簡易檢索 / 詳目顯示

研究生: 施育仁
Shih, Yu-Jen
論文名稱: 以水熱法製備具膨潤性奈米雲母及其有機插層之研究
Swelling and organo-intercalation of hydrothermally Li-treated sericite
指導教授: 申永輝
Shen, Yun-Hwei
學位類別: 博士
Doctor
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 169
中文關鍵詞: 陽離子交換容量混層構造雲母礦物水熱法界面活性劑
外文關鍵詞: hydrothermal reaction, cationic surfactants, mica, cation exchange capacity, mixed-layer clay
相關次數: 點閱:104下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以開發雲母礦物膨潤特性的初衷,將內容概分兩大方向,一是採用水熱法之高溫高壓環境進行絹雲母膨潤改質實驗,二是藉陽離子型界面活性劑以離子交換機制吸附插層膨潤雲母,證明其層內空間以有機改性且擴張之能力,作為高電荷雲母跨進奈米領域的前驅。
    在以添加高濃度硝酸鋰進行水熱反應改質絹雲母之研究結果發現,預先脫結晶水可大幅提升水熱反應使層間含鉀轉化成含鋰膨潤程度,以反應溫度170 ℃持溫48小時,K+置換達50 %以上,陽離子交換容量(CEC)從原始3~5 meq/100 g提升至70 meq/100 g,並隨升高反應溫度至270 ℃或增加反應次數,使產品CEC值最終接近原礦電荷理論值120 meq/100 g。熱分析及紅外光光譜(FT-IR)證明改質雲母層間含水現象,並且脫結晶水扭曲結構得以恢復,然原礦中葉蠟石不受水熱反應影響。X光粉末繞射(XRD)顯示晶面間距從原始含K層10 膨脹為含Li層12 ,另外在低角度出現22 及其次階11 晶面是雲母過渡到飽和含Li+相前所形成K、Li層交疊之混層構造。元素分析顯示經水熱反應後層間含K+、Li+總量未明顯改變,並有正比於改質程度的Li+進入結構,此證實雲母能在維持其高電荷量同時達到含水膨潤,並且結構中含Li+模型為取代結晶水之H+的-OLi。
    在以陽離子型界面活性劑插層具膨潤性雲母之研究結果顯示,TMA、DP與CTA等三種界劑對雲母吸附量隨分子量依序增加,晶面間距從改質飽和Li+層之12 分別擴張為含界劑層之13.7 、25.7 與35 。而混層樣品晶面則呈現以含K層與含界劑層相互疊合之形式。FT-IR分析界劑分子以相當1倍CEC值之劑量為分界,變換層間極性環境及DP與CTA碳鏈捲曲/伸張(gauche/trans)之相轉換,並在呈伸張狀態(all-trans) 時以約60°傾角支架層內空間。在電子顯微鏡觀察下,膨潤雲母之飽和Li+相與混層相分別以原始厚度約1 nm矽酸鹽層以及夾非膨潤含K+層約2 nm單位層進行晶面拓展。

    The objective of this study is to explore the swelling capability of mica. Modified mica has been prepared by a two-step process. The first step is mica sheet alteration, which allows interlayer K+ were replaced by hydrated Li+ under hydrothermal-assisted conditions. The second step is the intercalation of cationic surfactants into interlayer space of Li-mica.
    In the study of mica alteration, the thermal-dehydroxylation of mica prior to hydrothermal-Li-treatment leads to a higher exchangeability of interlayer K+ of modified mica. About 50 % of interlayer K+ were removed rapidly in a hydrothermal Li+ solution at 170 ℃ after 48 hours. The CEC value of modified mica increases from 3~5 meq/100 g to 70 meq/100 g. When repeating the hydrothermal-Li-treatment or increasing the reaction temperature to 270 ℃, the CEC value of modified mica increased to the theoretical charge of mica sample, i.e. 120 meq/100 g. Results of thermal and FT-IR analysis suggested the structure distortion of mica caused by dehydroxylation was reconstructed after hydrothermal-Li-treatment. The d-spacing of modified mica obtained by XRD indicated the formation of a mixed-layer 22  phase as mica transited from the K-layer of 10  spacing to the Li-layer of fully hydrated 12  spacing. The invariance of total amounts of interlayer charges before and after hydrothermal-Li-treatment implied that the mica’s high layer charge has not been changed. In addition it is found that a trace amount of Li+ diffused into mica’s lattice and substituted the hydroxyl H+ by transforming into –OLi.
    In the study of organo-intercalation, XRD results revealed that the d-spacing of fully modified mica expanded to 13.7 , 25.7 , and 37  after intercalated with TMA, DP, and CTA, respectively. For the mica with mixed-layer phase a large increase in d-spacing was obtained after intercalated with surfactants. Presumbly the formation of superstructure of unexpanded K-layer and organo-layer caused this artifical expansion. The configuration and aggregation state of intercalated surfactants were monitored by FT-IR analysis using frequency shifts in CH2 stretching and scissoring vibrations. Conformations of the alkyl chains of intercalated surfactant transferred from “gauche” to “trans” state at a surfactant loading of 1.0 CEC equivalence, and hydrophilic state of interlayer inversed simultaneously. The paraffin-like arrangement of intercalated surfactant with the chains tilted an average angle of 60° with respect the surface was found at satuated loading of surfactant. TEM micrographs demonstrated that after intercalation mica sheets were delaminated to single-layers with thickness of 1 nm for fully hydrated mica, and 2 nm for mica containing mixed-layer phase.

    總目錄 摘要 I Abstract II 總目錄 III 表目錄 VI 圖目錄 VII 1-1 研究背景 1 1-2 研究動機 7 1-3 研究目的 8 第二章 理論基礎 9 2-1 層狀矽酸鹽礦物(Phyllosilicates) 9 2-1-1 以結構組成份定義與分類 9 2-1-2 雲母多型體構造(Polytypism in micas) 15 2-1-3 黏土礦物離子交換行為(Cation Exchange Capacity, CEC) 16 2-1-4 雲母改質之候選陽離子 17 2-1-5 黏土-水界面化學模型 18 2-2 黏土礦物之脫結晶水行為(Dehydroxylation) 21 2-2-1 八面體層Al-OH bonding 21 2-2-2 四面體層Si-O bonding 22 2-3 黏土構造之紅外光光譜分析(IR Spectra) 26 2-3-1 晶格振動(Lattice Vibrations) 26 2-3-2 結晶水伸縮振動(Hydroxyl Vibrations) 27 第三章 水熱法製備具膨潤性雲母微粒 31 3-1 實驗方法與步驟 31 3-1-1 實驗材料 31 3-1-2 實驗架構流程 31 3-1-3 實驗步驟 31 1. 樣品處理: 31 2. 脫結晶水熱處理: 32 3. 水熱反應實驗: 32 3-1-4 性質分析 32 1. 元素分析及鉀離子置換量 32 2. 陽離子交換容量(Cation Exchange Capacity, CEC) 33 3. 水熱產物鑑定及結構分析(XRD) 33 4. 紅外光光譜分析(IR specta) 33 5. 熱差/熱重分析(DTA/TG) 33 6. 微觀影像分析 33 3-2 結果與討論 36 3-2-1 絹雲母含結晶水之探討 36 1. 熱重熱差分析(TG/DTA) 36 2. X光粉末繞射分析(XRD) 37 3. 紅外光光譜分析(IR Spectra) 37 3-2-2 絹雲母添加硝酸鋰(LiNO3)之水熱反應 45 1. 不同熱處理溫度預脫結晶水之影響 45 2. 黏土混層概念(Mixed-layer clays) 46 3. K釋出效率與陽離子交換能力 46 4. 水熱改質後雲母中K+及Li+含量變化 48 5. 改質雲母含水膨潤及晶格結構重整 49 6. 水熱溶液固含量與Li濃度之影響 58 7. 水熱反應溫度之影響 58 8. 水熱反應持續時間之影響 60 3-2-3 雲母風化(Mica Weathering)與鉀離子抑制行為 73 1. 於水熱反應時添加NaTPB之效果 74 2. 增加水熱次數之效果 75 3. 白雲母水熱改質實驗 76 3-2-4 雲母層間含水對其矽氧層Si-O鍵結的影響 83 3-2-5 水熱反應後雲母含晶格Li離子之行為 83 3-2-6 改質雲母之熱分析 90 3-2-7 絹雲母水熱反應前後之化學成分變化 90 3-2-8絹雲母水熱反應前後之微觀影像 91 3-2-9 絹雲母之純化 97 1. 原礦之沉降分級 97 2. 水熱改質樣品之沉降分級 100 3-3 結論 106 第四章 以陽離子界面活性劑插層製備有機雲母 108 4-1 實驗方法與步驟 108 4-1-1 實驗材料 108 1. 經水熱改質雲母樣品 108 2. 陽離子型界面活性劑: TMA, DP, CTAB 108 4-1-2 實驗流程 108 4-1-3 實驗步驟 109 4-1-4 性質分析 109 1. 有機插層雲母之界劑吸附量 109 2. 微觀影像分析 109 4-2 結果與討論 113 4-2-1 膨潤雲母對陽離子界劑之吸附行為 113 4-2-2 膨潤雲母插層實驗 114 1. TMA (Tetramethylammonium, 四甲基銨) 114 2. DP (Dodecylpyridinium, 十二烷基啶) 115 3. CTA (Cetyltrimethylammonium, 十六烷基三甲基銨) 116 4-2-3 長碳鏈界劑分子於雲母層間之形態 127 4-2-4 紅外光光譜分析(IR spectra) 130 1. C-H彎曲振動波段(δ-band)區域(1380-1500 cm-1) 130 2. C-H伸縮振動波段(ν-band)區域(2800-3050 cm-1) 131 3. 界劑碳鏈於雲母層間之構造(Trans- vs. Gauche-conformers) 132 4. 經界劑插層雲母之結晶水(~3630 cm-1) 133 5. 經界劑插層雲母之層間水狀態(1640, 3300~3500 cm-1) 133 4-2-5 改質雲母有機插層之微觀影像 144 1. SEM電子顯微分析 144 2. TEM 電子顯微分析 144 4-3結論 153 總結論 154 未來研究建議 155 References 156 表目錄 Table 1.1. Applied sciences of intercalated clays. 5 Table 1.2. The various preparation methods of swelling micas. 6 Table 2.1. Classification of phyllosilicates related to clay minerals. 14 Table 2.2. Hydration enthalpies and Misono softness parameters for metal cations in aqueous solutions. 20 Table 3.1. Assignments of structural infrared vibrations (cm-1) before and after dehydroxylation. 44 Table 3.2. Assignments of structural infrared vibrations (cm-1) of hydrothermally treated sericite. 57 Table 3.3. Chemical composition of original and hydrothermally treated sericite. 94 Table 3.4. Mass and K+ distribution of various hydrodynamically classified original ore. 99 Table 3.5. Mass, CEC, and Li-K content distribution for hydrodynamically classified (±2 µm) sericite. 104 Table 4.1. Properties of altered micas used for organo-intercalation. 110 Table 4.2. Properties of organic cations. 110 Table 4.3. Band positions and assignments for cationic sufactants. 141 圖目錄 Fig. 1.1. Conceptual scheme of Nylon 6-clay hybrid. 2 Fig. 2.1. (a) Single silica tetrahedron and (b) sheet structure of silica tetrahedrons in a hexagonal network. 12 Fig. 2.2. (a) Single octahedral unit and (b) the sheet structure of the octahedral units. 12 Fig. 2.3. Sheet structure of 1:1 type kaolinite. 12 Fig. 2.4. Sheet structure of 2:1 type muscovite. 13 Fig. 2.5. Distance between the planes of atom centers in mica structure. 15 Fig. 2.6. (a) Definition of OI and OII sites of octahedral cation above a tetrahedral net relative to a fixed set of hexagonal axes for a 2:1 layer. (b) Six possible directions of interlayer shift when octahedral cation OI and OII sites are occupied. (c) Three possible stacking polytypes in micas. 19 Fig. 2.7. Models of inner- and outer-sphere surface complexes of interlayer cations. 20 Fig. 2.8. Dioctahdedral sheet structure of mica projected on (001) (a) before and (b) after dehydroxylation. 24 Fig. 2.9. A section of single ditrigonal ring formed by TO4 polyhedra perpendicular to the z direction. Apical oxygen atoms, labeled O(1) and O(2) are part of T(1) and T(2) respectively and those labeled O(4), O(5) and O(6) are basal oxygen atoms. O(3) is the part of hydroxyl groups. 25 Fig. 2.10. Typical infrared diagram of clay minerals. 29 Fig. 2.11. Vibrations of the ideal hexagonal Si2O5 layer. 29 Fig. 2.12. IR spectra of sericite ore (symbol P: pyrophyllite phase), muscovite and pyrophyllite. 30 Fig. 2.13. Orientation of structural hydroxyls in (a): trioctahedral and (b): dioctahedral layer silicates. 30 Fig. 3.1. XRD patterns of natural (a) sericite ore, (b) muscovite and (c) pyrophyllite. 34 Fig. 3.2. Flow sheet of hydrothermally treated sericite. 35 Fig. 3.3. TG/DTA curves of sericite ore. 39 Fig. 3.4. DTA/TG curves of muscovite. 39 Fig. 3.5. Al polyhedron in dioctahedral sheet of a partially dehydroxylated muscovite. 40 Fig. 3.6. XRD patterns of sericite ore heated at various temperature (symbol S* and P* are dehydroxylate sericite and pyrophyllite phase, respectively). 41 Fig. 3.7. IR spectra of sericite ore heated at various temperature. 42 Fig. 3.8. IR spectra of muscovite (after ball milling 18h) and pyrophyllite before and after dehydroxylation. 43 Fig. 3.9. Effect of dehydroxylation temperature on the XRD patterns of Li-hydrothermally treated sericite. 52 Fig. 3.10. Schemes of (a) K+ occupied interlayer, (b) Li+ occupied interlayer, (c) K+ and Li+ homogeneously mixed in interlayer, and (d) regular K+-Li+ mixed-layer superstructure. 54 Fig. 3.11. (a) Exchangeability of K+, CEC values, and (b) K-Li contents of hydrothermally treated sericite as a function of dehydroxylation temperature. 54 Fig. 3.12. Possible positions of diffused Li+ into dioctahedral structure upon heating. 55 Fig. 3.13. IR spectra of hydrothermally treated sericite: effect of dehydroxylation temperature. 56 Fig. 3.14. IR spectra of Li-SAz montmorillonite: (A) OH, H2O stretching and (B) H2O bending regions. From the top to bottom: spectra of unheated sample, and the samples heated for 5, 10, 15, 20, 60 min at 50 ℃... 57 Fig. 3.15. Effect of solid loading on (a) XRD, (b) K-exchangeability, and CEC values of hydrothermally treated sericite. 61 Fig. 3.16. Effect of Li-concentration on (a) XRD, (b) K-exchangeability, and CEC values of hydrothermally treated sericite. 62 Fig. 3.17. Effect of solid loading on the IR spectra of hydrothermally treated sericite. 63 Fig. 3.18. Effect of Li-concentration on the IR spectra of hydrothermally treated sericite. 64 Fig. 3.19. Effect of hydrothermal temperature on the XRD patterns of hydrothermally treated sericite (without dehydroxylation). 65 Fig. 3.20. Effect of hydrothermal temperature on the XRD patterns of hydrothermally treated sericite (with dehydroxylation). 66 Fig. 3.21. (a) Exchangeability of potassium, CEC values, and K-Li contents of specimens Li-treated (15 M for 48 h) from (b) original and (c) dehydroxylated sericite at 90~270 ℃. 67 Fig. 3.22. Effect of hydrothermal temperature on the IR spectra of hydrothermally treated sericite (without dehydroxylation). 68 Fig. 3.23. Effect of hydrothermal temperature on the IR spectra of hydrothermally treated sericite (with dehydroxylation). 69 Fig. 3.24. Effect of hydrothermal duration on the XRD pattern of hydrothermally treated sericite (with dehydroxylation). 70 Fig. 3.25. (a) Exchangeability of potassium, CEC values, and (b) K-Li contents of 800 ℃ preheat sericite after Li-treatment (15 M at 170 ℃) for various duration of hydrothermal heating. 71 Fig. 3.26. Effect of hydrothermal duration on the IR spectra of hydrothermally treated sericite (with dehydroxylation). 72 Fig. 3.27. Formation of mixed-layer phyllosilicates as the weathering front is proceeding around the edge of the particle. 76 Fig. 3.28. (a) 50:50 regularly interstratified clay caused by layer weathering; (b) frayed edge or edge weathering. 77 Fig. 3.29. Potassium displacement by Na+ (1 M NaCl) from several K+-bearing silicates as a function of the solution concentration of K+. 77 Fig. 3.30. (a) XRD, (b) K-exchangeability, and CEC values of dehydroxylated sericite after hydrothermal treatment with various amounts of NaTPB addition. 78 Fig. 3.31. Effects of reaction time on (a) XRD, (b) K-exchangeability, and CEC values of hydrothermal treated sericite with 0.05 N NaTPB. 79 Fig. 3.32. Effects of repeating hydrothermal treatment on the XRD patterns of modified sericite. 80 Fig. 3.33. (a) Exchangeability of potassium, CEC values, and (b) K-Li contents of dehydroxylated sericite after repeating hydrothermal treatment. 81 Fig. 3.34. XRD patterns of original and dehydroxylate muscovite after hydrothermal treatment. 82 Fig. 3.35. Effects of repeating hydrothermal treatment on the IR spectra of sericite. 88 Fig. 3.36. IR spectra of original and dehydroxylate muscovite before and after hydrothermal treatment. 87 Fig. 3.37. The correlation between CEC values and structural Li+ content for different hydrothermally treated sericite samples. 88 Fig. 3.38. (a) XRD patterns and (b) CEC values of hydrothermally treated sericite reheated at various temperature. 89 Fig. 3.39. TGA and DTA results of hydrothermally treated sericite. 92 Fig. 3.40. TGA and DTA results of hydrothermally treated muscovite. 93 Fig. 3.41. SEM micrographs of (a) sericite ore, (b) S800HT, and (c) S800HT4. 95 Fig. 3.42. SEM micrographs of (a) wet-ground muscovite and (b) M800HT4. 96 Fig. 3.43. XRD patterns of various hydrodynamically classified sericite. 98 Fig. 3.44. The particle size distribution of original ore and pure sericite. 99 Fig. 3.45. Imagine of bottom sediment after centrifuging. 100 Fig. 3.46. XRD patterns of hydrodynamically classified sericite: (a) S800HT, (b) S800HT4. 103 Fig. 3.47. IR spectra of hydrodynamically classified sericite and dehydroxylated pyrophylllite. 104 Fig. 3.48. SEM micrographs of hydrodynamically classified sericite: (a) -2µm, and (b) +2µm fraction of S800HT4 (symbol S: sericite; P: pyrophyllite). 105 Fig. 4.1. The molecular comformation and stereoview of crystal structure of (a) TMA, (b) DP, and (c) CTA. 111 Fig. 4.2. Flow sheet for experiments of intercalating cationic surfactant into mica. 112 Fig. 4.3. Sorption isotherms of TMA, DP, and CTA on M800HT. 118 Fig. 4.4. Comparison of inter-chain spacing between of DP and CTA in mica. 118 Fig. 4.5. XRD patterns of (a) TMA, (b) DP, and (c) CTA intercalated M800HT at different surfactant loading. 119 Fig. 4.6. XRD patterns of TMA intercalated (a) S800HT (m: mixed layer), (b) S800HT4, (c) S800HT4-2µm, and (d) M800HT4. 120 Fig. 4.7. XRD patterns of DP intercalated (a) S800HT (m: mixed layer), (b) S800HT4, (c) S800HT4-2µm, and (d) M800HT4. 122 Fig. 4.8. XRD patterns of CTA intercalated (a) S800HT (m: mixed layer), (b) S800HT4, (c) S800HT4-2µm, and (d) M800HT4. 124 Fig. 4.9. XRD patterns of TMA, DP, and CTA adsorbed sericite and muscovite. 126 Fig. 4.10. Configuration of TMA pillars in mica, viewed along the [110] direction. 126 Fig. 4.11. Alkylammonium complexes formed by expansion of expendable micas with organic cations: (a) monolayer, (b) bilayer, (c) pseudotrimolecular layer, and (d) paraffin. 129 Fig. 4.12. IR spectra of TMA-intercalated micas 135 Fig. 4.13. IR spectra of DP-intercalated micas. 136 Fig. 4.14. IR spectra of CTA-intercalated micas. 137 Fig. 4.15. IR spectra of M800HT intercalated with various amounts of TMA. 138 Fig. 4.16. IR spectra of M800HT intercalated with various amounts of DP. 139 Fig. 4.17. IR spectra of M800HT intercalated with various amounts of CTA. 140 Fig. 4.18. IR spectra of original sericite ore and muscovite adsorbed with TMA, DP, and CTA molecules. 142 Fig. 4.19. CH2-stretching vibration region of (a) DP and (b) CTA molecules adsorbed onto outer-surfaces of muscovite and sericite. 142 Fig. 4.20. Different states of interlayer water in cationic surfactants intercalated mica. 143 Fig. 4.21. SEM micrographs of (a) S800HT, (b) S800HT4, (c) S800HT4-2µm, and (d) M800HT4 intercalated with TMA. 146 Fig. 4.22. SEM micrographs of (a) S800HT, (b) S800HT4, (c) S800HT4-2µm, and (d) M800HT4 intercalated with DP. 147 Fig. 4.23. SEM micrographs of (a) S800HT, (b) S800HT4, (c) S800HT4-2µm, and (d) M800HT4 intercalated with CTA. 148 Fig. 4.24. TEM micrographs of (a) M800HT and (b) M800HT4. 151 Fig. 4.25. TEM micrographs of M800HT intercalated with CTA. 150 Fig. 4.26. TEM micrographs of M800HT4 intercalated with CTA. 151 Fig. 4.27. Illustration of the arrangement of intercalated long chain molecules in the interlayer space of (a) mixed layer S800HT and M800HT; (b) fully expanded S800HT4, S800HT4-2µm and M800HT4. 152

    王明光,2000,「土壤環境化學」,藝軒圖書出版社。
    王明光,江博能,2003,「以同構異素取代來分類黏土礦物」,經濟部中央地質調查所彙刊 16,141-157。
    王曄,陳豐斌,黎彥成,吳愷之,2003,「聚丙烯與有機黏土奈米複合之混煉加工研究」,化工 50(1),83-89。
    林曉洪,賴仁堯,王秀華,2005,「奈米化塗料級絹雲母顏料研磨之探討」,中華林學季刊 39(2),93-102。
    林曉洪,賴仁堯,王秀華,2006,「奈米級絹雲母顏料在輕量塗布紙之應用」,中華林學季刊 39(3),389-407。
    洪崑煌,1996,「土壤化學」,國立編譯館,34-38。
    陳忠吾,2003,「奈米黏土/塑膠複材最新研發與應用現況」,塑膠資訊 82,17-24。
    曹祥恩,2003,「聚合物系納米複合材料的開發」,高分子工業 108,63-70。
    經濟部礦業司,1995,「台灣地區雲母之利用需求與流向調查」,台灣礦業 47(4),39-55。
    趙杏媛,張友瑜,1990,「黏土礦物與黏土礦物分析」,海洋出版社。
    劉時州,2008,「傳統複材產業新契機-奈米複合材料之概況」,工業材料雜誌 259,184-192。
    蔡宗燕,1998,「奈米材料-奈米級無機材料的發展與應用」,化工資訊 12(2),28-42。
    蔡敏行,廖學誠,1989,「台東向陽地區絹雲母、葉蠟石之選礦程序與經濟評估之研究」,行政院國家科學委員會專題研究報告,NSC75-0405-E006-021。
    Adams, J.M., Ballantine, J.A., Graham, H., Laub, R.J., Purnell, J.H., Reid, P.I., Shaman, W.Y.M., and Thomas, J.M., 1979, “Selective chemical conversions using sheet silicate intercalates: low-temperature addition of water to 1-alkenes”, Journal of Catalysis 58, 238-252.
    Ahn, J.H., and Peacor, D.R., 1986, “Transmission electron microscope data for rectorite: Implications for the origin and structure of fundamental particles”, Clays and Clay Minerals 34(2), 180-186.
    Ahn, J.H., and Peacor, D.R., 1989, “Illite/smectite from gulf shales: A reappraisal of transmission electron microscope images”, Clays and Clay Minerals 37(6), 542-546.
    Aines, R.D., and Rossman, G.R., 1985, “The high temperature behavior of trace hydrous components in silicate minerals”, American Mineralogist 70, 1169-1179.
    Atkins, P.W., 1998, “Physical Chemistry”, Oxford University Press, the Sixth Edition, 930.
    Alba, M.D., Alvero, R., Becerro, A.I., Castro, M.A., and Trillo, J.M., 1998, “Chemical behavior of lithium ions in reexpanded Li-montmorillonites”, Journal of Physical Chemistry B 102, 2207-2213.
    Alvero, R., Alba, M.D., Castro, M.A., and Trillo, J.M., 1994, “Reversible migration of lithium in montmorillonite”, The Journal of Physical Chemistry 98, 7848-7853.
    Bailey, S.W., 1984, “Classification and structures of the micas”, Reviews in Mineralogy 13, 1-12.
    Baksh, M.S.A., and Yang, R.T., 1992, “Unique adsorption properties and potential energy profiles of microporous pillared clays”, American Institute of Chemical Engineerings Journal 38, 1357-1368.
    Ballantine, J.A., and Purnell, J.H., 1984, “Sheet silicates: broad spectrum catalysts from organic synthesis”, Journal of Molecular Catalysis 27, 157-167.
    Barron, P.F., and Frost, R.L., 1984, “Solid-state 29Si and 27Al nuclear magnetic resonance investigation of the dehydroxylation of pyrophyllite”, Journal of Physical Chemistry 88, 6206-6209.
    Beran, A., 2002, “Infrared spectroscopy of Micas”, Reviews in Mineralogy and Geochemistry 46, 351-369.
    Besson, G., and Drits, V.A., 1997a, “Refined relationship between chemical composition of dioctahedral fine-grained micaceous minerals and their infrared spectra within the OH stretching region. Part I: identification of the OH stretching bands”, Clays and Clay Minerals 45(2), 158-169.
    Besson, G., and Drits, V.A., 1997b, “Refined relationship between chemical composition of dioctahedral fine-grained micaceous minerals and their infrared spectra within the OH stretching region. Part II: the main factors affecting OH vibrations and quantitative analysis”, Clays and Clay Minerals 45(2), 170-183.
    Bishop, J.L. Pieters, C.M., and Edwards, J.O., 1994, “Infrared spectroscopic analyses on the nature of water in montmorillonite”, Clays and Clay Minerals 42(6), 702-716.
    Bookin, A.S., and Drits, V.A., 1982, “Factors affecting orientation of OH-vectors in micas”, Clays and Clay Minerals 30(6), 415-421.
    Bortun, A.I., Bortun, L.N., Khainakov, S.A., and Clearfield, A., 1998, “Ion exchange properties of the sodium phlogopite and biotite”, Solvent Extraction and Ion Exchange 16(4), 1067-1090.
    Boyd, S.A. Lee, J.F., and Mortland, M.M, 1988, “Attenuating organic contaminant mobility by soil modification”, Nature 333, 345-347.
    Bracke, G., Satir, M., and Kraub, P., 1995, “The cryptand [222] for exchanging cations of micas” Clays and Clay Minerals 43(6), 732-737.
    Breen, C., Deane, A.T., and Flynn, J.J., 1987, “The acidity of trivalent cation-exchanged montmorillonite. Temperature-programmed desorption and infrared studies of pyridine and n-butyamine”, Clay Minerals 22, 169-178.
    Brett, N.H., MacKenzie, K.J.D., and Sharp, J.H., 1970, “The thermal decomposition of hydrous layer silicates and their related hydroxides”, Quarterly Reviews of the Chemical Society 24, 185-207.
    Bridgeman, C.H., Buckingham, A.D., Skipper, N.T., and Payne, M.C., 1996, “Ab-initio total energy study of uncharged 2:1 clays and their interaction with water”, Molecular Physics 89(3), 879-888.
    Brigatti, M.F., and Guggenheim, S., 2002, “Micas: Crystal chemistry and metamorphic petrology Ch.1: Mica crystal chemistry and the influence of pressure, temperature, and solid solution on atomistic models”, Reviews in Mineralogy and Geochemistry 46, 1-54.
    Brindley, G.W., and Hayami, R., 1963, “Kinetics and mechanisms of dehydration and recrystallization of serpentine”, Clays and Clay Minerals 12, 35-47.
    Brindley, G.W., and Brown, G., 1980, “Mineralogical society monograph No. 5: Crystal structures of clay minerals and their X-ray identification”, Mineralogical Society.
    Brovelli, D., Caseri, W.R., and Hahner, G., 1999, “Self-assembled monolayers of alkylammonium ions on mica: direct determination of the orientation of the alkyl chains”, Journal of Colloids and Interface Sciences 216, 418-423.
    Bujdak, J., Slosiarikova, H., and Cicel, B., 1992, “Interaction of long chain alkylammonium cations with reduced charge montmorillonite”, Journal of Inclusion Phenomena and Molecular Recognition in Chemistry 13, 321-327.
    Bujdak, J., Hackett, E., and Giannelis, E.P, 2000, “Effect of layer charge on the intercalation of poly(ethylene oxide) in layered silicates: implications on nanocomposite polymer electrolytes”, Chemistry of Materials 12, 2168-2174.
    Calvet, R., and Prost, R., 1971, “Cation migration into empty octahedral sites and surface properties of clays”, Clays and Clay Minerals 19, 175-186.
    Campanelli, A.R., and Scaramuzza, L., 1986, “Hexadecyltrimethylamm onium bromide”, Acta Crystallographica section C 42, 1380-1383.
    Casal, H.L., Mantsch, H.H., and Cameron, D.G., 1982, “Interchain vibration coupling in phase II (hexagonal) n-alkanes”, Journal of Chemical Physics 77(6), 2825-2830.
    Caseri, W.R., Shelden, R.A., and Suter, U.W., 1992, “Preparation of muscovite with ultrahigh specific surface area by chemical cleavage”, Colloid and Polymer Science 270, 392-398.
    Catti, M., Farraris, G., and Ivaldi, G., 1989, “Thermal strain analysis in the crystal structure of muscovite at 700 ℃”, European Journal of Mineralogy 1, 625-632.
    Chang, F.C., Skipper, N.T., and Sposito, G., 1998, “Monte Carlo and molecular dynamics simulations of electrical double-layer structure in potassium montmorillonite hydrated”, Langmuir 14, 1201-1207.
    Clementz, D.M., and Mortland, M.M., 1974, “Properties of reduced charge montmorillonite: Tetra-alkylammonium ion exchange forms”, Clays and Clay Minerlas 22, 223-229.
    Cox, A.E., and Joern, B.C., 1997, “Release kinetics of nonexchangeable potassium in soils using sodium tetraphenylnoron”, Soil Science 162(8), 588-598.
    Delville, A., 1991, “Modeling the clay-water interface”, Langmuir 7, 547-555.
    Drits, V.A., Besson, G., and Muller, F., 1995, “An improved model for structural transformations of heat-treated aluminous dioctahedral 2:1 layer silicates”, Clays and Clay Minerals 43(6), 718-731.
    Dontsova, K.M., Norton, L.D., Johnston, C.T., and Bigham, J.M., 2004, “Influence of exchangeable cations on water adsorption by soil calys”, Soil Science Society of American Journal 68, 1218-1227.
    Ertem, G., 1972, “Irreversible collapse of montmorillonite”, Clays and Clay Minerals 20, 199-205.
    Farmer, V.C. and Russell, J.D., 1964, “The infra-red spectra of layer silicates”, Spectrochimica Acta 20, 1140-1173.
    Farmer, V.C., and Russell, J.D., 1966, “Effects of particle size and structure on the vibrational frequencies of layer silicates” Spectrochimica Acta 22, 389-398.
    Farmer, V.C. and Russell, J.D., 1967, “Infrared absorption spectrometry in clay studies”, Clays and Clay Minerals 15(1), 121-142.
    Farmer, V.C., 1974, “The infrared spectra of minerals, Ch. 15: The layer silicates”, Mineralogical Society, 331-363.
    Fitzgerald, J.J., Hamza, A.I., Dec, S.F., and Bronnimann, C.E., 1996, “Solid-state 27Al and 29Si NMR and 1H CRAMPS studies of the thermal transformations of the 2:1 phyllosilicate pyrophyllite”, Journal of Physical Chemistry 100, 17351-17360.
    Friedrich, F., Heissler, S., Faubel, W., Nuesch, R., and P. Weidler, G., 2007, “Cu(II)-intercalated muscovite: An infrared spectroscopic study”, Vibrational Spectroscopy 23, 427-434.
    Frost, R.L., and Barron, P.F., 1984, “Solid-state silicon-29 and Aluminum-27 nuclear magnetic resonance investigation of the dehydroxylation of pyrophyllite”, Journal of Physical Chemistry 88, 6206-6209.
    Fukushima, Y. and Inagaki, S., 1987, “Synthesis of an intercalated compound of montmorillonite and 6-polyamide”, Journal of Inclusion Phenomena 5, 472-482.
    Gaines, G.L., and Vedder, W., 1964, “Dehydroxylation of muscovite”, Nature 201, 495.
    Gates, W.P., Komadel, P., Madejova, J., Bujdak, J., Stucki, J.W., and Kirkpatrick, R.J., 2000, “Electronic and structural properties of reduced-charge montmorillonite”, Applied Clay Science 16, 257-271.
    Giese Jr., R.F., 1971, “Hydroxyl orientation in muscovite as indicated by electrostatic energy calculations”, Science 172, 263-264.
    Giese Jr., R.F., 1977, “The influence of hydroxyl orientation, stacking sequence, and ionic substitutions on the interlayer bonding of micas”, Clays and Clay Minerals 25, 102-104.
    Giese Jr., R.F., 1979, “Hydroxyl orientation in 2:1 phyllosilicates”, Clays and Clay Minerals 27(3), 213-223.
    Giogetti, G., Monecke, T., Kleeberg, R., and Herzig, P.M., 2003, “Intermediate sodium-potassium mica in hydrothermally altered rocks of the Waterloo deposite, Australia: a combined SEM-EMP-XRD-TEM study”, Contributions to Mineralogy and Petrology 146, 159-173.
    Gournis, D., Karakassides, M.A., Bakas, T., Boukos, N., and Petridis, D., 2002, “Catalytic synthesis of carbon nanotubes on clay minerals”, Carbon 40, 2461-2646.
    Greathousem, J., and Sposito, G., 1998, “Monte Carlo and molecular dynamics studies of interlayer structure in Li(H2O)3-smectites”, Journal of Physical Chemistry B 102, 2406-2414.
    Gridi-Bennadji, F., Beneu, B., Laval, J.P., and Blanchart, P., 2008, “Structural transformations of muscovite at high temperature by X-ray and neutron diffraction”, Applied Clay Science 38, 259-267.
    Grim, R.E., 1953, “McGraw-Hill series in geological the sciences: Clay mineralogy”, McGraw-Hill Book Company, Inc.
    Gualtieri, A., Artioli, G., Bellotto, M., Clark, S.M., and Palosz, B., 1994, “High temperature phase transition of muscovite-2M1: Angle and energy dispersive powder diffraction studies”, Materials Science Forum 166-169, 547-552.
    Guggenheim, S., Chang, Y.H., and Koster van Groos, A.F., 1987, “Muscovite dehydroxylation: high-temperature studies”, American Mineralogist 72, 537-550.
    Guggenheim, S., and Koster van Groos, A.F., 1992, “High-pressure differential thermal analysis (HP-DTA) II. Dehydroxylation reactions at elevated pressures in phyllosilicates”, Journal of Thermal Analysis 38, 2529-2548.
    Hayes, W.A., and Schwartz, D.K., 1998, “Two-stage growth of octadecyltrimethyl ammonium bromide monolayers at mica from aqueous solution below the Krafft point”, Langmuir 14, 5913-5917.
    He, H., Frost, R.L., Bostrom, T., Yuan, P., Duong, L., Yang, D., Xi, Y., and Kloprogge, J.T., 2006, “Changes in the morphology of organoclays with HDTMA+ surfactant loading”, Applied Clay Science 31, 262-271.
    Heinz, H., Castelijns, H.J., and Suter, U.W., 2003, “Structure and phase transition of alkyl chains on micas”, Journal of American Chemical Society 125, 9500-9510.
    Heller-Kallai, L., and Rozenson, I., 1980, “Dehydroxylation of dioctahedral phyllo silicates”, Clays and Clay Minerals 28(5), 355-368.
    Heller-Kallai, L., 2001, “Protonation-deprotonation of dioctahedral smectite”, Applied Clay Science 20, 27-38.
    Hofmann, V., and Klemen, R., 1950, “Verlust der Austausch fahigkeit von Lithiumionen and Bentonit durch Erhizung”, Zeitschrift fr anorganische und allgemeine Chemie 262, 95-99.
    Hongping, H., Ray, F.L., and Jiangxi, Z., 2004, “Infrared study of HDTMA+ intercalated montmorillonite”, Spectrochimica Acta Part A 60, 2853-2859.
    Hsu, H.L., and Jehng, J.M., 2009, “Synthesis and characterization of carbon nanotubes on clay minerals and its application to a hydrogen peroxide biosensor” Materials Science and Engineering C 29(1), 55-61.
    Hunter, R.J., 1993, “Introduction to modern colloid science, Ch. 6: adsorption at interfaces”, Oxford University Press, 164-193.
    Ilton, E.S., Moses, C.O., and Veblen, D.R., 2000, “Using X-ray photoelectron spectroscopy to discriminate amount different sorption sites of micas: with implications for heterogeneous reduction of chromate at the mica-water interface”, Cheochimica et Cosmochimica Acta 64-8, 1437-1450.
    Ikazaki, F., Uchida, K., Kamiya, K., Kawai, A., Gotoh, A., and Akiba, E., 1996, “Chemically assisted dry comminution of sericite – dry comminution method accompanied by ion-exchange”, International Journal of Mineral Processing 44-45, 93-100.
    Ishii, M., Shimanouchi, T. and Nakahira, M., 1967, “Far infra-red adsorption spectra of layer silicates”, Inorganica Chimica Acta 1, 387-392.
    Ismail, F.T., and Scott, A.D., 1972, “Temperature effects on interlayer potassium exchange in micaceous minerals”, Soil Science Society of American Journal 36, 506-510.
    Itami, K., and Fujitani, H., 2005, “Charge characteristics and related dispersion /flocculation behavior of soil colloids as the cause of turbility”, Colloids and Surfaces A-Physicochemical and Engineering Aspects 265, 55-63.
    Jackson, M.L., 1962, “Interlayering of Expansible Layer Silicates in Soils by Chemical Weathering” Clays and Clay Minerals 11, 29-46.
    Jaynes, W.F., and Bigham, J.M., 1987, “Charge reduction, octahedral charge, and lithiym retention in heated, Li-saturated smectites”, Clays and Clay Minerals 35, 440-448.
    Jaynes, W.F., and Boyd, S.A., 1991, “Clay mineral type and organic compound sorption by hexadecyltrimethlyammonium-exchanged clays”, Soil Science Society of America Journal 55, 43-48.
    Jaynes, W.F., and Vance, G.F., 1996, “BTEX sorption by organo-clay: Cosorptive enhancement and equivalence of interlayer complexes”, Soil Science Society of America Journal 60, 1742-1749.
    Kawai, T., Umemura, J., Takenaka, T., Kodama, M., and Seki, S., 1985, “Fourier transform infrared study on the phase transitions of an octadecyltrimethylammonium chloride-water system”, Journal of Colloid and Interface Science 103(1), 56-61.
    Kawai, T., Umemura, J., Takenaka, T., Kodama, M., Ogawa, Y., and Seki, S., 1986, “Polarized Fourier transform infrared spectra and molecular orientation of a water-dioctadecyldimethyl- ammonium chloride system in the coagel and gel phases”, Langmuir 2, 739-743.
    Keppler, H., 1990, “Ion exchange reactions between dehydroxylated micas and salt melts and the crystal chemistry of the interlayer cation in micas”, American Mineralogist 75, 529-538.
    Kitajima, K., Koyama, F., and Takusagawa, N., 1985, “Synthesis and swelling properties of fluorine micas with variable layer charges”, Bulletin of the Chemical Society of Japan 58, 1325-1326.
    Kitajima, K., and Takusagawa, N., 1990, “Effects of tetrahedral isomorphic substitution on the IR spectra of synthetic fluorine micas”, Clay Minerals 25, 235-241.
    Kitajima, K., Taruta, S. and Takusagawa, N., 1991, “Effects of layer charge on the IR spectra of synthetic fluorine micas”, Clay Minerals 26, 435-440.
    Klein, C., and Hurlbut, Jr., C.S., 1993, “Manual of mineralogy, 23th edition”, John Wiley & Sons, Inc.
    Klimentidis, R.E. and Mackinnon, I.D.R., 1986, “High-resolution imaging of ordered mixed-layer clays”, Clays and Clay Minerals 34(2), 155-164.
    Kodama, T., Harada, Y., Ueda, M., Shimizu, K., Shuto, K., Komarneni, S., Hoffbauer, W., and Schneider, H., 2001, “Crystal-size control and characterization of Na-4-mica prepared from kaolinite”, Journal of Materials Chemistry 11, 1222-1227.
    Kodama, T., Nagai, S., Hasegawa, K., Shimizu, K., and Kormaneni, S., 2002, “Synthesis of novel Na-rich mica and selective strontium ion exchange and fixation”, Separation Science and Technology 37(8), 1927-1942.
    Koh, S.M., and Dixon, J.B., 2001, “Preparation and application of organo-minerals as sorbents of phenol, benzene and toluene”, Applied Clay Science 18, 111-122.
    Kojima, Y., Usuki, A., Kawasumi, M., Okada, A., Kurauchi, T., and Kamigaito, O., 1993a, “Sorption of water in Nylon 6-clay hybrid”, Journal of Applied Polymer Science 49, 1259-1264.
    Kojima, Y., Usuki, A., Kawasumi, M., Okada, A., Fukushima, Y., Kurauchi, T., and Kamigaito, O., 1993b, “Mechanical properties of nylon 6-caly hybrid”, Journal of Materials Research 8(5), 1185-1189.
    Komarneni, S., and Roy, R., 1988 “A Cesium-Selective Ion Sieve Made by Topotactic Leaching of Phlogopite Mica” Science 239(4845), 1286-1288.
    Komarneni, S., and Ravella, R., 2008, “Novel clays: solid-state synthesis, characterization and cation exchange selectivity”, Current Applied Physics 8, 104-106
    Komarneni, S., Ravella, R., Noh, Y.D., and Mackenzie, K.J.D., 2009, “Synthesis and characterization of low charge sodium fluorophlogopite mica-type clay minerals”, Applied Clay Science 42, 524-528.
    Kozak, L.M., and Scott, A.D., 1985, “Change in potassium exchangeability in heated lepidomelane”, Applied Clay Science 1, 29-42.
    Kung, K.H.S., and Hayes, K.F., 1993, “Fourier transform infrared spectroscopic study of the adsorption of cetyltrimethylammonim bromide and cetylpyridium on silica”, Langmuir 9, 263-267.
    Kurian, M., Galvin, M.E., Trapa, P.E., Sadoway, D.R., and Mayes, A.M., 2005, “Single-ion conducting polymer-silicate nanocomposite electrolytes for lithium battery applications”, Electrochimica Acta 50, 2125-2134.
    Lagaly, G., 1981, “Characterization of clays by organic compounds”, Clay Minerals 16, 1-21.
    Lagaly, G., 1982, “Layer charge heterogeneity in vermiculites”, Clays and Clay Minerals 30(3), 215-222.
    Larsen, D.H., 1952, “Use of clay in drilling fluids”, Clays and Clay Minerals (1), 269-281.
    Lee, J.H., and Guggenheim, S., 1981, “Single crystal X-ray refinement of pyrophyllite -1Tc”, American Mineralogist 66, 350-357.
    Leonard, R.A., and Weed, S.B., 1970, “Mica weathering rates as related to mica type and composition”, Clays and Clay Minerals 18, 187-195.
    Lerot, L., and Low, F., 1976, “Effect of swelling on the infrared absorption spectrum of montmorillonite” Clays and Clay Minerals 24, 191-199.
    Li, Y., and Ishida, H., 2003, “Concentration-dependent conformation of alkyl tail in the nanoconfined space: Hexadecylamine in the silicate galleries”, Langmuir 19, 2479-2484.
    Li. Z., Jiang, W.T., and Hong, H., 2008, “An FTIR investigation of hexadecyltrimethyl ammonium intercalation into rectorite”, Spectrochimica Acta Part A 71, 1525-1534.
    Livi, K.J.T., Veblen, D.R., Ferry, J.M., and Frey, M., 2008, “Evolution of 2:1 layered silicates in low-grade metamorphosed Liassic shales of Central Switzerland”, Journal of Metamorphic Geology 15(3), 323-344.
    Livi, K.J.T., Christidis, G.E., Arkai, P., and Veblen, D.R., 2008, “White mica domain formation: A model for paragonite, margarite, and muscovite formation during prograde metamorphism”, American Mineralogist 93, 520-527.
    Madejova, J., Bujdak, J., Gates. W., and Komadel, P., 1996, “Preparation and infrared spectroscopic characterization of reduced charge Montmorillonite with various Li contents”, Clay Minerals 31, 233-241.
    Madejova, J., Arvaiova, B., and Komadel, P., 1999, “FTIR spectroscopic characterization of thermally treated Cu2+, Cd2+, and Li+ montmorillonite”, Spectrochimica Acta Part A 55, 2467-2476.
    Madejova, J., Janek, M., Komadel. P., Herbert, H.J., and Moog, H.C., 2002, “FTIR analysis of water in MX-80 bentonite compacted from high salinary salt systems”, Applied Clay Science 20, 255-271.
    Madejova, J., 2003, “Review, FTIR techniques in clay mineral studies”, Vibrational Spectroscopy 31, 1-10.
    Mackenzie, K.J.D., Brown, I.W.M., Cardile, C.M., and Meinhold, R.H., 1987, “The thermal reactions of muscovite studied by high-resolution solid-state 29-Si and 27-Al NMR”, Journal of Materials Science 22, 2645-2654.
    Maes, A., and Cremers, A., 1978, “Charge density effects in ion equilibra. Part 2-Homovalent exchange equilibra”, Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed 74, 1234-1241.
    Martin-Rubi, J.A., Rausell-Colom, J.A., and Serratosa, J.M., 1974, “Infrared absorption and X-ray diffraction study of butylammonium complexes of phyllosilicates”, Clays and Clay Minerals 22, 87-90.
    Martin de Vidales, J.L, Vila, E., Ruiz-Amil, A., Calle, C., and Pons, C.H., 1990, “Interstratification in Malawi vermiculite: Effect of bi-ionic K-Mg solutions”, Clays and Clay Minerals 38(5), 513-521.
    Mazzucato, E., Artioli, G., and Gualtieri, A., 1998, “Dehydroxylation kinetics of Muscovite- 2M1 ”, Materials Science Forum 278-281, 424-429.
    Mbouguen, J.K., Ngameni, E., and Walcarius, A., 2006, “Organoclay-enzyme film electrodes”, Analytica Chimica Acta 578, 145-155.
    McBride, M.B., 1994, “Environmental chemistry of soils”, Oxford University Press, 211-217.
    McCauley, J.W., and Newnham, R.E., 1971, “Origin and prediction of ditrigonal distortion in micas”, American Mineralogist 56, 1626-1638.
    McKeown, D.A., Bell, M.I., and Etz, E.S., 1999, “Vibrational analysis of the dioctahedral mica:2M1 muscovite”, American Mineralogist 84, 1041-1048.
    Meier, L.P., Shelden, R.A., Caseri, W.R., and Suter, U.W., 1994, “Polymerization of styrene with initiator ionically bound to high surface area mica: grafting via an unexpected mechanism”, Macromolecules 27, 1637-1642.
    Milliken, T.H., Oblad, A.G., and Mills, G.A., 1952, “Use of clays as petroleum cracking catalysts”, Clays and Clay Minerals (1), 314-326.
    Mizuhata, M., Ito, F., and Deki, S., 2005, “Transport properties of non-aqueous lithium electrolyte coexisting with porous solid materials montmorillonite based electrolyte composite system”, Journal of Power Sources 146, 365-370.
    Mookherjee, M., and Redfern, S.A.T. and Zhang, M., 2001, “Thermal response of structure and hydroxyl ion of phengite-2M1: an in situ neutron diffraction and FTIR study”, European Journal of Mineralogy 13, 545-555.
    Mookherjee, M., and Redfern, S.A.T., 2002, “A high temperature Fourier transform infrared study of the interlayer and Si-O stretching region in phengite-2M1”, Clay Minerals 37, 323-336.
    Muller, F., Drits, V., Plancon, A., and Robert, J.L., 2000, “Structural transformation of 2:1 dioctahedral layer silicates during dehydroxylation-rehydroxylation reactions”, Clays and Clay Minerals 48(5), 572-585.
    Nadeau, P.H., Wilson, M.J., McHardy, W.J., and Tait, J.M., 1984, “Interparticle diffraction: A new concept for interstratified clays”, Clay Minerals 19, 757-769.
    Navratilova, Z., and Kula, P., 2003, “Clay modified electrodes: present applications and prospects”, Electroanalysis 15(10), 837-846.
    Newman, A.C.D., 1987, “Chemistry of clays and clay minerals, Ch. 7, Thermal, oxidation and reduction reactions of clay minerals”, Mineralogical Society Monograph No. 6, 317-370.
    Onodera, Y., Iwasaki, T., Ebina, T., Hayashi, H., Torii, K., Chatterjee, A. and Mimura, H., 1998, “Effect of layer charge on fixation of cesium ions in smectites”, Journal of Contaminant Hydrology 35, 131-140.
    Osman, M.A., Christoph, M., Caseri, W.R., and Suter, U.W., 1999a, “Alkali metals ion exchange on muscovite mica”, Journal of Colloid and Interface Science 209, 232-239.
    Osman, M.A., and Suter, U.W., 1999b, “Dodecylpyridinium/alkali metal metals ion exchange on muscovite mica”, Journal of Colloid and Interface Science 214, 400-406.
    Osman, M.A., Seyfang, G., and Suter, U.W., 2000, “Two-dimensional melting of alkane monolayers ionically bonded to mica”, The Journal of Physical Chemistry B 104(18), 4433-4439.
    Osman, M.A., 2006, “Organo-vermiculite: synthesis, structure and properties. Platelike nanoparticles with high aspect ratio”, Journal of Materials Chemistry 16, 3007-3013.
    Papirer, E., Eckhardt, A., and Muller, F., 1990, “Grinding of muscovite: influence of the grinding medium”, Journal of Materials Science 25, 5109-5117.
    Paulus, W.J., Komarneri, S., and Roy, R, 1992, “Bulk synthesis and selective exchange of strontium ions in Na4Mg6Al4Si4O20F4 mica”, Nature 357, 571-573.
    Pearson, R.G., 1963, “Hard and soft acids and bases”, Journal of the American Chemical Society 85, 3533-3539.
    Perry, E.P., 1963, “An infrared study of pyridine adsorbed on acidic solids characterization of surface acidity”, Journal of Catalysis 2, 371-379.
    Pinnavaia, T.J., 1983, “Intercalated clay catalysts”, Science 220(4595), 365-371.
    Ponder, S.M., and Mallouk, T.E., 1999, “Recovery of ammonium and cesium ions from aqueous waste streams by sodium tetraphenylborate”, Industrial and Engineering Chemistry Research 38, 4007-4010.
    Prost, P., and Laperche, V., 1990, “Far infrared study of potassium in micas”, Clays and Clay Minerals 38, 351-355.
    Purnell, J.H., Thomas, J.M., Diddams, P., Ballantine, J.A., and Jones, W., 1989, “The influence of exchangeable aluminium ion concentration and of layer charge on the catalytic activity of montmorillonite clays”, Catalysis Letters 2, 125-128.
    Raman, K.V., and Jackson, M.L., 1965, “Layer charge relations in minerals of micaeous soils and sediments”, Clays and Clay Minerals 14, 53-68.
    Rausell-Colom, J.A., 1964, “Small angle X-ray diffraction study of the swelling of butyl ammonium vermiculite”, Transactions of the Faraday Society 60, 190-201.
    Reed, M.G., and Scott, A.D., 1962, “Kinetics of potassium release from biotite and muscovite in sodium tetraphenylboron solutions”, Soil Science Society of America proceedings 26, 437-440.
    von Reichenbach, H.G., and Rich, C.I., 1969, “Potassium release from musvoite as influenced by particle size”, Clays and Clay Minerals 17, 23-29.
    Rimsaite, J., 1970, “Structural formulae of oxidized and hydroxyl-deficient micas and decomposition of hydroxyl group”, Contributions to Mineralogy and Petrology 25, 225-240.
    Robert, J.L., and Kodama, H., 1988, “Generalization of the correlations between hydroxyl-stretching wavenumbers and composition of micas in the system K2O-MgO-Al2O3-SiO2-H2O: a single model for trioctahedral and dioctahedral micas”, American Journal of Science 288-A, 196-212.
    Russell, J.D., and Farmer, V.C., 1964, “Infra-red spectroscopic study of the dehydration of montmorillonite and saponite”, Clay Minerals Bulletin 5, 443-464.
    Russell, J.D., 1979, “An infrared spectroscopic study of the interaction of nontronite and ferruginous montmorillonites with alkali metal hydroxides”, Clay Minerals 14, 127-137.
    Sato, H., Yamagishi, A., and Kaeamura, K., 2001, “Molecular simulation of flexibility of a single clay layer”, Journal of Physical Chemistry B 105, 7990-7997.
    Sayin, M., and von Reichenbach, H.G., 1978, “Infrared spectra of muscovite as affected by chemical composition, heating and particle size”, Clay Minerals 13, 241-254.
    Sawhney, B.L., 1972, “Selective sorption and fixation of cations by clay minerals: A review”, Clays and Clay Minerals 20, 93-100.
    Sawhney, B.L., and Singh, S.S., 1997, “Sorption of atrazine by Al- and Ca-saturated smectite”, Clays and Clay Minerals 45(3), 333-338.
    Scheuing, D.R., and Weers, J.G., 1990, “A Fourier transform infrared spectroscopic study of dodecyltrimethylammonium chloride/sodium dodecyl sulfate surfactant mixtures”, Langmuir 6, 665-671.
    Schroeder, P.A., 1990, “Far infrared, X-ray powder diffraction, and chemical investigation of potassium micas”, American Mineralogist 75, 983-991.
    Scott, A.D., and Smith, S.J., 1966, “Susceptibility of interlayer potassium in micas to exchange with sodium”, Clays and Clay Minerals 14, 69-81.
    Serratosa, J.M., 1966, “Infrared analysis of the orientation of pyridine molecules in clay complexes”, Clays and Clay Minerals 14, 385-391.
    Serratosa, J.M., Johns, W.D., and Shimoyama, A., 1970, “I.R. study of alkyl-ammonium vermiculite complexes”, Clays and Clay Minerals 18, 107-113.
    Shen, Y.H., 2004, “Phenol sorption by organoclays having different charge characteristics”, Colloids and Surfaces A-Physicochemical and Engineering Aspects 232,143-149.
    Shimizu, K., Murayama, H., Nagai, A., Shimada, A., Hatamachi, T., Kodama, T., and Kitayama, Y., 2005, “Degradation of hydrophobic organic pollutants by titania pillared fluorine mica as a subtract specific photocatalyst”, Applied Catalysis B: Environmental 55, 141-148.
    Shimizu, K., Nakamuro, Y., Yamanaka, R., Hatamachi, T., and Kodama, T., 2006, “Pillaring of high charge density synthetic micas (Na-4-mica and Na-3-mica) by interaction of oxides nanoparticles”, Microporous and Mesoporous Materials 95, 135-140.
    Slade, P.G., Raupach, M., and Emerson, W.W., 1978, “The ordering of cetylpyridinium bromide on vermiculite”, Clays and Clay Minerals 26(2), 125-134.
    Slade, P.G., and Gates, W.P., 2004, “The swelling of HDTMA smectites as influenced by their preparation and layer charges”, Applied Clay Science 25, 93-101.
    Sposito, G., 1981, “The thermodynamics of soil solutions: Ch.3 Solubility equilibria in soil solutions”, Oxford Clarendon Press, 66-101.
    Sposito, G., and Prost, R., 1982, “Structure of water adsorbed on smectites”, Chemical Reviews 82(6), 553-573.
    Sposito, G., Prost, R., and Gaultier, J.P., 1983, “Infrared spectroscopic study of adsorbed water on reduced charge Na/Li montmorillonite”, Clays and Clay Minerals 31-1, 9-16.
    Sposito, G., 1993, “Surface complexation of metals on natural colloids”, Ion Exchange and Solvent Extraction 11, 211-236.
    Sposito, G., Skipper, N.T., Sutton, R., Park, S., Soper, A.K., and Greathouse, J.A., 1999, “Surface geochemistry of clay minerals”, Proceedings of the National Academy of Sciences of the United States of America 96, 3358-3364.
    Stackhouse, S., Coveney, P.V., and Benoit, D.M., 2004, “Density Functional Theory Based study of the dehydroxylation behavior of aluminous dioctahedral 2:1 layer-type clay minerals”, Journal of Physical Chemistry B 108, 9685-9694.
    Stixrude, L., and Peacor, D.R., 2002, “First principles study of illite-smectite and implications for clay mineral systems” Nature 420, 165-168.
    Stout, S.A., and Komarneni, S., 2002, “A microwave-assisted method for the rapid removal of K from phlogopite”, Clays and Clay Minerals 50(2), 248-253.
    Stout, S.A., Cho, Y., and Komarneni, S., 2006, “Uptake of cesium and strontium cations by potassium-depleted phlogopite”, Applied Clay Science 31, 306-313.
    Su, C.C., and Shen, Y.H., 2008, “Effects of poly(ethylene oxide) adsorption on the dispersion of smectites”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 312(1), 1-6.
    Sullivan, P.J., 1977, “The principle of hard and soft acids and bases as applied to exchangeable cation selectivity in soils”, Soil Science 124(2), 117-121.
    Sylvester, P., Clearfield, A., and Diaz, R.J., 1999, “Pillared montmorillonite: Cesium- selective ion-exchange materials”, Separation Science and Technology 34(12), 2293-2305.
    Takeda, H., and Morosin, B., 1975, “Comparison of observed and predicted structural parameters of mica at high temperature”, Acta Crystallographica B31, 2444-2452.
    Tateyama, H., Nishimura, S., Tsunematsu, K., Jinnai, K., Adachi, Y., and Kimura, M., 1992, “Synthesis of expandable fluorine mica from talc”, Clays and Clay Minerals 40(2), 180-185.
    Tomita, K., and Sudo, T., 1971, “Transformation of sericite into an interstratified mineral”, Clays and Clay Minerals 19, 263-270.
    Tomita, K., and Dozono, M., 1972, “Formation of an interstratified mineral by extraction of potassium from mica with sodium tetraphenylboron” Clays and Clay Minerals 20, 225-231.
    Tomita, K., 1974, Similarities of rehydration and rehydroxylation properties of rectorite and 2M clay mica, Clays and Clay Minerals 22, 79-85.
    Tomita, K., 1977, Experimental transformation of 2M sericite into a rectorite-type mixed-layer mineral by treatment with various salts, Clays and Clay Minerals 25, 302-308.
    Trillo, J.M., Alba, M.D., Alvero, R., and Castro, M.A., 1993, “Reexpansion of collapsed Li-montmorillonite; evidence on the location of Li+ ions”, Journal of the Chemical Society, Chemical Communications 24, 1809-1811.
    Usuki, A., Kojima, Y., Kawasumi, M., Okada, A., Fukushima, Y., Kurauchi, T., and Kamigaito, O., 1993, “Synthesis of nylon 6-clay hybrid”, Journal of Materials Research 8(5), 1179-1184.
    Vaccari, A., 1998, “Preparation and catalytic properties of cationic and anionic clays” Catalysis Today 41, 53-71.
    Vahedi-Faridi, A., and Guggenheim, S., 1997, “Crystal structure of tetramethylammonium- exchanged vermiculite”, Clays and Clay Minerals 45(6), 859-866.
    Vahedi-Faridi, A., and Guggenheim, S., 1999, “Structural study of monomethylammonium and dimethylammonium-exchanged vermiculites”, Clays and Clay Minerals 47(3), 338-347.
    Vaia, R.A., Teukolsky, R.K., and Giannelis, E.P., 1994, “Interlayer structure and molecular environment of alkylammonium layered silicates”, Chemistry of Materials 6, 1017-1022.
    Vedder, W., 1964, “Correlation between infrared spectrum and chemical composition of mica”, The American Mineralogist 49, 736-768.
    Vedder, W., and Wikins, R.W.T., 1969, “Dehydroxylation and rehydroxylation, oxidation and reduction of micas”, The American Mineralogist 54, 482-509.
    Velde, B., 1992, “Introduction to clay minerals: chemistry, origins, uses and environmental significance”, Chapman and Hall, 20-23.
    Volzone, C., Rinaldi, J.O., and Ortiga, J., 2002, “N2 and O2 adsorptions by TMA- and HDP-montmorillonite”, Materials Research 5, 475-479.
    Volzone, C., 2007, “Retention of pollutant gases: comparison between clay minerals and their modified products”, Applied Clay Science 36, 191-196.
    Vongbupnimit, K., Noguchi, K., and Okuyama, K., 1995, “1-Dodecylpyridinium chloride monohydrate”, Acta Crystallographica section C 51, 1940-1941.
    Walls, H.J., Riley, M.W., Fedkiw, P.S., Spontak, R.J., Baker, G.L., and Khan, S.A., 2003, “Composite electrolytes from self-assembled colloidal networks”, Electrochimica Acta 48, 2071-2077.
    Ward, J.W., 1968, “Spectroscopic study of the surface of zeolite Y: The adsorption of pyridine”, Journal of Colloid and Interface Science 28, 269-277.
    Wardle, R., and Brindley, G.W., 1971, “The dependence of the wavelength of AlKα radiation from alumino-silicates on the Al-O distance”, American Mineralogist 56, 2123-2128.
    Wardle, R., and Brindley, G.W., 1972, “The crystal structures of phyrophyllite, 1Tc, and of it’s dehydroxylate”, American Mineralogist 57, 732-750.
    Watari, T., Yamane, T., Moriyama, S., Torikai, T., Imaoka, Y., and Suehiro, K., 1997, “Fabrication of (expandable mica)/nylon 6-clay composites”, Materials Research Bulletin 32(6), 719-724.
    Weers, J.G., and Scheuing, D.R, 1991, “Fourier transform infrared spectroscopy in colloid and interface Science Ch.6: Micellar sphere to rod transitions”, American Chemical Society, 87-122.
    Weiss, A., Holm, C., and Platikanov, D., 1993, “Phase studies of long-chain alkanol complexes with alkylammonium layer silicates”, Colloid and Polymer Science 271, 891-900.
    White, J.L., 1955, “Reactions of Molten Salts with Layer-Lattice Silicates”, Clays and Clay Minerals 4, 133-146.
    Williams, J., Purnell, J.H., and Ballantine, J.A., 1991, “The mechanism of layer charge reduction and regeneration in Li+-exchanged montmorillonite”, Catalysis Letters 9, 115-120.
    Wills, B.A., 1997, “Mineral processing technology: Ch. 9”, Butterworth-Heinemann, 6th edition.
    Wirth, R., 1985, “Dehydration of mica (phengite) by electron bombardment in a transmission electron microscope (TEM)”, Journal of Materials Science Letters 4, 327-330.
    Wong, T.C., Wong, N.B., and Tanner, P.A., 1997, “A Fourier transform IR study of the phase transitions and molecular order in hexadecyltrimethylammonium sulfate/water system”, Journal of Colloid and Interface science 186, 325-331.
    Xue, W., He, H., Zhu, J., and Yuan, P., 2007, “FTIR investigation of CTAB -Al-montmorillonite complexes”, Spectrochimica Acta Part A 67, 1030-1036.
    Yamaguchi, T., Kitajima, K., Sakai, E., and Daimon, M., 2003, “Synthesis and properties of alumina pillared fluorine micas having cation exchangeability”, Clay Minerals 38, 41-47.
    Yan, L., Low, P.F., and Roth, C.B., 1996a, “Swelling Pressure of Montmorillonite Layers versus H-O-H Bending Frequency of the Interlayer Water”, Clays and Clay Minerals 44, 749-756.
    Yan, L., Roth, C.B., and Low, P.F., 1996b, “Changes in the Si-O vibrations of smectite layers accompanying the sorption of interlayer water”, Langmuir 12, 4421-4429.
    Yang, R.T., and Baksh, M.S.A., 1991, “Pillared clays as a new class of sorbents for gas separation”, American Institute of Chemical Engineerings Journal 37, 679-686.
    Yu, X., Zhao, L., Gao, X., Zhang, X., and Wu, N., 2006, “The interaction of cetyltrimethylammonium cations into muscovite by a two-step process: II. The interaction of cetyltrimethylammonium cations into Li-muscovite”, Journal of Solid State Chemistry 179, 1525-1535.
    Yu, X., Zhao, L., Gao, X., Zhang, X., and Wu, N., 2006, “The interaction of cetyltrimethylammonium cations into muscovite by a two-step process: I. The ion exchange of the interlayer cations in muscovite with Li+”, Journal of Solid State Chemistry 179, 1569-1574.
    Zen, J.M., Kumer, A.S., 2004, “Peer reviewed: the prospects of clay mineral electrodes”, Analytical Chemistry 76, 205A.
    Zeng, Q.H., Yu, A.B., Lu, G.Q., and Standish, R.K., 2003, “Molecular dynamics simulation of organic-inorganic nanocomposites: layering behavior and interlayer structure of organoclays”, Chemistry of Materials 15, 4732-4738.
    Zhu, L., Zhu, R., Xu, L., and Ruan, X., 2007, “Influence of clay charge density and surfactant loading amount on the microstructure of CTMA-montmorillonite hybrids”, Colloids and Surfaces A: Physicochemical and Engineering Aspects 304, 41-48.
    Zviagina, B.B., McCarty, D.K., Srodon, J., and Drits, V.A., 2004, “Interpretation of infrared spectra of dioctahedral smectites in the region of OH-stretching vibrations”, Clays and Clay Minerals 52(4), 399-410.
    Zwahlen, M., Brovelli, D., Caseri, W., and Hahner, G., 2002, “Orientation and electronic structure of ion-exchanged pyridinium compounds on micas”, Journal of Colloid and Interface Science 256, 262-267.

    下載圖示 校內:立即公開
    校外:2009-06-16公開
    QR CODE