| 研究生: |
駱建利 Lo, Chien-Li |
|---|---|
| 論文名稱: |
降雨導致邊坡破壞與土顆粒流出機制之研究 Study on the mechanism of rainfall-induced slope failure and debris discharge |
| 指導教授: |
黃景川
Huang, Ching-Chuan |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 224 |
| 中文關鍵詞: | 模型試驗 、邊坡破壞 、降雨 、土顆粒流出量 、土壤含水量 |
| 外文關鍵詞: | Model test, slope failure, Soil moisture, Solid discharge, Rainfall |
| 相關次數: | 點閱:97 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為預測降雨導致邊坡產生連續滑動或土石流,本研究先以一底部為剛性不透水的模型砂槽,採用南投北港溪粉土質細砂(統一土壤分類:SM)建立一深0.32m、寬1.35m、高0.7m,坡角與水平呈30°的砂質邊坡,進行一系列的模擬降雨試驗。試驗中量測邊坡內部含水量分佈與土砂流出量,以探討不透水岩盤上之砂質邊坡,在豪雨中邊坡後退式破壞的機制。
研究發現砂質邊坡土壤顆粒的排出主要是坡趾液化後,土壤顆粒被水流帶出的結果,而坡趾液化則是因邊坡內部滲流水沿著土壤和底岩界面流出產生。在本研究中所獲得之土體流失曲線中有一反曲點,此反曲點可代表坡趾從輕微破壞轉變為急劇的後退式破壞。在研究中亦發現當邊坡土粒流出量達到邊坡土粒總固體體積之3%~5%時,且此一發生時間與土岩界面處達到飽和時間有密切關係,因此設置於土-岩交界面之水份計達到飽和之時間,可作為坡趾破壞及後續後退式破壞之早期預警。
在以上試驗過程觀察邊坡破壞的現象後,為進一步由數值分析探討邊坡因降雨滲流導致破壞的機制,繼之進行土壤飽和滲透係數、未飽和土壤剪力強度、土壤水分特性曲線相關試驗與分析,以獲得邊坡降雨數值模擬所需之參數。在由定水頭透水試驗求取土壤飽和滲透係數與孔隙比關係中,發現飽和滲透係數隨孔隙比增加而增大,而飽和滲透係數與孔隙比的平方也約略呈線性關係增加。換言之,土壤愈疏鬆,雨水滲入速度將愈快。而未飽和土壤剪力強度則利用長、寬各為15cm,上下盒深度各為5cm之直剪儀進行不同孔隙比及不同含水量之一系列未飽和土壤直剪試驗,發現未飽和土壤摩擦角φ受孔隙比影響較大,而在相同孔隙比下,土壤摩擦角φ受含水量變化之影響則不明顯。而土壤水分特性曲線則利用砂箱中埋置張力計與水分計,於濕潤及乾燥過程中記錄水分計與張力計讀數之相對關係,繪出試驗用土壤之水分特性曲線,再由水分特性曲線推導土壤之水力傳導函數。本研究在有限元素分析程式SEEP/W中採用上述試驗所得土壤參數,進行砂箱垂直滲流及降雨對邊坡土體內部含水量變化過程之分析,獲得與試驗過程相當吻合之分析結果,對降雨造成邊坡破壞機制理論模式建立良好之發展基礎。
A series of rainfall tests on 0.32 m-deep, 0.7 m–high, 1.35 m–wide sandy slopes resting on an impermeable rigid base inclined at 30° from the horizontal was performed to predict of rainfall-induced flow-slides and / or debris flows. In-soil moisture content and solid discharge measurements were performed to gain insights into the rainfall-induced retrogressive slope failure. The solid (or debris) discharge was a result of the wash-out of the fluidized slope toe by the interflow along the soil-bedrock interface. In this study the mass wasting curves have inflection points representing transitions from minor toe failures into remarkable retrogressive failures. At the first inflection point of the Qs vs. t curve and 5% of total solid volume discharge, values of Sr at a certain distance from the toe for the soil-bedrock interface were higher than those measured at the same distance from the toe for the 0.2 m-below-surface zone, indicating the effect of infiltration-induced interflow along the soil-bedrock interface and its effect on the fluidization of the slope toe and the retrogressive failure of the slope.
Observe the slope failure in the above process of the test, discuss the mechanism of slope failure of rainfall-induced further, this study carried on the saturated permeability coefficient, the shear strength of unsaturated soil, soil-water characteristic curves correlated with testing and analyzing. To obtain the relationship between the saturated permeability coefficient and void ratio from the constant head permeability test, gained if the void ratio is increased, the saturated permeability coefficient is also increased. In the same void ratio, the angle of internal friction varied is unapparent for various water content.
This study used these soil parameters while being above-mentioned to apply with SEEP/W program by procedure, it obtain to be quite identical simulation result with process of the test, this is a basis of distinction for analysing slope seepage and slope stability future.
1.Abramson,L.W. and Lee, T.S. and Boyce, G.M.and Sharma,S.S.(1995),“Slope stability and stabilization methods”,John Wiley & Sons Inc. New York.
2.Aleotti, P.(2004)“A warning system for rainfall-induced shallow failures” Engineering Geology, Vol. 73,pp.247-265.
3.Anderson, S.A. and Sitar, N.(1995)“A analysis of rainfall-induced debris flows”J.Geotechnical Engineering, ASCE, Vol.121, No.7, pp.544-552.
4.Arya,L.M.and Paris,J.F.(1981)“A Physicoempirical Model to Predict the Soil Moisture Characteristic From Particle-Size Distribution and Bulk Density Data”, Soil Science Society America Journal, Vol.45, pp.1023-1030.
5.Bear,J.(1979),Groundwater Hydraulics. McGraw-Hill,New York.
6.Berti,M.,Genevois, R., Simoni,A.,Tecca,P.R.(1999),“Field observation of debris flow event in the Dolomites”,Geomorphology, Vol.29, pp265~274.
7.Bishop R. H.(2004),“Learning with Labview 7 Express” ,National Instruments.
8.Brand, E.W.,(1982),“Analysis and Design in Residual Soils”,Proceedings of the ASCE Geotechnical Engineering Division Specialty Conference Engineering and Construction in tropical and Residual Soils, Honolilu,Hawaii, pp.89-143,January 11-15.
9.Cascini, L., Cuomo, S. and Guida, D.(2008)“Typical source areas of May 1998 flow-like mass movements in the Campania region, Southern Italy” Engineering Geology, Vol.96,pp.107-125.
10.Collins, B.D., Znidaric, D.(2004),“Stability Analyses of Rainfall Induced Landslides”,Journal of Geotechnical and Geoenvironmental Engineering,ASCE, pp.362~372.
11.Croney, D., Coleman, J. D. (1948),“Soil Thermodynamics Applied to the Movement of Moisure in Road Foundations”,Proc. 7th Int. Cong. Appl.Mech.,Vol.3,pp. 163-177.
12.Dai, F., Lee, C. F. and Wang S.(1999),“Analysis of rainstorm-induced sli- de-debris flows on natoural terrain of Lantau Island,Hong Kong”,Engineering Geology,Vol.51, pp.279~290.
13.Eckersley, J.D.,(1990),“Instrumented laboratory flow slides.”,Geotechique 40,No.3,pp.489~502.
14.Fredlund, D.G., and Rahardjo, H. (1993), “Soil Mechanics for Unsaturated Soils”, John Wiley, New York.
15.Fredlund, D.G., and Xing, A. and Huang, S.(1994)”Predicting the Permeability Function for Unsaturated Soils Using the Soil-Water Characteristic Curve”, Canadian Geotechnical Journal, Vol.31,pp.533-546
16.Fredlund, D.G., and Xing, A.,(1994)”Equations for the Soil-Water Characteristic Curve”, Canadian Geotechnical Journal, Vol.31,pp.521-532
17.Fredlund, D.G., Morgenstern, N. R., (1977), “Stress state variables for unsaturated soils” , Journal of the Geotechnical Engineering Division, ASCE,103, pp. 447-466.
18.Fredlund, D.G., Morgenstern, N. R., and Widger, R. A. (1978),“The Shear Strength of Unsaturated Soils” , Canadian Geotechnical Journal, Vol. 15, No. 3, pp. 313-321.
19.Green, R.E. and Corey, J.C.(1971)“Calculation of Hydraulic Conductivity : A Further Evaluation of Some Predictive Methods”, Soil Science Society America Proceedings, Vol.35,pp.3-8.
20.Huang, C.C., Ju, Y.J., Lee, J.L., Hwu, L.K.(2009)“Internal soil moisture and piezometric response to rainfall-induced shallow slope failures” , Journal of Hydrology,(available online, 2009, DOI:10.1016 /j.jhydrol.2009.02.051).
21.Huang, C.C., Lo, C.L., Jang, J.S., Hwu, L.K.(2008)“Internal soil moisture response to rainfall-induced slope failures and debris discharge”,Engineering Geology, Vol. 101,pp.134-145.
22.Jeong, S., Kim, J. and Lee, K.(2008)“Effect of clay content on well-graded sands due to infiltration” Engineering Geology, Vol. 102,pp.74-81.
23.Johnson, K.A., and Sitar, N.(1987)“DebrisFlow Initiation; An Investigation of Mechanisms ” Department of Civil Engineering Report No.UCB/GT/87-02, University of California , Berkeley, California.
24.Kiersch, G.A.,(1998)“Engineering geosciences and military operations” Engineering Geology, Vol. 49,pp.123-176.
25.Kim, J., Jeong, S., Park, S. and Sharma J.(2004)“Influence of rainfall-induced wetting on the stability of slopes in weathered soils” Engineering Geology, Vol. 75,pp.251-262.
26.Krahn, and Fredlund, D. G. (1992). “On Total Matric and Osmotic Suction,” J. Soil Sci., Vol. 114, No. 5, pp. 339-348.
27.Kunze, R. J., Uehara, G., and Graham, K. (1968). “Factors important in the calculation of hydraulic conductivity.” Soil Science Society of America, Proceedings, Vol. 32, pp. 760-765.
28.Lavigne, F. and Suwa, H.(2004)“Contrasts between debris flows,hyperconcentrated flows and stream flows at a channel of Mount Semeru, East Java, Indonesia”Geomorphology, Vol.61,pp.41-58.
29.Loureno, S. D.N., Sassa, K., Fukuoka, H.(2005), “Failure process and hydrologic response of a two layer physical model:Implications for rainfall-induced landslides” ,Geomorphology Vol.73 , pp.115~130.
30.Lumb, P.B.,(1975), “Slope failures in Hong Kong” ,Q.J. Engineering Geologist Vol.8 , pp.31~65.
31.Major, J.J., Iverson, R.M.(1999), “Debris-flow deposition : Effects of pro-fluid pressure and friction concentrated at flow margins” ,GSA Bulletin;October 1999;Vol 111;no. 10;pp.1424~1434.
32.Marshall, T. J. (1958). “A relation between permeability and size distribution of pores.” Journal of Soil Science, Vol. 9, pp. 1-8.
33.McDonnell, J.J.(1990), “The influence of macropores on debris flow initiation”, Quarterly Journal of Engineering Geology, Vol.32, pp.325~331.
34.Millington, R. J. and Quirk, J. P. (1961). “Permeability of porous solids.”Faraday Soc. Trans., Vol. 57,pp.1200-1206.
35.Mohamed Lamara and Zohra Derriche (2008), “Prediction of Unsaturated Hydraulic Properties of Dune Sand on Drying and wetting Paths”,EJGE vol.13 Bund.B
36.Nishigaki,M.,Tohari,A.and Komatsu,M.(1999), “Predicting rainfall-induced slope failures from moisture content measurement”, Proceedings of International Symposium on Slope Stability Engineering,Matsuyama , Shikoku ,Japan , Yagi, N., Yamagami, T. and Jiang, J-C.(eds.), Balkema,Rotterdam, Vol. 1,pp.465-470.
37.Okura, Y., Kitahara, H., Ochiai, H., Sammori, T., Kawanami A.(2002), “Landslide fluidization process by flume experiments ” ,Engineering Geology, Vol.66(2002),pp.65~78.
38.Orense, R.P., Farooq, K., Towhata, I.(2004), “Deformation Behavior of sandy slopes during rainwater infiltration” ,Soils and Foundations,Vol.44,No.2,pp.15-30.
39.Pierson, T. C.(1983), “Soil pipes and slope stability”, Quarterly Journal of Engineering Geology,Vol.16,pp1~11.
40.Rahardjo, H., Hritzuk,K.J., Leong, E.C., and Rezaur, R.B.(2003)“Effectiveness of horizontal drains for slope stability” Engineering Geology, Vol. 69,pp.295-308.
41.Tohari, A., Nishigaki, M., Komatsu, M.(1999), “Laboratory experiments on initiation of rainfall-induced slope failure with moisture content measurements” , GeoEng2000(CD), EG0543.PDF, 2000.11.
42.van Genuchten, M.T.(1980)“A Closed-Form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils”, Soil Science Society America Journal, Vol.44,pp.892-898.
43.Wang, G., Sassa, K.(2002), “Proe-pressure and movement of rainfall-induced landslides: effects of grain size and fine-particle content” ,Engineering Geology,Vol.69(2003),pp.109~125.
44.Wang, G., Sassa, K., Fukuoka, H.,(2002), “Downslope volume enlargement of a debris slide-debris flow in the 1999 Hiroshima, Japan, rainstorm” , Engineering Geology,Vol.69,pp.309~330.
45.朱奕璋(2005),“土石流源頭崩塌之大型試驗與分析”,碩士論文,國立暨南國際大學地震與防災工程研究所。
46.張家熏(2006),“探討淺層崩塌機制之大型試驗”,碩士論文,國立暨南大學地震與防災工程研究所。
47.雲世傑(2007),“探討豪雨中邊坡破壞發展過程之模型試驗”,碩士論文,國立暨南大學地震與防災工程研究所。
48.詹錢登(2000),“土石流概論”,科技圖書股份有限公司。
49.鄭瑞昌、江永哲(1986),土石流發生特性之初步研究,中華水土保持學報 17(2),pp.50~69。
50.駱建利、張家熏、黃景川(2007),“降雨對砂土邊坡穩定性之探討”,第十二屆大地工程學術研討會,A2-09。
51.藍少村(2008),“降雨導致淺層邊坡破壞之模型試驗與分析”,碩士論文,國立成功大學土木工程研究所。