold, and S. R. Quake, “A microfabricated fluorescence-activated cell sorter,” Nature Biotechnology, vol. 17, pp. 1109–1111, 1999.
    [10] H. Lee, A. M. Purdon, V. Chu, and R. M. Westervelt, “Controlled assembly of magnetic nanoparticles from magnetotactic bacteria using microelectromagnets arrays,” Nano Letters, vol. 4, pp. 995–998, 2004.
    [11] M. Tanase, L. A. Bauer, A. Hultgren, D. M. Silevitch, L. Sun, D. H. Reich, P. C. Searson, and G. J. Meyer, “Magnetic alignment of fluorescent nanowires,” Nano Letters, vol. 1, pp. 155–158, 2001.
    [12] A. K. Bentley, J. S. Trethewey, A. B. Ellis, and W. C. Crone, “Magnetic manipulation of copper-tin nanowires capped with nickel ends,” Nano Letters, vol. 4, pp. 487–490, 2004.
    [13] H. A. Pohl, “Dielectrophoresis,” Cambridge University Press, 1978.
    [14] X. B. Wang, Y. Huang, F. F. Becker, P. R. C. Cascoyne, “A unified theory of dielectrophoresis and travelling wave dielectrophoresis,” Journal of physics D: Applied Physics, vol. 27, pp. 1571-1574, 1994.
    [15] P. R. C. Gascoyne, X. B. Wang, Y. Huang , F. F. Becker, “Dielectrophoretic separation of cancer cells from blood,” IEEE Transactions on Industry Applications, vol.33, pp. 670-678, 1997.
    [16] J. Cheng, E. L. Sheldon, L. Wu, M, J. Heller, J. P. O'Connell, “Isolation of cultured cervical carcinoma cells mixed with peripheral blood cells on a bioelectronic chip,” Analytical Chemistry, vol. 70, pp. 2321-2326, 1998.
    [17] Y. Huang, J. M. Yang, P. J. Hopkins, S. Kassegne, M. Tirado, A. H. Forster, H. Reese, “Separation of simulants of biological warfare agents from blood by a miniaturized dielectrophoresis device,” Biomedical Microdevices, vol. 5, pp. 217-225, 2003.
    [18] P. R. C. Gascoyne, J. V. Vykoukal, “Dielectrophoresis-based sample handling in general-purpose programmable diagnostic instruments,” Proceedings of the IEEE, vol. 92, pp. 22-42, 2004.
    [19] R. Pethig, M. S. Talary, R. S. Lee, “Enhancing traveling-wave dielectrophoresis with signal superposition,” IEEE Engineering in Medicine and Biology Magazine, vol. 22, pp. 43-50, 2003.
    [20] R. Krupke, F Hennrich, V. Lohneysen, M. M. Kappes, “Separation of metallic from semiconducting single-walled carbon nanotubes,” Science, vol. 301, pp. 344-347, 2003.
    [21] S. Evoy, N. DiLello, V. Deshpande, A. Narayanan, H. Liu, M. Riegelman, B. R. Martin, B. Hailer, J. C. Bradley, W. Weiss, T. S Mayer, Y. Gogotsi, H. H. Bau, T. E. Mallouk, S. Raman, “Dielectrophoretic assembly and integration of nanowire devices with functional CMOS operating circuitry,” Microelectronic Engineering, vol. 75, pp. 31-42, 2003.
    [22] I. Doh, Y. H. Cho, “A continuous cell separation chip using hydrodynamic dielectrophoresis (DEP) process,” Sens Actuators A Phys, vol. 121, pp. 59–65, 2005.
    [23] G. H. Markx, M. S. Talary, R. Pethig, “Separation of viable and nonviable yeast using dielectrophoresis,” Journal of Biotechnology, vol. 32, pp. 29–37, 1994.
    [24] Y. Kang, D. Li, S. A. Kalams, J. E. Eid, “DC-Dielectrophoretic separation of biological cells by size,” Biomed Microdevices, vol. 10, pp. 243–249, 2008.
    [25] M. Urdaneta, E. Smela, “The design of dielectrophoretic flow through sorters using a figure of merit. Journal of Micromechanical and Microengineering, 18:015001–015009, 2008.
    [26] A. B. Fuchs, A. Romani, D. Freida, G. Medoro, M. Abonnenc, L. Altomare, I. Chartier, D. Guergour, C. Villiers, P. N. Marche, M. Tartagni, R. Guerrieri, F. Chatelain, N. Manaresi, “Electronic sorting and recovery of single live cells from microlitre sized samples,” Lab on a Chip, vol. 6, pp.121-126, 2006.
    [27] P. Y. Chiou, A. T. Ohta, and M. C. Wu, "Massively parallel manipulation of single cells and microparticles using optical images," Nature, vol. 436, pp. 370-372, 2005.
    [28] A. Jamshidi, P. J. Pauzauskie, P. J. Schuck, A. T. Ohta, P. Y. Chiou, J. Chou, P. Yang, and M. C. Wu, "Dynamic manipulation and separation of individual semiconducting and metallic nanowires," Nature Photonics, vol. 2, pp. 85-89, 2008.
    [29] H. Y. Hsu, A. T. Ohta, P. Y. Chiou, A. Jamshidi, S. L. Neale, and M. C. Wu, "Phototransistor-based optoelectronic tweezers for dynamic cell manipulation in cell culture media," Lab Chip, vol. DOI 10.1039/b906593h, 2009.
    [30] Y. Higuchi, T. Kusakabe, T. Tanemura, K. Sugano, T. Tsuchiya, and O. Tabata, "Manipulation system for nano/micro components integration via transportation and self-assembly," in Conference on Micro Electro Mechanical Systems, 2008.
    [31] X. Miao and L. Y. Lin, "Trapping and manipulation of biological particles through a plasmonic platform," IEEE Journal of Selected Topics in Quantum Electronics: Special Issue on Biophotonics, vol. 13, pp. 1655-1662, 2007.
    [32] X. Miao, B. K. Wilson, S. H. Pun, and L. Y. Lin, "Optical manipulation of micron/submicron sized particles and biomolecules through plasmonics," Optics Express, vol. 16, p. 13517, 2008.
    [33] W. Wang, Y. H. Lin, T. F. Guo, and G. B. Lee, "Manipulation of Biosamples and Microparicles using Optical Images on Polymer Devices," in IEEE 22nd International Conference on Micro Electro Mechanical Systems, 2009.
    [34] P. Y. Chiou, W. Wong, J. C. Liao, and M. C. Wu, "Cell addressing and trapping using novel optoelectronic tweezers," IEEE International Conference on Micro Electro Mechanical Systems, Technical Digest, 17th, Maastricht, Netherlands, Jan. 25-29, 2004, pp. 21-24, 2004.
    [35] W. Choi, S. H. Kim, J. Jang, and J. K. Park, "Lab-on-a-display: a new microparticle manipulation platform using a liquid crystal display (LCD)," Microfluidics and Nanofluidics, vol. 3, pp. 217-225, 2007.
    [36] H. Hwang, Y. J. Choi, W. Choi, S. H. Kim, J. Jang, and J. K. Park, "Interactive manipulation of blood cells using a lens-integrated liquid crystal display based optoelectronic tweezers system,," Electrophoresis, vol. 29, pp. 1203-1212, 2008.
    [37] P. Y. Chiou, A. T. Ohta, A. Jamshidi, H. Y. Hsu, and M. C. Wu, "Light-Actuated AC Electroosmosis for Nanoparticle Manipulation," Journal of Microelectromechanical Systems, vol. 17, 2008.
    [38] J. K. Valley, A. Jamshidi, A. T. Ohta, H. Y. Hsu, and M. C. Wu, "Operational Regimes and Physics Present in Optoelectronic Tweezers," Journal of Microelectromechanical Systems, vol. 17, 2008.
    [39] S. L. Neale, M. Mazilu, J. I. B. Wilson, K. Dholakia, and T. F. Krauss, "The resolution of optical traps created by Light Induced Dielectrophoresis (LIDEP)," Optics Express, vol. 15, pp. 12619-12626 2007.
    [40] A. T. Ohta, P. Y. Chiou, T. H. Han, J. C. Liao, U. Bhardwaj, E. R. B. McCabe, F. Q. Yu, R. Sun, and M. C. Wu, "Dynamic cell and microparticle control via optoelectronic tweezers," Journal of Microelectromechanical Systems, vol. 16, pp. 491-499, Jun 2007.
    [41] A. T. Ohta, P. Y. Chiou, H. L. Phan, S. W. Sherwood, J. M. Yang, A. N. K. Lau, H. Y. Hsu, A. Jamshidi, and M. C. Wu, "Optically-controlled cell discrimination and trapping using optoelectronic tweezers," IEEE J. Sel. Top. Quant., vol. 243, pp. 235-243, 2007.
    [42] Y.-S. Lu, Y.-P. Huang, J. A. Yeh, C. Lee, and Y.-H. Chang, "Controllability of non-contact cell manipulation by image dielectrophoresis (iDEP)," Optical and Quantum Electronics, vol. 37, pp. 1385-95, 2005.
    [43] H. Y. Hsu, A. T. Ohta, P. Y. Chiou, A. Jamshidi, and M. C. Wu, "Phototransistor-Based Optoelectronic Tweezers for Cell Manipulation in Highly Conductive Solution," in Solid-State Sensors, Actuators and Microsystems Conference, 2007.
    [44] H. Y. Hsu, H. Lee, S. Pautot, K. Yu, S. Neale, A. T. Ohta, A. Jamshidi, J. Valley, E. Isocaff, and M. C. Wu, "Sorting of differentiated neurons using phototransistor based optoelectronic tweezers for cell replacement therapy of neurodegenerative diseases," in The 15th International Conference on Solid-State Sensors, Actuators and Microsystems Denver, Colorado, 2009.
    [45] S. L. Neale, Z. Fan, A. T. Ohta, A. Jamshidi, J. K. Valley, H. Y. Hsu, A. Javey, and M. C. Wu, "Optofluidic Assembly of Red/Blue/Green Semiconductor Nanowires," in Conference on Lasers and Electro-Optics 2009.
    [46] A. T. Ohta, A. Jamshidi, P. J. Pauzauskie, H. Y. Hsu, P. Yang, and M. C. Wu, "Trapping and transport of silicon nanowires using lateral-field optoelectronic tweezers," in Conference on Lasers and Electro-Optics (CLEO), Baltimore, MD, pp. 828-829. 2007.
    [47] A. T. Ohta, S. L. Neale, H. Y. Hsu, J. K. Valley, and M. C. Wu, "Parallel assembly of nanowires using lateral-field optoelectronic tweezers," in 2008 IEEE/LEOS International Conference on Optical MEMS and Nanopotonics, 2008.
    [48] P. J. Pauzauskie, A. Jamshidi, J. K. Valley, J. Satcher, J. H., and M. C Wu, "Parallel trapping of multiwalled carbon nanotubes with optoelectronic tweezers," Applied Physics Letters, vol. 95, pp. 113104-1, 2009.
    [49] A. Jamshidi, H. Y. Hsu, J. K. Valley, A. T. Ohta, S. Neale, and M. C. Wu, "Metallic Nanoparticle Manipulation using Optoelectronic Tweezers," in IEEE 22nd International Conference on Micro Electro Mechanical Systems, 2009.
    [50] M. Hoeb, J. O. Radler, S. Klein, M. Stutzmann, and M. S. Brandt, "Light-induced dielectrophoretic manipulation of DNA," Biophysical Journal, vol. 93, pp. 1032-1038, 2007.
    [51] Y. H. Lin, C. M. Chang, and G.-B. Lee, "Manipulation of single DNA molecules by using optically projected images," Opt. Express, vol. 17, pp. 15318-15329, 2009.
    [52] J. K. Valley, S. Neale, H. Y. Hsu, A. T. Ohta, A. Jamshidi, and M. C. Wu, "Parallel single-cell light-induced electroporation and dielectrophoretic manipulation," Lab Chip, vol. 9, pp. 1714 - 1720, 2009.
    [53] Y. H. Lin and G. B. Lee, "An optically induced cell lysis device using dielectrophoresis," Appl. Phys. Lett. , vol. 94, p. 033901, 2009.
    [54] Y. H. Lin and G.-B. Lee, "Optically induced flow cytometry for continuous microparticle counting and sorting," Biosensors and Bioelectronics, vol. 24, pp. 572–578, 2008.
    [55] A. Jamshidi, S. L. Neale, K. Yu, P. J. Pauzauskie, P. J. Schuck, J. K. Valley, H. Y. Hsu, A. T. Ohta, and M. C. Wu, "NanoPen: Dynamic, Low-Power, and Light-Actuated Patterning of Nanoparticles," Nano Lett., vol. 9, pp. 2921–2925, 2009.
    [56] S. Park, C. Pan, T.-H. Wu, C. Kloss, S. Kalim, C. E. Callahan, M. Teitell, and E. P. Y. Chiou, "Floating electrode optoelectronic tweezers: light-driven dielectrophoretic droplet manipulation in electrically insulating oil medium," Applied Physics Letters, vol. 92, pp. 151101-1-3, 2008.
    [57] H. Hwang, Y. Oh, J. J. Kim, W. Choi, J. K. Park, S. H. Kim, and J. Jang, "Reduction of nonspecific surface-particle interactions in optoelectronic tweezers," Applied Physics Letters, vol. 92, p. 3, 2008.
    [58] G. J. Shah, A. T. Ohta, P. Y. Chiou, M. C. Wu, and C.-J. Kim, "EWOD-driven droplet microfluidic device integrated with optoelectronic tweezers as an automated platform for cellular isolation and analysis," Lab Chip, vol. 9, pp. 1732-1739, 2009.
    [59] R. Schwarz, F. Wang, and M. Reissner, "Fermi-Level Dependence Of The Ambipolar Diffusion Length In Amorphous-Silicon Thin-Film Transistors," Applied Physics Letters, vol. 63, pp. 1083-1085, 1993.
    [60] T. Tiedje, C. R. Wronski, B. Abeles, and J. M. Cebulka, "Electron-Transport In
    Hydrogenated Amorphous-Silicon-Drift Mobility And Junction Capacitance," Solar Cells, vol. 2, pp. 301-318, 1980.
    [61] M. J. Madou, Fundamentals of microfabrication. New York: CRC Press, 1997.
    [62] R. A. Street, Hydrogenated Amorphous Silicon. New York: Cambridge University Press, 1991.
    [63] K. Takahashi, M. Konagai, “Amorphous silicon solar cells,” Wiley, 1986
    [64] S. Adachi, “Optical properties of crystalline and amorphous semiconductors: materials and fundamental principles,” Boston: Kluwer Academic Publishers, 1999.
    [65] Y. C. Tan and A. P. Lee, “Microfluidic separation of satellite droplets as the basis of a monodispersed micron and submicron emulsification system,” Lab Chip, vol. 5. Pp. 1178-1183, 2005.
    [66] S. E. Friberg and K. Larsson , “Food emulsions,” Marcel Dekker Inc. USA, 1997.
    [67] T. Hamouda, M. M. Hayes, Z. Cao, R. Tonda, K. Johnson, D. C. Wright, J. Brisker and J. R. Baker, “A novel surfactant nanoemulsion with broad-spectrum sporicidal activity against Bacillus species,” J. Infect. Dis., Vol. 180, pp. 1939-1949, 1999.
    [68] C. Wibowo and K. M. Ng, “Product-Oriented Process Synthesis and Development: Creams and Pastes,” AIChE J., vol. 47, 2746-2767, 2001.
    [69] A. V. Korobko, W. Jesse and J. R. C. van der Maarel, “Encapsulation of DNA by Cationic Diblock Copolymer Vesicles,” Langmuir, vol. 21, pp. 34-42, 2005.
    [70] S. M. Moghimi, A. C. Hunter and J. C. Murray, “Nanomedicine: current status and future prospects,” FASEB J, vol. 19, pp. 311-30, 2005.
    [71] T. Kojima, Y. Takei , M. Ohtsuka, Y. Kawarasaki , T. Yamane and H. Nakano, “PCR amplification from single DNA molecules on magnetic beads in emulsion: application for high-throughput screening of transcription factor targets.” Nucleic Acids Res., vol. 33, e150, 2005.
    [72] S. L. Anna, N. Bontoux and H. A. Stone, “Formation of dispersions using flow focusing in microchannels Appl. Phys. Lett., vol. 82, pp. 364-366, 2003.
    [73] T, Thorsen, R. W. Roberts, F. H. Arnold and S. R. Quake, “Dynamic Pattern Formation in a vesicle-Generating Microfluidic Device,” Phys. Rev. Lett., vol. 86, pp. 4163-6, 2001.
    [74] C. T. Chen and G. B. Lee, “Formation of Microdroplets in Liquids Utilizing Active Pneumatic Choppers on a Microfluidic Chip,” J. Microelectromech. Syst., vol. 15, pp. 1942-1948, 2006.
    [75] Y. C. Tan and A. P. Lee, “Microfluidic separation of satellite droplets as the basis of a monodispersed micron and submicron emulsification system,” Lab Chip, vol. 5, pp. 1178 -1183, 2005.

    [76] X. Zhu, H. Yi, and Z. Ni, “Frequency-dependent behaviors of individual microscopic particles in an optically induced dielectrophoresis device,” Biomicrofluidics, vol. 4, pp. 013202, 2010.
    [77] S. L. Neale SL, A. T. Ohta, H. Y. Hsu, J. K. Valley, A. Jamshidi, and M. C. Wu, “Trap profiles of projector based optoelectronic tweezers (OET) with HeLa cells,” Optics Express, vol. 17, pp. 5232-5239, 2009.
    [78] S. Y. Park, S. Kalim, C. Callahan, M. A. Teitell, and E. P. Y. Chiou, “A light-induced dielectrophoretic droplet manipulation platform,” Lab on a chip, vol. 9, pp. 3228-3235, 2009.
    [79] W. Y. Lin, Y. H. Lin, and G. B. Lee, “Separation of micro-particles utilizing spatial difference of optically induced dielectrophoresis forces,” Microfluidics and Nanofluidics,” vol. 8, 217-229, 2009
    [80] Alda J, “Laser and Gaussian Beam Propagation and Transformation,” Encyclopedia of optical engineering, DOI: 10.1081/E-EOE 120009751, 2003.
    [81] S. H. Hung, Y. H. Lin, and G. B. Lee, “A microfluidic platform for manipulation and separation of oil-in-water emulsion droplets using optically induced dielectrophoresis,” Journal of Micromechanics and Microengineering, vol. 20, 4, 045026, 2010.

    [82] H. Hwang, Y. J. Choi, W. Choi, S. H. Kim, J. Jang, and J. K. Park, “Optoelectronic Manipulation of Microparticles Using Double Photoconductive Layers on a Liquid Crystal Display,” Biochip journal, vol. 1, 4, pp. 234-240, 2007.
    [83] J. Lyklema, Fundamentals of Interface and Colloid Science vol. 2. London, U.K.: Academic, 1991.
    [84] R. B. M. Schasfoort, S. Schlautmann, L. Hendrikse, and A. van den Berg, "Field-effect flow control for microfabricated fluidic networks," Science, vol. 286, pp. 942-945, 1999.
    [85] H. Daiguji, P. D. Yang, and A. Majumdar, "Ion transport in nanofluidic channels," Nano Letters, vol. 4, pp. 137-142, 2004.
    [86] J. P. Urbanski, T. Thorsen, J. A. Levitan, and M. Z. Bazant, "Fast AC electro-osmotic micropumps with nonplanar electrodes," Applied Physics Letters, vol. 89, p. 3, 2006.
    [87] A. Ramos, H. Morgan, N. G. Green, and A. Castellanos, "AC Electrokinetics: a review of forces in microelectrode structures," Journal of Physics D-Applied Physics, vol. 31, pp. 2338-2353, 1998.
    [88] R. Pethig, G. H. Markx, “Applications of dielectrophoresis in biotechnology,”
    TIBTECH, vol. 15, pp. 429-432, 1997.
    [89] O. D. Velev, B. G. Prevo and K. H. Bhatt, “On-chip manipulation of free droplets," Nature, vol. 426, pp. 515-5156, 2003.
    [90] T. P. Hunt, D. Issadore and R. M. Westervelt, ‘Integrated circuit/microfluidic chip to programmably trap and move cells and droplets with dielectrophoresis,” Lab Chip, vol. 8, pp. 81-87, 2004.
    [91] V. Garces-Chavez, K. Dholakia, G. C. Spalding, “Extended-area optically induced organization of microparticles on a surface.” Appl. Phys. Lett. vol. 86, pp. 031106, 2005.
    [92] K. T. Kotz, Y. Gu and G. W. Faris, “Optically Addressed Droplet-Based Protein Assay,” J. Am. Chem. Soc., vol. 127, pp. 5736-7, 2005.
    [93] R. D. Sun, A. Nakajima, A. Fujishima, T. Watanabe, K. Hashimoto, “Photoinduced Surface Wettability Conversion of ZnO and TiO2 Thin Films,” J. Phys. Chem. B., vol. 105, pp. 1984-1990, 2001.
    [94] D. Beyssen, L. L. Brizouala, O. Elmazriaa, P. Alnot, “Microfluidic device based on surface acoustic wave Sens. Actuators B., vol. 118, pp. 380-385, 2006.
    [95] M. G. Pollack, R. B. Fair and A. D. Shenderov, “Electrowetting-based actuation of liquid droplets for microfluidic applications,” Appl. Phys. Lett. vol. 77, pp. 1725–1726, 2000.
    [96] J. Lee, H. Moon, J. Fowler, T. Schoellhammer, C. J. Kim, “Electrowetting and electrowetting-on-dielectric for microscale liquid handling,” Sens. Actuators A. Phys. vol. 95 259–268, 2002.
    [97] S. K. Cho, H. J. Moon and C. J. Kim, “Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits,” J. Microelectromech. Syst., vol. pp. 12 70–1280, 2003.
    [98] P Y. Chiou, H. Moon, H. Toshiyoshi, C. J. Kim, M. C. Wu, “Light actuation of liquid by optoelectrowetting,” Sens. Actuators A, Phys. vol. 104, pp. 222–228, 2003.
    [99] P. Y. Chiou, M. C. Wu, “Droplet Manipulation With Light on Optoelectrowetting Device,” J. Microelectromech. Syst, vol. 17, pp. 133-138, 2008.
    [100] L. C. Zheng, X. X. Zhang and J. C. He, “Drag force of non-Newtonian fluid on a continuous moving surface with strong suction/blowing, Chinese Physics Letter, vol. 20, pp. 858-856, 2003.
    [101] K. H. Kang and D. Li, “Dielectric force and relative motion between two spherical particles in electrophoresis,” Langmuir, vol. 22, pp. 1602-1608, 2006.
    [102] O.D. Velev, K. H. Bhatt, “On-chip micromanipulation and assembly of colloidal particles by electric fields,” Soft Matter, vol. 2, pp. 738-750, 2006.
    [103] G. R. Fowles, Introduction to Modern Optics: Dover, 1989.
    [104] K. Y. Lien, J. L. Lin, C. Y. Liu, H. Y. Lei, and G. B. Lee, “Purification and enrichment of virus samples utilizing magnetic beads on a microfluidic system,” Lab chip, vol. 7, pp. 868-875, 2007.
    [105] D. K. Cheng, “Field and Wave Electromagnetics,” Addison Wesley ed. 1989.
    [106] N. G. Green, A. Ramos, and H. Morgan, “Numerical solution of the dielectrophoretic and travelling wave forces for interdigitated electrode arrays using the finite element method. Journal of Electrostatics,” vol. 56, 2, p. 235-254.2002.
    [107] D. J Griffiths, “Introduction to Electrodynamics,” Prentice Hall ed. 1999.
    [108] T. B. Jones, “Electromechanics of Particles,” Cambridge University Press ed. 1995.

    下載圖示 校內:2014-09-06公開
    校外:2014-09-06公開
    QR CODE