| 研究生: |
施育仁 Shih, Yu-Jen |
|---|---|
| 論文名稱: |
以水熱法製備具膨潤性奈米雲母及其有機插層之研究 Swelling and organo-intercalation of hydrothermally Li-treated sericite |
| 指導教授: |
申永輝
Shen, Yun-Hwei |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 169 |
| 中文關鍵詞: | 陽離子交換容量 、混層構造 、雲母礦物 、水熱法 、界面活性劑 |
| 外文關鍵詞: | hydrothermal reaction, cationic surfactants, mica, cation exchange capacity, mixed-layer clay |
| 相關次數: | 點閱:104 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以開發雲母礦物膨潤特性的初衷,將內容概分兩大方向,一是採用水熱法之高溫高壓環境進行絹雲母膨潤改質實驗,二是藉陽離子型界面活性劑以離子交換機制吸附插層膨潤雲母,證明其層內空間以有機改性且擴張之能力,作為高電荷雲母跨進奈米領域的前驅。
在以添加高濃度硝酸鋰進行水熱反應改質絹雲母之研究結果發現,預先脫結晶水可大幅提升水熱反應使層間含鉀轉化成含鋰膨潤程度,以反應溫度170 ℃持溫48小時,K+置換達50 %以上,陽離子交換容量(CEC)從原始3~5 meq/100 g提升至70 meq/100 g,並隨升高反應溫度至270 ℃或增加反應次數,使產品CEC值最終接近原礦電荷理論值120 meq/100 g。熱分析及紅外光光譜(FT-IR)證明改質雲母層間含水現象,並且脫結晶水扭曲結構得以恢復,然原礦中葉蠟石不受水熱反應影響。X光粉末繞射(XRD)顯示晶面間距從原始含K層10 膨脹為含Li層12 ,另外在低角度出現22 及其次階11 晶面是雲母過渡到飽和含Li+相前所形成K、Li層交疊之混層構造。元素分析顯示經水熱反應後層間含K+、Li+總量未明顯改變,並有正比於改質程度的Li+進入結構,此證實雲母能在維持其高電荷量同時達到含水膨潤,並且結構中含Li+模型為取代結晶水之H+的-OLi。
在以陽離子型界面活性劑插層具膨潤性雲母之研究結果顯示,TMA、DP與CTA等三種界劑對雲母吸附量隨分子量依序增加,晶面間距從改質飽和Li+層之12 分別擴張為含界劑層之13.7 、25.7 與35 。而混層樣品晶面則呈現以含K層與含界劑層相互疊合之形式。FT-IR分析界劑分子以相當1倍CEC值之劑量為分界,變換層間極性環境及DP與CTA碳鏈捲曲/伸張(gauche/trans)之相轉換,並在呈伸張狀態(all-trans) 時以約60°傾角支架層內空間。在電子顯微鏡觀察下,膨潤雲母之飽和Li+相與混層相分別以原始厚度約1 nm矽酸鹽層以及夾非膨潤含K+層約2 nm單位層進行晶面拓展。
The objective of this study is to explore the swelling capability of mica. Modified mica has been prepared by a two-step process. The first step is mica sheet alteration, which allows interlayer K+ were replaced by hydrated Li+ under hydrothermal-assisted conditions. The second step is the intercalation of cationic surfactants into interlayer space of Li-mica.
In the study of mica alteration, the thermal-dehydroxylation of mica prior to hydrothermal-Li-treatment leads to a higher exchangeability of interlayer K+ of modified mica. About 50 % of interlayer K+ were removed rapidly in a hydrothermal Li+ solution at 170 ℃ after 48 hours. The CEC value of modified mica increases from 3~5 meq/100 g to 70 meq/100 g. When repeating the hydrothermal-Li-treatment or increasing the reaction temperature to 270 ℃, the CEC value of modified mica increased to the theoretical charge of mica sample, i.e. 120 meq/100 g. Results of thermal and FT-IR analysis suggested the structure distortion of mica caused by dehydroxylation was reconstructed after hydrothermal-Li-treatment. The d-spacing of modified mica obtained by XRD indicated the formation of a mixed-layer 22 phase as mica transited from the K-layer of 10 spacing to the Li-layer of fully hydrated 12 spacing. The invariance of total amounts of interlayer charges before and after hydrothermal-Li-treatment implied that the mica’s high layer charge has not been changed. In addition it is found that a trace amount of Li+ diffused into mica’s lattice and substituted the hydroxyl H+ by transforming into –OLi.
In the study of organo-intercalation, XRD results revealed that the d-spacing of fully modified mica expanded to 13.7 , 25.7 , and 37 after intercalated with TMA, DP, and CTA, respectively. For the mica with mixed-layer phase a large increase in d-spacing was obtained after intercalated with surfactants. Presumbly the formation of superstructure of unexpanded K-layer and organo-layer caused this artifical expansion. The configuration and aggregation state of intercalated surfactants were monitored by FT-IR analysis using frequency shifts in CH2 stretching and scissoring vibrations. Conformations of the alkyl chains of intercalated surfactant transferred from “gauche” to “trans” state at a surfactant loading of 1.0 CEC equivalence, and hydrophilic state of interlayer inversed simultaneously. The paraffin-like arrangement of intercalated surfactant with the chains tilted an average angle of 60° with respect the surface was found at satuated loading of surfactant. TEM micrographs demonstrated that after intercalation mica sheets were delaminated to single-layers with thickness of 1 nm for fully hydrated mica, and 2 nm for mica containing mixed-layer phase.
王明光,2000,「土壤環境化學」,藝軒圖書出版社。
王明光,江博能,2003,「以同構異素取代來分類黏土礦物」,經濟部中央地質調查所彙刊 16,141-157。
王曄,陳豐斌,黎彥成,吳愷之,2003,「聚丙烯與有機黏土奈米複合之混煉加工研究」,化工 50(1),83-89。
林曉洪,賴仁堯,王秀華,2005,「奈米化塗料級絹雲母顏料研磨之探討」,中華林學季刊 39(2),93-102。
林曉洪,賴仁堯,王秀華,2006,「奈米級絹雲母顏料在輕量塗布紙之應用」,中華林學季刊 39(3),389-407。
洪崑煌,1996,「土壤化學」,國立編譯館,34-38。
陳忠吾,2003,「奈米黏土/塑膠複材最新研發與應用現況」,塑膠資訊 82,17-24。
曹祥恩,2003,「聚合物系納米複合材料的開發」,高分子工業 108,63-70。
經濟部礦業司,1995,「台灣地區雲母之利用需求與流向調查」,台灣礦業 47(4),39-55。
趙杏媛,張友瑜,1990,「黏土礦物與黏土礦物分析」,海洋出版社。
劉時州,2008,「傳統複材產業新契機-奈米複合材料之概況」,工業材料雜誌 259,184-192。
蔡宗燕,1998,「奈米材料-奈米級無機材料的發展與應用」,化工資訊 12(2),28-42。
蔡敏行,廖學誠,1989,「台東向陽地區絹雲母、葉蠟石之選礦程序與經濟評估之研究」,行政院國家科學委員會專題研究報告,NSC75-0405-E006-021。
Adams, J.M., Ballantine, J.A., Graham, H., Laub, R.J., Purnell, J.H., Reid, P.I., Shaman, W.Y.M., and Thomas, J.M., 1979, “Selective chemical conversions using sheet silicate intercalates: low-temperature addition of water to 1-alkenes”, Journal of Catalysis 58, 238-252.
Ahn, J.H., and Peacor, D.R., 1986, “Transmission electron microscope data for rectorite: Implications for the origin and structure of fundamental particles”, Clays and Clay Minerals 34(2), 180-186.
Ahn, J.H., and Peacor, D.R., 1989, “Illite/smectite from gulf shales: A reappraisal of transmission electron microscope images”, Clays and Clay Minerals 37(6), 542-546.
Aines, R.D., and Rossman, G.R., 1985, “The high temperature behavior of trace hydrous components in silicate minerals”, American Mineralogist 70, 1169-1179.
Atkins, P.W., 1998, “Physical Chemistry”, Oxford University Press, the Sixth Edition, 930.
Alba, M.D., Alvero, R., Becerro, A.I., Castro, M.A., and Trillo, J.M., 1998, “Chemical behavior of lithium ions in reexpanded Li-montmorillonites”, Journal of Physical Chemistry B 102, 2207-2213.
Alvero, R., Alba, M.D., Castro, M.A., and Trillo, J.M., 1994, “Reversible migration of lithium in montmorillonite”, The Journal of Physical Chemistry 98, 7848-7853.
Bailey, S.W., 1984, “Classification and structures of the micas”, Reviews in Mineralogy 13, 1-12.
Baksh, M.S.A., and Yang, R.T., 1992, “Unique adsorption properties and potential energy profiles of microporous pillared clays”, American Institute of Chemical Engineerings Journal 38, 1357-1368.
Ballantine, J.A., and Purnell, J.H., 1984, “Sheet silicates: broad spectrum catalysts from organic synthesis”, Journal of Molecular Catalysis 27, 157-167.
Barron, P.F., and Frost, R.L., 1984, “Solid-state 29Si and 27Al nuclear magnetic resonance investigation of the dehydroxylation of pyrophyllite”, Journal of Physical Chemistry 88, 6206-6209.
Beran, A., 2002, “Infrared spectroscopy of Micas”, Reviews in Mineralogy and Geochemistry 46, 351-369.
Besson, G., and Drits, V.A., 1997a, “Refined relationship between chemical composition of dioctahedral fine-grained micaceous minerals and their infrared spectra within the OH stretching region. Part I: identification of the OH stretching bands”, Clays and Clay Minerals 45(2), 158-169.
Besson, G., and Drits, V.A., 1997b, “Refined relationship between chemical composition of dioctahedral fine-grained micaceous minerals and their infrared spectra within the OH stretching region. Part II: the main factors affecting OH vibrations and quantitative analysis”, Clays and Clay Minerals 45(2), 170-183.
Bishop, J.L. Pieters, C.M., and Edwards, J.O., 1994, “Infrared spectroscopic analyses on the nature of water in montmorillonite”, Clays and Clay Minerals 42(6), 702-716.
Bookin, A.S., and Drits, V.A., 1982, “Factors affecting orientation of OH-vectors in micas”, Clays and Clay Minerals 30(6), 415-421.
Bortun, A.I., Bortun, L.N., Khainakov, S.A., and Clearfield, A., 1998, “Ion exchange properties of the sodium phlogopite and biotite”, Solvent Extraction and Ion Exchange 16(4), 1067-1090.
Boyd, S.A. Lee, J.F., and Mortland, M.M, 1988, “Attenuating organic contaminant mobility by soil modification”, Nature 333, 345-347.
Bracke, G., Satir, M., and Kraub, P., 1995, “The cryptand [222] for exchanging cations of micas” Clays and Clay Minerals 43(6), 732-737.
Breen, C., Deane, A.T., and Flynn, J.J., 1987, “The acidity of trivalent cation-exchanged montmorillonite. Temperature-programmed desorption and infrared studies of pyridine and n-butyamine”, Clay Minerals 22, 169-178.
Brett, N.H., MacKenzie, K.J.D., and Sharp, J.H., 1970, “The thermal decomposition of hydrous layer silicates and their related hydroxides”, Quarterly Reviews of the Chemical Society 24, 185-207.
Bridgeman, C.H., Buckingham, A.D., Skipper, N.T., and Payne, M.C., 1996, “Ab-initio total energy study of uncharged 2:1 clays and their interaction with water”, Molecular Physics 89(3), 879-888.
Brigatti, M.F., and Guggenheim, S., 2002, “Micas: Crystal chemistry and metamorphic petrology Ch.1: Mica crystal chemistry and the influence of pressure, temperature, and solid solution on atomistic models”, Reviews in Mineralogy and Geochemistry 46, 1-54.
Brindley, G.W., and Hayami, R., 1963, “Kinetics and mechanisms of dehydration and recrystallization of serpentine”, Clays and Clay Minerals 12, 35-47.
Brindley, G.W., and Brown, G., 1980, “Mineralogical society monograph No. 5: Crystal structures of clay minerals and their X-ray identification”, Mineralogical Society.
Brovelli, D., Caseri, W.R., and Hahner, G., 1999, “Self-assembled monolayers of alkylammonium ions on mica: direct determination of the orientation of the alkyl chains”, Journal of Colloids and Interface Sciences 216, 418-423.
Bujdak, J., Slosiarikova, H., and Cicel, B., 1992, “Interaction of long chain alkylammonium cations with reduced charge montmorillonite”, Journal of Inclusion Phenomena and Molecular Recognition in Chemistry 13, 321-327.
Bujdak, J., Hackett, E., and Giannelis, E.P, 2000, “Effect of layer charge on the intercalation of poly(ethylene oxide) in layered silicates: implications on nanocomposite polymer electrolytes”, Chemistry of Materials 12, 2168-2174.
Calvet, R., and Prost, R., 1971, “Cation migration into empty octahedral sites and surface properties of clays”, Clays and Clay Minerals 19, 175-186.
Campanelli, A.R., and Scaramuzza, L., 1986, “Hexadecyltrimethylamm onium bromide”, Acta Crystallographica section C 42, 1380-1383.
Casal, H.L., Mantsch, H.H., and Cameron, D.G., 1982, “Interchain vibration coupling in phase II (hexagonal) n-alkanes”, Journal of Chemical Physics 77(6), 2825-2830.
Caseri, W.R., Shelden, R.A., and Suter, U.W., 1992, “Preparation of muscovite with ultrahigh specific surface area by chemical cleavage”, Colloid and Polymer Science 270, 392-398.
Catti, M., Farraris, G., and Ivaldi, G., 1989, “Thermal strain analysis in the crystal structure of muscovite at 700 ℃”, European Journal of Mineralogy 1, 625-632.
Chang, F.C., Skipper, N.T., and Sposito, G., 1998, “Monte Carlo and molecular dynamics simulations of electrical double-layer structure in potassium montmorillonite hydrated”, Langmuir 14, 1201-1207.
Clementz, D.M., and Mortland, M.M., 1974, “Properties of reduced charge montmorillonite: Tetra-alkylammonium ion exchange forms”, Clays and Clay Minerlas 22, 223-229.
Cox, A.E., and Joern, B.C., 1997, “Release kinetics of nonexchangeable potassium in soils using sodium tetraphenylnoron”, Soil Science 162(8), 588-598.
Delville, A., 1991, “Modeling the clay-water interface”, Langmuir 7, 547-555.
Drits, V.A., Besson, G., and Muller, F., 1995, “An improved model for structural transformations of heat-treated aluminous dioctahedral 2:1 layer silicates”, Clays and Clay Minerals 43(6), 718-731.
Dontsova, K.M., Norton, L.D., Johnston, C.T., and Bigham, J.M., 2004, “Influence of exchangeable cations on water adsorption by soil calys”, Soil Science Society of American Journal 68, 1218-1227.
Ertem, G., 1972, “Irreversible collapse of montmorillonite”, Clays and Clay Minerals 20, 199-205.
Farmer, V.C. and Russell, J.D., 1964, “The infra-red spectra of layer silicates”, Spectrochimica Acta 20, 1140-1173.
Farmer, V.C., and Russell, J.D., 1966, “Effects of particle size and structure on the vibrational frequencies of layer silicates” Spectrochimica Acta 22, 389-398.
Farmer, V.C. and Russell, J.D., 1967, “Infrared absorption spectrometry in clay studies”, Clays and Clay Minerals 15(1), 121-142.
Farmer, V.C., 1974, “The infrared spectra of minerals, Ch. 15: The layer silicates”, Mineralogical Society, 331-363.
Fitzgerald, J.J., Hamza, A.I., Dec, S.F., and Bronnimann, C.E., 1996, “Solid-state 27Al and 29Si NMR and 1H CRAMPS studies of the thermal transformations of the 2:1 phyllosilicate pyrophyllite”, Journal of Physical Chemistry 100, 17351-17360.
Friedrich, F., Heissler, S., Faubel, W., Nuesch, R., and P. Weidler, G., 2007, “Cu(II)-intercalated muscovite: An infrared spectroscopic study”, Vibrational Spectroscopy 23, 427-434.
Frost, R.L., and Barron, P.F., 1984, “Solid-state silicon-29 and Aluminum-27 nuclear magnetic resonance investigation of the dehydroxylation of pyrophyllite”, Journal of Physical Chemistry 88, 6206-6209.
Fukushima, Y. and Inagaki, S., 1987, “Synthesis of an intercalated compound of montmorillonite and 6-polyamide”, Journal of Inclusion Phenomena 5, 472-482.
Gaines, G.L., and Vedder, W., 1964, “Dehydroxylation of muscovite”, Nature 201, 495.
Gates, W.P., Komadel, P., Madejova, J., Bujdak, J., Stucki, J.W., and Kirkpatrick, R.J., 2000, “Electronic and structural properties of reduced-charge montmorillonite”, Applied Clay Science 16, 257-271.
Giese Jr., R.F., 1971, “Hydroxyl orientation in muscovite as indicated by electrostatic energy calculations”, Science 172, 263-264.
Giese Jr., R.F., 1977, “The influence of hydroxyl orientation, stacking sequence, and ionic substitutions on the interlayer bonding of micas”, Clays and Clay Minerals 25, 102-104.
Giese Jr., R.F., 1979, “Hydroxyl orientation in 2:1 phyllosilicates”, Clays and Clay Minerals 27(3), 213-223.
Giogetti, G., Monecke, T., Kleeberg, R., and Herzig, P.M., 2003, “Intermediate sodium-potassium mica in hydrothermally altered rocks of the Waterloo deposite, Australia: a combined SEM-EMP-XRD-TEM study”, Contributions to Mineralogy and Petrology 146, 159-173.
Gournis, D., Karakassides, M.A., Bakas, T., Boukos, N., and Petridis, D., 2002, “Catalytic synthesis of carbon nanotubes on clay minerals”, Carbon 40, 2461-2646.
Greathousem, J., and Sposito, G., 1998, “Monte Carlo and molecular dynamics studies of interlayer structure in Li(H2O)3-smectites”, Journal of Physical Chemistry B 102, 2406-2414.
Gridi-Bennadji, F., Beneu, B., Laval, J.P., and Blanchart, P., 2008, “Structural transformations of muscovite at high temperature by X-ray and neutron diffraction”, Applied Clay Science 38, 259-267.
Grim, R.E., 1953, “McGraw-Hill series in geological the sciences: Clay mineralogy”, McGraw-Hill Book Company, Inc.
Gualtieri, A., Artioli, G., Bellotto, M., Clark, S.M., and Palosz, B., 1994, “High temperature phase transition of muscovite-2M1: Angle and energy dispersive powder diffraction studies”, Materials Science Forum 166-169, 547-552.
Guggenheim, S., Chang, Y.H., and Koster van Groos, A.F., 1987, “Muscovite dehydroxylation: high-temperature studies”, American Mineralogist 72, 537-550.
Guggenheim, S., and Koster van Groos, A.F., 1992, “High-pressure differential thermal analysis (HP-DTA) II. Dehydroxylation reactions at elevated pressures in phyllosilicates”, Journal of Thermal Analysis 38, 2529-2548.
Hayes, W.A., and Schwartz, D.K., 1998, “Two-stage growth of octadecyltrimethyl ammonium bromide monolayers at mica from aqueous solution below the Krafft point”, Langmuir 14, 5913-5917.
He, H., Frost, R.L., Bostrom, T., Yuan, P., Duong, L., Yang, D., Xi, Y., and Kloprogge, J.T., 2006, “Changes in the morphology of organoclays with HDTMA+ surfactant loading”, Applied Clay Science 31, 262-271.
Heinz, H., Castelijns, H.J., and Suter, U.W., 2003, “Structure and phase transition of alkyl chains on micas”, Journal of American Chemical Society 125, 9500-9510.
Heller-Kallai, L., and Rozenson, I., 1980, “Dehydroxylation of dioctahedral phyllo silicates”, Clays and Clay Minerals 28(5), 355-368.
Heller-Kallai, L., 2001, “Protonation-deprotonation of dioctahedral smectite”, Applied Clay Science 20, 27-38.
Hofmann, V., and Klemen, R., 1950, “Verlust der Austausch fahigkeit von Lithiumionen and Bentonit durch Erhizung”, Zeitschrift fr anorganische und allgemeine Chemie 262, 95-99.
Hongping, H., Ray, F.L., and Jiangxi, Z., 2004, “Infrared study of HDTMA+ intercalated montmorillonite”, Spectrochimica Acta Part A 60, 2853-2859.
Hsu, H.L., and Jehng, J.M., 2009, “Synthesis and characterization of carbon nanotubes on clay minerals and its application to a hydrogen peroxide biosensor” Materials Science and Engineering C 29(1), 55-61.
Hunter, R.J., 1993, “Introduction to modern colloid science, Ch. 6: adsorption at interfaces”, Oxford University Press, 164-193.
Ilton, E.S., Moses, C.O., and Veblen, D.R., 2000, “Using X-ray photoelectron spectroscopy to discriminate amount different sorption sites of micas: with implications for heterogeneous reduction of chromate at the mica-water interface”, Cheochimica et Cosmochimica Acta 64-8, 1437-1450.
Ikazaki, F., Uchida, K., Kamiya, K., Kawai, A., Gotoh, A., and Akiba, E., 1996, “Chemically assisted dry comminution of sericite – dry comminution method accompanied by ion-exchange”, International Journal of Mineral Processing 44-45, 93-100.
Ishii, M., Shimanouchi, T. and Nakahira, M., 1967, “Far infra-red adsorption spectra of layer silicates”, Inorganica Chimica Acta 1, 387-392.
Ismail, F.T., and Scott, A.D., 1972, “Temperature effects on interlayer potassium exchange in micaceous minerals”, Soil Science Society of American Journal 36, 506-510.
Itami, K., and Fujitani, H., 2005, “Charge characteristics and related dispersion /flocculation behavior of soil colloids as the cause of turbility”, Colloids and Surfaces A-Physicochemical and Engineering Aspects 265, 55-63.
Jackson, M.L., 1962, “Interlayering of Expansible Layer Silicates in Soils by Chemical Weathering” Clays and Clay Minerals 11, 29-46.
Jaynes, W.F., and Bigham, J.M., 1987, “Charge reduction, octahedral charge, and lithiym retention in heated, Li-saturated smectites”, Clays and Clay Minerals 35, 440-448.
Jaynes, W.F., and Boyd, S.A., 1991, “Clay mineral type and organic compound sorption by hexadecyltrimethlyammonium-exchanged clays”, Soil Science Society of America Journal 55, 43-48.
Jaynes, W.F., and Vance, G.F., 1996, “BTEX sorption by organo-clay: Cosorptive enhancement and equivalence of interlayer complexes”, Soil Science Society of America Journal 60, 1742-1749.
Kawai, T., Umemura, J., Takenaka, T., Kodama, M., and Seki, S., 1985, “Fourier transform infrared study on the phase transitions of an octadecyltrimethylammonium chloride-water system”, Journal of Colloid and Interface Science 103(1), 56-61.
Kawai, T., Umemura, J., Takenaka, T., Kodama, M., Ogawa, Y., and Seki, S., 1986, “Polarized Fourier transform infrared spectra and molecular orientation of a water-dioctadecyldimethyl- ammonium chloride system in the coagel and gel phases”, Langmuir 2, 739-743.
Keppler, H., 1990, “Ion exchange reactions between dehydroxylated micas and salt melts and the crystal chemistry of the interlayer cation in micas”, American Mineralogist 75, 529-538.
Kitajima, K., Koyama, F., and Takusagawa, N., 1985, “Synthesis and swelling properties of fluorine micas with variable layer charges”, Bulletin of the Chemical Society of Japan 58, 1325-1326.
Kitajima, K., and Takusagawa, N., 1990, “Effects of tetrahedral isomorphic substitution on the IR spectra of synthetic fluorine micas”, Clay Minerals 25, 235-241.
Kitajima, K., Taruta, S. and Takusagawa, N., 1991, “Effects of layer charge on the IR spectra of synthetic fluorine micas”, Clay Minerals 26, 435-440.
Klein, C., and Hurlbut, Jr., C.S., 1993, “Manual of mineralogy, 23th edition”, John Wiley & Sons, Inc.
Klimentidis, R.E. and Mackinnon, I.D.R., 1986, “High-resolution imaging of ordered mixed-layer clays”, Clays and Clay Minerals 34(2), 155-164.
Kodama, T., Harada, Y., Ueda, M., Shimizu, K., Shuto, K., Komarneni, S., Hoffbauer, W., and Schneider, H., 2001, “Crystal-size control and characterization of Na-4-mica prepared from kaolinite”, Journal of Materials Chemistry 11, 1222-1227.
Kodama, T., Nagai, S., Hasegawa, K., Shimizu, K., and Kormaneni, S., 2002, “Synthesis of novel Na-rich mica and selective strontium ion exchange and fixation”, Separation Science and Technology 37(8), 1927-1942.
Koh, S.M., and Dixon, J.B., 2001, “Preparation and application of organo-minerals as sorbents of phenol, benzene and toluene”, Applied Clay Science 18, 111-122.
Kojima, Y., Usuki, A., Kawasumi, M., Okada, A., Kurauchi, T., and Kamigaito, O., 1993a, “Sorption of water in Nylon 6-clay hybrid”, Journal of Applied Polymer Science 49, 1259-1264.
Kojima, Y., Usuki, A., Kawasumi, M., Okada, A., Fukushima, Y., Kurauchi, T., and Kamigaito, O., 1993b, “Mechanical properties of nylon 6-caly hybrid”, Journal of Materials Research 8(5), 1185-1189.
Komarneni, S., and Roy, R., 1988 “A Cesium-Selective Ion Sieve Made by Topotactic Leaching of Phlogopite Mica” Science 239(4845), 1286-1288.
Komarneni, S., and Ravella, R., 2008, “Novel clays: solid-state synthesis, characterization and cation exchange selectivity”, Current Applied Physics 8, 104-106
Komarneni, S., Ravella, R., Noh, Y.D., and Mackenzie, K.J.D., 2009, “Synthesis and characterization of low charge sodium fluorophlogopite mica-type clay minerals”, Applied Clay Science 42, 524-528.
Kozak, L.M., and Scott, A.D., 1985, “Change in potassium exchangeability in heated lepidomelane”, Applied Clay Science 1, 29-42.
Kung, K.H.S., and Hayes, K.F., 1993, “Fourier transform infrared spectroscopic study of the adsorption of cetyltrimethylammonim bromide and cetylpyridium on silica”, Langmuir 9, 263-267.
Kurian, M., Galvin, M.E., Trapa, P.E., Sadoway, D.R., and Mayes, A.M., 2005, “Single-ion conducting polymer-silicate nanocomposite electrolytes for lithium battery applications”, Electrochimica Acta 50, 2125-2134.
Lagaly, G., 1981, “Characterization of clays by organic compounds”, Clay Minerals 16, 1-21.
Lagaly, G., 1982, “Layer charge heterogeneity in vermiculites”, Clays and Clay Minerals 30(3), 215-222.
Larsen, D.H., 1952, “Use of clay in drilling fluids”, Clays and Clay Minerals (1), 269-281.
Lee, J.H., and Guggenheim, S., 1981, “Single crystal X-ray refinement of pyrophyllite -1Tc”, American Mineralogist 66, 350-357.
Leonard, R.A., and Weed, S.B., 1970, “Mica weathering rates as related to mica type and composition”, Clays and Clay Minerals 18, 187-195.
Lerot, L., and Low, F., 1976, “Effect of swelling on the infrared absorption spectrum of montmorillonite” Clays and Clay Minerals 24, 191-199.
Li, Y., and Ishida, H., 2003, “Concentration-dependent conformation of alkyl tail in the nanoconfined space: Hexadecylamine in the silicate galleries”, Langmuir 19, 2479-2484.
Li. Z., Jiang, W.T., and Hong, H., 2008, “An FTIR investigation of hexadecyltrimethyl ammonium intercalation into rectorite”, Spectrochimica Acta Part A 71, 1525-1534.
Livi, K.J.T., Veblen, D.R., Ferry, J.M., and Frey, M., 2008, “Evolution of 2:1 layered silicates in low-grade metamorphosed Liassic shales of Central Switzerland”, Journal of Metamorphic Geology 15(3), 323-344.
Livi, K.J.T., Christidis, G.E., Arkai, P., and Veblen, D.R., 2008, “White mica domain formation: A model for paragonite, margarite, and muscovite formation during prograde metamorphism”, American Mineralogist 93, 520-527.
Madejova, J., Bujdak, J., Gates. W., and Komadel, P., 1996, “Preparation and infrared spectroscopic characterization of reduced charge Montmorillonite with various Li contents”, Clay Minerals 31, 233-241.
Madejova, J., Arvaiova, B., and Komadel, P., 1999, “FTIR spectroscopic characterization of thermally treated Cu2+, Cd2+, and Li+ montmorillonite”, Spectrochimica Acta Part A 55, 2467-2476.
Madejova, J., Janek, M., Komadel. P., Herbert, H.J., and Moog, H.C., 2002, “FTIR analysis of water in MX-80 bentonite compacted from high salinary salt systems”, Applied Clay Science 20, 255-271.
Madejova, J., 2003, “Review, FTIR techniques in clay mineral studies”, Vibrational Spectroscopy 31, 1-10.
Mackenzie, K.J.D., Brown, I.W.M., Cardile, C.M., and Meinhold, R.H., 1987, “The thermal reactions of muscovite studied by high-resolution solid-state 29-Si and 27-Al NMR”, Journal of Materials Science 22, 2645-2654.
Maes, A., and Cremers, A., 1978, “Charge density effects in ion equilibra. Part 2-Homovalent exchange equilibra”, Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed 74, 1234-1241.
Martin-Rubi, J.A., Rausell-Colom, J.A., and Serratosa, J.M., 1974, “Infrared absorption and X-ray diffraction study of butylammonium complexes of phyllosilicates”, Clays and Clay Minerals 22, 87-90.
Martin de Vidales, J.L, Vila, E., Ruiz-Amil, A., Calle, C., and Pons, C.H., 1990, “Interstratification in Malawi vermiculite: Effect of bi-ionic K-Mg solutions”, Clays and Clay Minerals 38(5), 513-521.
Mazzucato, E., Artioli, G., and Gualtieri, A., 1998, “Dehydroxylation kinetics of Muscovite- 2M1 ”, Materials Science Forum 278-281, 424-429.
Mbouguen, J.K., Ngameni, E., and Walcarius, A., 2006, “Organoclay-enzyme film electrodes”, Analytica Chimica Acta 578, 145-155.
McBride, M.B., 1994, “Environmental chemistry of soils”, Oxford University Press, 211-217.
McCauley, J.W., and Newnham, R.E., 1971, “Origin and prediction of ditrigonal distortion in micas”, American Mineralogist 56, 1626-1638.
McKeown, D.A., Bell, M.I., and Etz, E.S., 1999, “Vibrational analysis of the dioctahedral mica:2M1 muscovite”, American Mineralogist 84, 1041-1048.
Meier, L.P., Shelden, R.A., Caseri, W.R., and Suter, U.W., 1994, “Polymerization of styrene with initiator ionically bound to high surface area mica: grafting via an unexpected mechanism”, Macromolecules 27, 1637-1642.
Milliken, T.H., Oblad, A.G., and Mills, G.A., 1952, “Use of clays as petroleum cracking catalysts”, Clays and Clay Minerals (1), 314-326.
Mizuhata, M., Ito, F., and Deki, S., 2005, “Transport properties of non-aqueous lithium electrolyte coexisting with porous solid materials montmorillonite based electrolyte composite system”, Journal of Power Sources 146, 365-370.
Mookherjee, M., and Redfern, S.A.T. and Zhang, M., 2001, “Thermal response of structure and hydroxyl ion of phengite-2M1: an in situ neutron diffraction and FTIR study”, European Journal of Mineralogy 13, 545-555.
Mookherjee, M., and Redfern, S.A.T., 2002, “A high temperature Fourier transform infrared study of the interlayer and Si-O stretching region in phengite-2M1”, Clay Minerals 37, 323-336.
Muller, F., Drits, V., Plancon, A., and Robert, J.L., 2000, “Structural transformation of 2:1 dioctahedral layer silicates during dehydroxylation-rehydroxylation reactions”, Clays and Clay Minerals 48(5), 572-585.
Nadeau, P.H., Wilson, M.J., McHardy, W.J., and Tait, J.M., 1984, “Interparticle diffraction: A new concept for interstratified clays”, Clay Minerals 19, 757-769.
Navratilova, Z., and Kula, P., 2003, “Clay modified electrodes: present applications and prospects”, Electroanalysis 15(10), 837-846.
Newman, A.C.D., 1987, “Chemistry of clays and clay minerals, Ch. 7, Thermal, oxidation and reduction reactions of clay minerals”, Mineralogical Society Monograph No. 6, 317-370.
Onodera, Y., Iwasaki, T., Ebina, T., Hayashi, H., Torii, K., Chatterjee, A. and Mimura, H., 1998, “Effect of layer charge on fixation of cesium ions in smectites”, Journal of Contaminant Hydrology 35, 131-140.
Osman, M.A., Christoph, M., Caseri, W.R., and Suter, U.W., 1999a, “Alkali metals ion exchange on muscovite mica”, Journal of Colloid and Interface Science 209, 232-239.
Osman, M.A., and Suter, U.W., 1999b, “Dodecylpyridinium/alkali metal metals ion exchange on muscovite mica”, Journal of Colloid and Interface Science 214, 400-406.
Osman, M.A., Seyfang, G., and Suter, U.W., 2000, “Two-dimensional melting of alkane monolayers ionically bonded to mica”, The Journal of Physical Chemistry B 104(18), 4433-4439.
Osman, M.A., 2006, “Organo-vermiculite: synthesis, structure and properties. Platelike nanoparticles with high aspect ratio”, Journal of Materials Chemistry 16, 3007-3013.
Papirer, E., Eckhardt, A., and Muller, F., 1990, “Grinding of muscovite: influence of the grinding medium”, Journal of Materials Science 25, 5109-5117.
Paulus, W.J., Komarneri, S., and Roy, R, 1992, “Bulk synthesis and selective exchange of strontium ions in Na4Mg6Al4Si4O20F4 mica”, Nature 357, 571-573.
Pearson, R.G., 1963, “Hard and soft acids and bases”, Journal of the American Chemical Society 85, 3533-3539.
Perry, E.P., 1963, “An infrared study of pyridine adsorbed on acidic solids characterization of surface acidity”, Journal of Catalysis 2, 371-379.
Pinnavaia, T.J., 1983, “Intercalated clay catalysts”, Science 220(4595), 365-371.
Ponder, S.M., and Mallouk, T.E., 1999, “Recovery of ammonium and cesium ions from aqueous waste streams by sodium tetraphenylborate”, Industrial and Engineering Chemistry Research 38, 4007-4010.
Prost, P., and Laperche, V., 1990, “Far infrared study of potassium in micas”, Clays and Clay Minerals 38, 351-355.
Purnell, J.H., Thomas, J.M., Diddams, P., Ballantine, J.A., and Jones, W., 1989, “The influence of exchangeable aluminium ion concentration and of layer charge on the catalytic activity of montmorillonite clays”, Catalysis Letters 2, 125-128.
Raman, K.V., and Jackson, M.L., 1965, “Layer charge relations in minerals of micaeous soils and sediments”, Clays and Clay Minerals 14, 53-68.
Rausell-Colom, J.A., 1964, “Small angle X-ray diffraction study of the swelling of butyl ammonium vermiculite”, Transactions of the Faraday Society 60, 190-201.
Reed, M.G., and Scott, A.D., 1962, “Kinetics of potassium release from biotite and muscovite in sodium tetraphenylboron solutions”, Soil Science Society of America proceedings 26, 437-440.
von Reichenbach, H.G., and Rich, C.I., 1969, “Potassium release from musvoite as influenced by particle size”, Clays and Clay Minerals 17, 23-29.
Rimsaite, J., 1970, “Structural formulae of oxidized and hydroxyl-deficient micas and decomposition of hydroxyl group”, Contributions to Mineralogy and Petrology 25, 225-240.
Robert, J.L., and Kodama, H., 1988, “Generalization of the correlations between hydroxyl-stretching wavenumbers and composition of micas in the system K2O-MgO-Al2O3-SiO2-H2O: a single model for trioctahedral and dioctahedral micas”, American Journal of Science 288-A, 196-212.
Russell, J.D., and Farmer, V.C., 1964, “Infra-red spectroscopic study of the dehydration of montmorillonite and saponite”, Clay Minerals Bulletin 5, 443-464.
Russell, J.D., 1979, “An infrared spectroscopic study of the interaction of nontronite and ferruginous montmorillonites with alkali metal hydroxides”, Clay Minerals 14, 127-137.
Sato, H., Yamagishi, A., and Kaeamura, K., 2001, “Molecular simulation of flexibility of a single clay layer”, Journal of Physical Chemistry B 105, 7990-7997.
Sayin, M., and von Reichenbach, H.G., 1978, “Infrared spectra of muscovite as affected by chemical composition, heating and particle size”, Clay Minerals 13, 241-254.
Sawhney, B.L., 1972, “Selective sorption and fixation of cations by clay minerals: A review”, Clays and Clay Minerals 20, 93-100.
Sawhney, B.L., and Singh, S.S., 1997, “Sorption of atrazine by Al- and Ca-saturated smectite”, Clays and Clay Minerals 45(3), 333-338.
Scheuing, D.R., and Weers, J.G., 1990, “A Fourier transform infrared spectroscopic study of dodecyltrimethylammonium chloride/sodium dodecyl sulfate surfactant mixtures”, Langmuir 6, 665-671.
Schroeder, P.A., 1990, “Far infrared, X-ray powder diffraction, and chemical investigation of potassium micas”, American Mineralogist 75, 983-991.
Scott, A.D., and Smith, S.J., 1966, “Susceptibility of interlayer potassium in micas to exchange with sodium”, Clays and Clay Minerals 14, 69-81.
Serratosa, J.M., 1966, “Infrared analysis of the orientation of pyridine molecules in clay complexes”, Clays and Clay Minerals 14, 385-391.
Serratosa, J.M., Johns, W.D., and Shimoyama, A., 1970, “I.R. study of alkyl-ammonium vermiculite complexes”, Clays and Clay Minerals 18, 107-113.
Shen, Y.H., 2004, “Phenol sorption by organoclays having different charge characteristics”, Colloids and Surfaces A-Physicochemical and Engineering Aspects 232,143-149.
Shimizu, K., Murayama, H., Nagai, A., Shimada, A., Hatamachi, T., Kodama, T., and Kitayama, Y., 2005, “Degradation of hydrophobic organic pollutants by titania pillared fluorine mica as a subtract specific photocatalyst”, Applied Catalysis B: Environmental 55, 141-148.
Shimizu, K., Nakamuro, Y., Yamanaka, R., Hatamachi, T., and Kodama, T., 2006, “Pillaring of high charge density synthetic micas (Na-4-mica and Na-3-mica) by interaction of oxides nanoparticles”, Microporous and Mesoporous Materials 95, 135-140.
Slade, P.G., Raupach, M., and Emerson, W.W., 1978, “The ordering of cetylpyridinium bromide on vermiculite”, Clays and Clay Minerals 26(2), 125-134.
Slade, P.G., and Gates, W.P., 2004, “The swelling of HDTMA smectites as influenced by their preparation and layer charges”, Applied Clay Science 25, 93-101.
Sposito, G., 1981, “The thermodynamics of soil solutions: Ch.3 Solubility equilibria in soil solutions”, Oxford Clarendon Press, 66-101.
Sposito, G., and Prost, R., 1982, “Structure of water adsorbed on smectites”, Chemical Reviews 82(6), 553-573.
Sposito, G., Prost, R., and Gaultier, J.P., 1983, “Infrared spectroscopic study of adsorbed water on reduced charge Na/Li montmorillonite”, Clays and Clay Minerals 31-1, 9-16.
Sposito, G., 1993, “Surface complexation of metals on natural colloids”, Ion Exchange and Solvent Extraction 11, 211-236.
Sposito, G., Skipper, N.T., Sutton, R., Park, S., Soper, A.K., and Greathouse, J.A., 1999, “Surface geochemistry of clay minerals”, Proceedings of the National Academy of Sciences of the United States of America 96, 3358-3364.
Stackhouse, S., Coveney, P.V., and Benoit, D.M., 2004, “Density Functional Theory Based study of the dehydroxylation behavior of aluminous dioctahedral 2:1 layer-type clay minerals”, Journal of Physical Chemistry B 108, 9685-9694.
Stixrude, L., and Peacor, D.R., 2002, “First principles study of illite-smectite and implications for clay mineral systems” Nature 420, 165-168.
Stout, S.A., and Komarneni, S., 2002, “A microwave-assisted method for the rapid removal of K from phlogopite”, Clays and Clay Minerals 50(2), 248-253.
Stout, S.A., Cho, Y., and Komarneni, S., 2006, “Uptake of cesium and strontium cations by potassium-depleted phlogopite”, Applied Clay Science 31, 306-313.
Su, C.C., and Shen, Y.H., 2008, “Effects of poly(ethylene oxide) adsorption on the dispersion of smectites”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 312(1), 1-6.
Sullivan, P.J., 1977, “The principle of hard and soft acids and bases as applied to exchangeable cation selectivity in soils”, Soil Science 124(2), 117-121.
Sylvester, P., Clearfield, A., and Diaz, R.J., 1999, “Pillared montmorillonite: Cesium- selective ion-exchange materials”, Separation Science and Technology 34(12), 2293-2305.
Takeda, H., and Morosin, B., 1975, “Comparison of observed and predicted structural parameters of mica at high temperature”, Acta Crystallographica B31, 2444-2452.
Tateyama, H., Nishimura, S., Tsunematsu, K., Jinnai, K., Adachi, Y., and Kimura, M., 1992, “Synthesis of expandable fluorine mica from talc”, Clays and Clay Minerals 40(2), 180-185.
Tomita, K., and Sudo, T., 1971, “Transformation of sericite into an interstratified mineral”, Clays and Clay Minerals 19, 263-270.
Tomita, K., and Dozono, M., 1972, “Formation of an interstratified mineral by extraction of potassium from mica with sodium tetraphenylboron” Clays and Clay Minerals 20, 225-231.
Tomita, K., 1974, Similarities of rehydration and rehydroxylation properties of rectorite and 2M clay mica, Clays and Clay Minerals 22, 79-85.
Tomita, K., 1977, Experimental transformation of 2M sericite into a rectorite-type mixed-layer mineral by treatment with various salts, Clays and Clay Minerals 25, 302-308.
Trillo, J.M., Alba, M.D., Alvero, R., and Castro, M.A., 1993, “Reexpansion of collapsed Li-montmorillonite; evidence on the location of Li+ ions”, Journal of the Chemical Society, Chemical Communications 24, 1809-1811.
Usuki, A., Kojima, Y., Kawasumi, M., Okada, A., Fukushima, Y., Kurauchi, T., and Kamigaito, O., 1993, “Synthesis of nylon 6-clay hybrid”, Journal of Materials Research 8(5), 1179-1184.
Vaccari, A., 1998, “Preparation and catalytic properties of cationic and anionic clays” Catalysis Today 41, 53-71.
Vahedi-Faridi, A., and Guggenheim, S., 1997, “Crystal structure of tetramethylammonium- exchanged vermiculite”, Clays and Clay Minerals 45(6), 859-866.
Vahedi-Faridi, A., and Guggenheim, S., 1999, “Structural study of monomethylammonium and dimethylammonium-exchanged vermiculites”, Clays and Clay Minerals 47(3), 338-347.
Vaia, R.A., Teukolsky, R.K., and Giannelis, E.P., 1994, “Interlayer structure and molecular environment of alkylammonium layered silicates”, Chemistry of Materials 6, 1017-1022.
Vedder, W., 1964, “Correlation between infrared spectrum and chemical composition of mica”, The American Mineralogist 49, 736-768.
Vedder, W., and Wikins, R.W.T., 1969, “Dehydroxylation and rehydroxylation, oxidation and reduction of micas”, The American Mineralogist 54, 482-509.
Velde, B., 1992, “Introduction to clay minerals: chemistry, origins, uses and environmental significance”, Chapman and Hall, 20-23.
Volzone, C., Rinaldi, J.O., and Ortiga, J., 2002, “N2 and O2 adsorptions by TMA- and HDP-montmorillonite”, Materials Research 5, 475-479.
Volzone, C., 2007, “Retention of pollutant gases: comparison between clay minerals and their modified products”, Applied Clay Science 36, 191-196.
Vongbupnimit, K., Noguchi, K., and Okuyama, K., 1995, “1-Dodecylpyridinium chloride monohydrate”, Acta Crystallographica section C 51, 1940-1941.
Walls, H.J., Riley, M.W., Fedkiw, P.S., Spontak, R.J., Baker, G.L., and Khan, S.A., 2003, “Composite electrolytes from self-assembled colloidal networks”, Electrochimica Acta 48, 2071-2077.
Ward, J.W., 1968, “Spectroscopic study of the surface of zeolite Y: The adsorption of pyridine”, Journal of Colloid and Interface Science 28, 269-277.
Wardle, R., and Brindley, G.W., 1971, “The dependence of the wavelength of AlKα radiation from alumino-silicates on the Al-O distance”, American Mineralogist 56, 2123-2128.
Wardle, R., and Brindley, G.W., 1972, “The crystal structures of phyrophyllite, 1Tc, and of it’s dehydroxylate”, American Mineralogist 57, 732-750.
Watari, T., Yamane, T., Moriyama, S., Torikai, T., Imaoka, Y., and Suehiro, K., 1997, “Fabrication of (expandable mica)/nylon 6-clay composites”, Materials Research Bulletin 32(6), 719-724.
Weers, J.G., and Scheuing, D.R, 1991, “Fourier transform infrared spectroscopy in colloid and interface Science Ch.6: Micellar sphere to rod transitions”, American Chemical Society, 87-122.
Weiss, A., Holm, C., and Platikanov, D., 1993, “Phase studies of long-chain alkanol complexes with alkylammonium layer silicates”, Colloid and Polymer Science 271, 891-900.
White, J.L., 1955, “Reactions of Molten Salts with Layer-Lattice Silicates”, Clays and Clay Minerals 4, 133-146.
Williams, J., Purnell, J.H., and Ballantine, J.A., 1991, “The mechanism of layer charge reduction and regeneration in Li+-exchanged montmorillonite”, Catalysis Letters 9, 115-120.
Wills, B.A., 1997, “Mineral processing technology: Ch. 9”, Butterworth-Heinemann, 6th edition.
Wirth, R., 1985, “Dehydration of mica (phengite) by electron bombardment in a transmission electron microscope (TEM)”, Journal of Materials Science Letters 4, 327-330.
Wong, T.C., Wong, N.B., and Tanner, P.A., 1997, “A Fourier transform IR study of the phase transitions and molecular order in hexadecyltrimethylammonium sulfate/water system”, Journal of Colloid and Interface science 186, 325-331.
Xue, W., He, H., Zhu, J., and Yuan, P., 2007, “FTIR investigation of CTAB -Al-montmorillonite complexes”, Spectrochimica Acta Part A 67, 1030-1036.
Yamaguchi, T., Kitajima, K., Sakai, E., and Daimon, M., 2003, “Synthesis and properties of alumina pillared fluorine micas having cation exchangeability”, Clay Minerals 38, 41-47.
Yan, L., Low, P.F., and Roth, C.B., 1996a, “Swelling Pressure of Montmorillonite Layers versus H-O-H Bending Frequency of the Interlayer Water”, Clays and Clay Minerals 44, 749-756.
Yan, L., Roth, C.B., and Low, P.F., 1996b, “Changes in the Si-O vibrations of smectite layers accompanying the sorption of interlayer water”, Langmuir 12, 4421-4429.
Yang, R.T., and Baksh, M.S.A., 1991, “Pillared clays as a new class of sorbents for gas separation”, American Institute of Chemical Engineerings Journal 37, 679-686.
Yu, X., Zhao, L., Gao, X., Zhang, X., and Wu, N., 2006, “The interaction of cetyltrimethylammonium cations into muscovite by a two-step process: II. The interaction of cetyltrimethylammonium cations into Li-muscovite”, Journal of Solid State Chemistry 179, 1525-1535.
Yu, X., Zhao, L., Gao, X., Zhang, X., and Wu, N., 2006, “The interaction of cetyltrimethylammonium cations into muscovite by a two-step process: I. The ion exchange of the interlayer cations in muscovite with Li+”, Journal of Solid State Chemistry 179, 1569-1574.
Zen, J.M., Kumer, A.S., 2004, “Peer reviewed: the prospects of clay mineral electrodes”, Analytical Chemistry 76, 205A.
Zeng, Q.H., Yu, A.B., Lu, G.Q., and Standish, R.K., 2003, “Molecular dynamics simulation of organic-inorganic nanocomposites: layering behavior and interlayer structure of organoclays”, Chemistry of Materials 15, 4732-4738.
Zhu, L., Zhu, R., Xu, L., and Ruan, X., 2007, “Influence of clay charge density and surfactant loading amount on the microstructure of CTMA-montmorillonite hybrids”, Colloids and Surfaces A: Physicochemical and Engineering Aspects 304, 41-48.
Zviagina, B.B., McCarty, D.K., Srodon, J., and Drits, V.A., 2004, “Interpretation of infrared spectra of dioctahedral smectites in the region of OH-stretching vibrations”, Clays and Clay Minerals 52(4), 399-410.
Zwahlen, M., Brovelli, D., Caseri, W., and Hahner, G., 2002, “Orientation and electronic structure of ion-exchanged pyridinium compounds on micas”, Journal of Colloid and Interface Science 256, 262-267.