簡易檢索 / 詳目顯示

研究生: 楊昆憲
Yang, Kun-Hsien
論文名稱: 含矽質廢棄物之發泡無機聚合物
Silicon-Contained Waste as a Raw Material of Foamed Inorganic Polymers
指導教授: 黃忠信
Huang, Jong-Shin
學位類別: 博士
Doctor
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 158
中文關鍵詞: 鹼激發水庫淤泥矽質廢棄物泡沫無機聚合物隔音
外文關鍵詞: alkali-activation, reservoir sludge, silicon contained waste, foamed inorganic polymer, sound insulation
相關次數: 點閱:197下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鹼激發膠結材具有高強度、耐高溫及固化重金屬等諸多優點,近年來吸引諸多學者爭相研究,本文利用水庫淤泥、爐石、飛灰及底灰等富含鋁矽酸鹽礦物之廢棄物為原料,透過鹼激發原理製作鹼激發膠結材,再搭配發泡製程製作不同密度之發泡無機聚合物,不僅充分利用水庫淤泥及工業廢棄物,更開發出兼具隔音及隔熱性質的輕質環保型建材。
    經由各項試驗結果發現,鹼激發水庫淤泥漿體在水固比為0.5時黏度適中,適合與泡沫拌合成發泡無機聚合物。水庫淤泥發泡試體的力學性能隨設計密度增加而提升,設計密度0.8g/cm3厚度6公分水庫淤泥發泡隔音板,其隔音效能優於市售10公分水泥、矽酸鈣及石膏隔音板。
    由鹼激發爐石純漿體試驗結果發現,採用氫氧化鈉與液態矽酸鈉激發爐石,所製成純漿體抗壓強度最佳,水固比為0.5之漿體黏度適中,適合與泡沫拌合,製成鹼激發爐石發泡無機聚合物,此外,採用密封養護之鹼激發爐石發泡試體,具有最佳之抗壓強度。
    以35%飛灰及15%底灰取代爐石,可降低漿體初始黏度並延長凝結時間。由鹼激發爐石-飛灰-底灰發泡試體斷面分析結果顯示,發泡試體微結構分佈均勻,90%以上孔徑皆小於0.3mm,此外,發泡試體噪音衰減係數之變化趨勢與其吸水率相似,未來可用吸水率推估發泡試體的吸音率,同時,發泡試體隔音與隔熱性質皆可媲美市售ALC磚及預鑄陶粒板,各密度發泡試體皆符合耐燃一級標準。

    Alkali-activated binder has advantages of high strength, heat-resistant, and heavy metal solidification, etc. In this study, the reservoir sludge, blast furnace slag, fly ash and bottom ash, which are aluminum silicate-rich waste, are treated as raw materials to produce foamed inorganic polymer through foaming process. The foamed inorganic polymer produced through this process could not only fully utilize reservoir sludge as well as industrial waste, but also develop environmentally friendly building materials for both noise and heat insulation.
    Based on the experimental results, it is found that while alkali-activated reservoir sludge paste is with a moderate viscosity in water/solid = 0.5. The sludge paste is suitable for mixing with preformed bubbles to produce inorganic polymer foam and the mechanical properties of foamed specimens increase with design density. Also, the soundproof of the 6cm and 0.8g/cm3 foam panel is better than a 10cm-thick commercially soundproof cement panel.
    Results also show that Alkali-activated blast furnace slag - fly ash - bottom ash foam specimens are with a uniform microstructure, and the variation of specimens in water absorption is similar to noise reduction coefficient. In addition, foam specimens are with excellent thermal properties, indicating that all of the foam specimens are able to achieve the first stage of combustion resistant standards.

    摘要 I Extended Abstract II 誌謝 VIII 目錄 X 表目錄 XIV 圖目錄 XV 符號表 XVIII 第一章 緒論 1 1.1研究動機 1 1.2研究目的 2 1.3本文組織與內容 3 第二章 相關理論與文獻回顧 6 2.1鹼激發膠結材 6 2.1.1鹼激發偏高嶺土 7 2.1.1.1高嶺土與偏高嶺土 7 2.1.1.2鹼激發偏高嶺土膠結材 8 2.1.2鹼激發水庫淤泥 9 2.1.2.1台灣水庫淤泥現況與再利用方式 9 2.1.2.2鹼激發水庫淤泥 12 2.1.3鹼激發爐石 12 2.1.3.1爐石生產流程 12 2.1.3.2鹼激發爐石之反應機理 13 2.1.3.3鹼激發爐石遭遇的問題 14 2.1.4鹼激發飛灰與底灰 16 2.1.4.1飛灰與底灰 16 2.1.4.2鹼激發飛灰與底灰膠結材 16 2.2泡沫混凝土 18 2.2.1泡沫混凝土的特性 18 2.2.2泡沫產生條件與破壞機制 19 2.3發泡無機聚合物 20 2.3.1發泡機制 20 2.3.2現有發泡無機聚合物 21 2.4材料聲學特性 22 2.4.1聲學基本性質 22 2.4.2聲音之傳遞與衰減 23 2.4.3聲波的波動方程式 23 2.4.4聲學參數 25 2.4.5吸音與隔音 27 2.4.6噪音 31 2.5材料熱傳導行為及耐燃燒性 32 2.5.1熱傳導方程式 33 2.5.2複合材料的熱傳導係數 35 2.5.3材料的耐燃燒性 36 2.6泡沫材料的力學特性 36 第三章 水庫淤泥發泡無機聚合物 51 3.1試驗材料 52 3.3試驗方法 53 3.3.1純漿試體 53 3.3.2發泡試體 55 3.3.3發泡隔音板 56 3.4鹼激發水庫淤泥漿體試驗結果分析與討論 59 3.4.1水固比及藥劑量對水庫淤泥漿體抗壓強度之影響 59 3.4.2水固比及爐石粉細度對水庫淤泥漿體黏度之影響 60 3.5鹼激發水庫淤泥發泡試體試驗結果分析與討論 61 3.5.1抗壓強度 61 3.5.2抗彎強度 62 3.5.3抗壓強度與抗彎強度 62 3.5.4吸水率 63 3.5.5孔徑分佈 64 3.5.6發泡隔音板穿透損失 65 3.6小結 66 第四章 鹼激發爐石漿體、砂漿及發泡無機聚合物 78 4.1試驗材料 78 4.2試驗方法 79 4.2.1鹼激發爐石純漿試體 79 4.2.2鹼激發爐石砂漿試體 81 4.2.3鹼激發爐石發泡試體 82 4.3鹼激發爐石純漿體試驗結果與討論 84 4.3.1氫氧化鈉加液態矽酸鈉 84 4.3.2氫氧化鈉加JY-01粉態矽酸鈉 85 4.3.3氫氧化鈉加JY-02粉態矽酸鈉 86 4.3.4水固比對漿體黏度之影響 87 4.4鹼激發爐石砂漿試驗結果與討論 88 4.4.1爐石粉細度 89 4.4.2養護方式 89 4.4.3爐石粉細度及添加石膏對爐石砂漿乾縮量之影響 90 4.5鹼激發爐石發泡試驗結果與討論 91 4.5.1養護方式對爐石發泡試體抗壓強度之影響 91 4.5.2鹼激發爐石發泡試體斷面影像分析 92 4.6小結 93 第五章 鹼激發爐石-飛灰-底灰發泡無機聚合物 107 5.1試驗材料 108 5.2試驗變數規劃及試體製作流程 109 5.2.1鹼激發爐石-飛灰-底灰純漿試體 109 5.2.2鹼激發爐石-飛灰-底灰發泡試體 111 5.3鹼激發爐石-飛灰-底灰純漿體試驗結果與討論 113 5.3.1水固比對漿體黏度之影響 114 5.3.2鹼活化劑濃度對漿體抗壓強度之影響 115 5.4鹼激發爐石-飛灰-底灰發泡試體試驗結果與討論 116 5.4.1斷面影像分析 117 5.4.2抗壓強度、抗彎強度及楊氏模數 119 5.4.3吸音率與吸水率 121 5.4.4穿透損失 122 5.4.5耐燃燒 123 5.4.6熱傳導係數 124 5.4.7小結 126 第六章 結論與建議 144 6.1結論 144 6.2建議 145 參考文獻 147

    [1] G. Habert, J. B. d’Espinose de Lacaillerie, and N. Roussel, "An environmental evaluation of geopolymer based concrete production: reviewing current research trends," Journal of Cleaner Production, vol. 19, pp. 1229-1238, 2011.
    [2] L. K. Turner and F. G. Collins, "Carbon dioxide equivalent (CO2-e) emissions: A comparison between geopolymer and OPC cement concrete," Construction and Building Materials, vol. 43, pp. 125-130, 2013.
    [3] J. S. J. Van Deventer, J. L. Provis, and P. Duxson, "Technical and commercial progress in the adoption of geopolymer cement," Minerals Engineering, vol. 29, pp. 89-104, 2012.
    [4] J.-H. Chen, J.-S. Huang, and Y.-W. Chang, "Use of reservoir sludge as a partial replacement of metakaolin in the production of geopolymers," Cement and Concrete Composites, vol. 33, pp. 602-610, 2011.
    [5] J. H. Chen, J. S. Huang, and Y. W. Chang, "A preliminary study of reservoir sludge as a raw material of inorganic polymers," Construction and Building Materials, vol. 23, pp. 3264-3269, 2009.
    [6] J. Davidovits, "Early high-strength mineral polymer," USA Patent 4509985, 1985.
    [7] J. Davidovits, "Mineral polymers and methods of making them," USA Patent 4349386, 1982.
    [8] J. Davisovits, "Geopolymers: Inorganic polymeric new materials," Journal of thermal analysis, vol. 37, pp. 1633-1656, 1991.
    [9] H. Xu and J. S. J. Van Deventer, "Geopolymerisation of multiple minerals," Minerals Engineering, vol. 15, pp. 1131-1139, 2002.
    [10] H. Xu and J. S. J. Van Deventer, "The geopolymerisation of alumino-silicate minerals," International Journal of Mineral Processing, vol. 59, pp. 247-266, 2000.
    [11] G. Schmidt, P. Randel, H.-W. Engels, and B. Geick, "Furnace with in situ foamed insulation and process for its manufacture," USA Patent 5485986, 1996.
    [12] R. Arellano Aguilar, O. Burciaga Díaz, and J. I. Escalante García, "Lightweight concretes of activated metakaolin-fly ash binders, with blast furnace slag aggregates," Construction and Building Materials, vol. 24, pp. 1166-1175, 2010.
    [13] H.-C. Wu and P. Sun, "New building materials from fly ash-based lightweight inorganic polymer," Construction and Building Materials, vol. 21, pp. 211-217, 2007.
    [14] H. Esmaily and H. Nuranian, "Non-autoclaved high strength cellular concrete from alkali activated slag," Construction and Building Materials, vol. 26, pp. 200-206, 2012.
    [15] 黃華照,偏高嶺土輕質骨材混凝土應用於海洋工程,碩士論文,國立中山大學海洋環境及工程學系研究所,2006。
    [16] J. G. S. van Jaarsveld, J. S. J. van Deventer, and G. C. Lukey, "The effect of composition and temperature on the properties of fly ash- and kaolinite-based geopolymers," Chemical Engineering Journal, vol. 89, pp. 63-73, 2002.
    [17] J. G. S. van Jaarsveld and J. S. J. van Deventer, "The effect of metal contaminants on the formation and properties of waste-based geopolymers," Cement and Concrete Research, vol. 29, pp. 1189-1200, 1999.
    [18] 李元凱,偏高嶺土聚合膠體工程性質之研究,碩士論文,國立臺灣科技大學營建工程研究所,2008。
    [19] C. Kaps and A. Buchwald, "Property controlling influences on the generation of geopolymeric based on clay," Geopolymer 2002 International Conference,Melbourne, Australia, 2002.
    [20] J. W. Phair and J. S. J. Van Deventer, "Effect of silicate activator pH on the leaching and material characteristics of waste-based inorganic polymers," Minerals Engineering, vol. 14, pp. 289-304, 2001.
    [21] 戴詩潔,高嶺石鋁矽酸鹽聚合材料之研究,碩士論文,國立臺北科技大學材料及資源工程系所,2005,
    [22] L. Weng, K. Sagoe-Crentsil, T. Brown, and S. Song, "Effects of aluminates on the formation of geopolymers," Materials Science and Engineering: B, vol. 117, pp. 163-168, 2005.
    [23] 吳冠龍、鄭大偉、翁祖炘,無機聚合物之特性研究,資源與環境學術研討會,2007。
    [24] D. Hardjito, S. Wallah, and B. Rangan, "Research into engineering properties of geopolymer concrete," in Geopolymer 2002 International Conference, Melbourne, Australia, 2002.
    [25] 吳冠龍,以變高嶺石製成無機聚合樹脂應用於混凝土裂縫修補之研究,碩士論文,國立台北科技大學資源工程研究所,2008。
    [26] Z. Zhang, X. Yao, and H. Wang, "Potential application of geopolymers as protection coatings for marine concrete III. Field experiment," Applied Clay Science, vol. 67–68, pp. 57-60, 2012.
    [27] 黃忠信、郭文毅、彭淑娟,水庫淤泥生態性利用之整體研究期末報告, 行政院經濟建設委員會委託研究計畫,2004。
    [28] H.-J. Chen, M.-D. Yang, C.-W. Tang, and S.-Y. Wang, "Producing synthetic lightweight aggregates from reservoir sediments," Construction and Building Materials, vol. 28, pp. 387-394, 2012.
    [29] C.-W. Tang, H.-J. Chen, S.-Y. Wang, and J. Spaulding, "Production of synthetic lightweight aggregate using reservoir sediments for concrete and masonry," Cement and Concrete Composites, vol. 33, pp. 292-300, 2011.
    [30] K.-Y. Chiang, K.-L. Chien, and S.-J. Hwang, "Study on the characteristics of building bricks produced from reservoir sediment," Journal of Hazardous Materials, vol. 159, pp. 499-504, 2008.
    [31] Y.-C. Liao and C.-Y. Huang, "Glass foam from the mixture of reservoir sediment and Na2CO3," Ceramics International, vol. 38, pp. 4415-4420, 2012.
    [32] 葉世正,水庫淤泥在海岸復育之應用,碩士論文,國立臺灣海洋大學河海工程研究所,2009。
    [33] 陳致銘,水庫淤泥燒製之中空球及其工程性質,碩士論文,國立成功大學土木工程學研究所,2006。
    [34] 黃上政,水庫淤泥燒製輕質中空球骨材及混凝土之研究,碩士論文,國立成功大學土木工程學研究所,2007。
    [35] 黃春翔,具保水性顆粒介質之燒製與物理性質,碩士論文,國立成功大學土木工程學研究所,2007。
    [36] 張孟弘,利用水庫淤泥造粒燒製濾料之研究,碩士論文,國立中央大學環境工程研究所,2003。
    [37] W.-Y. Kuo, J.-S. Huang, and T.-E. Tan, "Organo-modified reservoir sludge as fine aggregates in cement mortars," Construction and Building Materials, vol. 21, pp. 609-615, 2007.
    [38] W.-Y. Kuo and J.-S. Huang, "Microstructure and properties of cement mortars containing organo-modified reservoir sludge," Construction and Building Materials, vol. 24, pp. 2022-2029, 2010.
    [39] 黃瀚陞,水庫淤泥無機聚合物工程性質之研究,碩士論文,國立嘉義大學土木與水資源工程學系研究所,2011。
    [40] 阮國瑋,無機聚合技術應用於水庫淤泥製備建築材料之研究,碩士論文,國立台北科技大學資源工程研究所,2009。
    [41] 盧國安,以水庫淤泥製造高強度土壤材料之研究,碩士論文,國立成功大學土木工程學研究所,2008。
    [42] 吳國愷,CFB副產石灰應用於水庫淤泥土壤材料之初步研究,碩士論文,國立成功大學土木工程學研究所,2009。
    [43] 邱俊萍,利用高爐爐渣製成無機聚合材料之研究,碩士論文,國立台北科技大學材料及資源工程系碩士班,2002。
    [44] D. M. Roy, W. Jiang, and M. R. Silsbee, "Chloride diffusion in ordinary, blended, and alkali-activated cement pastes and its relation to other properties," Cement and Concrete Research, vol. 30, pp. 1879-1884, 2000.
    [45] S. Xiaodong, Y. Sheng, W. Xuequan, T. Mingshu, and Y. Liji, "Immobilization of stimulated high level wastes into AASC waste form," Cement and Concrete Research, vol. 24, pp. 133-138, 1994.
    [46] C. Shi and A. Fernández-Jiménez, "Stabilization/solidification of hazardous and radioactive wastes with alkali-activated cements," Journal of Hazardous Materials, vol. 137, pp. 1656-1663, 2006.
    [47] D. M. Roy, "Alkali-activated cements Opportunities and challenges," Cement and Concrete Research, vol. 29, pp. 249-254, 1999.
    [48] H. El-Didamony, A. A. Amer, and H. Abd Ela-ziz, "Properties and durability of alkali-activated slag pastes immersed in sea water," Ceramics International, vol. 38, pp. 3773-3780, 2012.
    [49] A. R. Brough and A. Atkinson, "Sodium silicate-based, alkali-activated slag mortars: Part I. Strength, hydration and microstructure," Cement and Concrete Research, vol. 32, pp. 865-879, 2002.
    [50] T. Bakharev, J. G. Sanjayan, and Y. B. Cheng, "Effect of admixtures on properties of alkali-activated slag concrete," Cement and Concrete Research, vol. 30, pp. 1367-1374, 2000.
    [51] A. Fernández-Jiménez, J. G. Palomo, and F. Puertas, "Alkali-activated slag mortars: Mechanical strength behaviour," Cement and Concrete Research, vol. 29, pp. 1313-1321, 1999.
    [52] F. Puertas, M. Palacios, A. Gil-Maroto, and T. Vázquez, "Alkali-aggregate behaviour of alkali-activated slag mortars: Effect of aggregate type," Cement and Concrete Composites, vol. 31, pp. 277-284, 2009.
    [53] E. Altan and S. T. Erdoğan, "Alkali activation of a slag at ambient and elevated temperatures," Cement and Concrete Composites, vol. 34, pp. 131-139, 2012.
    [54] C. Bilim and C. D. Atiş, "Alkali activation of mortars containing different replacement levels of ground granulated blast furnace slag," Construction and Building Materials, vol. 28, pp. 708-712, 2012.
    [55] X. Luo, J. Y. Xu, E. L. Bai, and W. M. Li, "Systematic study on the basic characteristics of alkali-activated slag-fly ash cementitious material system," Construction and Building Materials, vol. 29, pp. 482-486, 2012.
    [56] D. Ravikumar and N. Neithalath, "Reaction kinetics in sodium silicate powder and liquid activated slag binders " Thermochimica Acta, 2012.
    [57] K. H. Yang, J. H. Mun, J. I. Sim, and J. K. Song, "Effect of Water Content on the Properties of Lightweight Alkali-Activated Slag Concrete," Journal of Materials in Civil Engineering, vol. 23, pp. 886-894, 2011.
    [58] 鄭文忠、朱晶、陳偉宏,用堿礦渣膠凝材料粘貼碳纖維布加固組合梁受力性能試驗研究,鐵道學報,第33卷,2011。
    [59] 付亞偉、王碩太、吳永根、蔡良才、劉洋、徐波,機場道面新型鹼礦渣快速修復混凝土研究,新型建筑材料,第35卷,2008。
    [60] B. Talling and J. Brandstetr, "Present State and Future of Alkali-Activated Slag Concretes " Fly ash, Silica Fume, and national pozzonson concrete, Proceedings of Third International Conference. Trondheim, Norway, vol. 114, pp. 1519-1546, 1989.
    [61] 吳其勝、李玉壽、李玉華,復合鹼組分對礦渣粉煤灰鹼膠凝材料性能的影響,粉煤灰綜合利用,第2卷,pp. 20-22,2001。
    [62] 徐彬、蒲心誠,礦渣玻璃體微觀分相結構研究,重慶建築大學學報,第19卷,pp. 53-60,1997。
    [63] 成立,三種堿激發膠凝材料的反應機理及其產物,荊門職業技術學院學報,第19卷,2004。
    [64] 楊南如,鹼膠凝材料形成的物理化學基礎(I),矽酸鹽學報,第24卷, pp. 209-215,1996。
    [65] 禹尚仁、王悟敏,無熟料矽酸鈉礦渣水泥的水化機理,矽酸鹽學報,第18卷,pp. 104-106,1990。
    [66] 陳志賢,含矽質廢棄物之無機聚合物,博士論文,國立成功大學土木工程研究所,2009。
    [67] 代新祥,鹼激活土聚水泥的制備、結構與性能,博士論文,華南理工大學,2002。
    [68] 林清田、莊營發,利用飛灰作為煤礦採掘跡充填材料可行性之研究, 台灣礦業雜誌,第44卷,pp. 112-121,1992。
    [69] 吳萬金,煤灰內有價金屬之回收,台灣礦業,第49卷,pp. 107-121,1997。
    [70] K. Komnitsas and D. Zaharaki, "Geopolymerisation: A review and prospects for the minerals industry," Minerals Engineering, vol. 20, pp. 1261-1277, 2007.
    [71] F. Puertas, S. Martı́nez-Ramı́rez, S. Alonso, and T. Vázquez, "Alkali-activated fly ash/slag cements: Strength behaviour and hydration products," Cement and Concrete Research, vol. 30, pp. 1625-1632, 2000.
    [72] A. Palomo, M. W. Grutzeck, and M. T. Blanco, "Alkali-activated fly ashes - A cement for the future," Cement and Concrete Research, vol. 29, pp. 1323-1329, 1999.
    [73] S. Kumar, R. Kumar, T. Alex, A. Bandopadhyay, and S. Mehrotra, "Effect of mechanically activated fly ash on the properties of Geopolymer cement," pp. 113-116, 2005.
    [74] J. M. Miranda, A. Fernández-Jiménez, J. A. González, and A. Palomo, "Corrosion resistance in activated fly ash mortars," Cement and Concrete Research, vol. 35, pp. 1210-1217, 2005.
    [75] X. S. Shi, F. G. Collins, X. L. Zhao, and Q. Y. Wang, "Mechanical properties and microstructure analysis of fly ash geopolymeric recycled concrete," Journal of Hazardous Materials, vol. 237-238, pp. 20-29, 2012.
    [76] A. Sathonsaowaphak, P. Chindaprasirt, and K. Pimraksa, "Workability and strength of lignite bottom ash geopolymer mortar," Journal of Hazardous Materials, vol. 168, pp. 44-50, 2009.
    [77] V. Sata, A. Sathonsaowaphak, and P. Chindaprasirt, "Resistance of lignite bottom ash geopolymer mortar to sulfate and sulfuric acid attack," Cement and Concrete Composites, vol. 34, pp. 700-708, 2012.
    [78] H. Xu, Q. Li, L. Shen, W. Wang, and J. Zhai, "Synthesis of thermostable geopolymer from circulating fluidized bed combustion (CFBC) bottom ashes," Journal of Hazardous Materials, vol. 175, pp. 198-204, 2010.
    [79] Q. Li, H. Xu, F. Li, P. Li, L. Shen, and J. Zhai, "Synthesis of geopolymer composites from blends of CFBC fly and bottom ashes," Fuel, vol. 97, pp. 366-372, 2012.
    [80] 蘭振甲、何艷君,泡沫混凝土實用生產技術,化學工業出版社,2006。
    [81] 高波、王群力、周孝德,混凝土發泡劑及泡沫穩定性的研究,粉煤灰綜合利用,第1卷,pp. 13-16,2004。
    [82] 宋曉輝、任中京,加氣混凝土用鋁粉的應用與製備,中國粉體技術,第3卷,2006。
    [83] J. Bell and W. Kriven, "Preparation of Ceramic Foams from Metakaolin‐Based Geopolymer Gels," Developments in Strategic Materials: Ceramic Engineering and Science Proceedings, Volume 29, pp. 96-111, 2009.
    [84] S. M. Nyale, O. O. Babajide, G. D. Birch, N. Böke, and L. F. Petrik, "Synthesis and Characterization of Coal Fly Ash-based Foamed Geopolymer," Procedia Environmental Sciences, vol. 18, pp. 722-730, 2013.
    [85] N. T. Pham and H. H. Le, "Making foamed concretes from fly ash based on geopolymer method," Strategic Materials and Computational Design, pp. 83-90, 2010.
    [86] 曾美玲、張天益,無機聚合物金屬發泡不同操作條件之探討,中國鑛冶工程學會會刊,pp. 77-82,2011。
    [87] 王奕惟,發泡無機聚合物之開發及耐熱性能研究,碩士論文,國立台北科技大學土木與防災研究所,2009。
    [88] A. M. M. Al Bakri, K. Hussin, M. Bnhussain, K. N. Ismail, Z. Yahya, and R. A. Razak, "Fly Ash-based Geopolymer Lightweight Concrete Using Foaming Agent," International journal of molecular sciences, vol. 13, p. 7186, 2012.
    [89] L. J. Wang and X. Q. Tan, "Preparation and Properties of Alkali Activated Foam Cement Reinforced with Polypropylene Fibers," Journal of Wuhan University of Technology-Materials Science Edition, vol. 26, pp. 960-964, 2011.
    [90] 蘇德勝,噪音原理及控制,臺龍書店,1991。
    [91] 蔡國隆、王光賢、涂聰賢,聲學原理與噪音量測控制,全華科技圖書股份有限公司,2004。
    [92] 馬大猷、楊訓仁,聲學漫談,牛頓出版社,1996。
    [93] 白明憲,工程聲學,全華科技圖書股份有限公司,2006。
    [94] 行政院環境保護署,噪音原理防制材料,2010。
    [95] 白明憲,聲學理論與應用,全華科技圖書股份有限公司,1999。
    [96] 王怡雯,泡沫無機聚合物之物理性質,碩士論文,國立成功大學土木工程學研究所,2009。
    [97] R. F. S. Job, "The influence of subjective reactions to noise on health effects of the noise," Environment International, vol. 22, pp. 93-104, 1996.
    [98] R. P. King and J. R. Davis, "Community noise: Health effects and management," International Journal of Hygiene and Environmental Health, vol. 206, pp. 123-131, 2003.
    [99] S. Lusk, B. Hagerty, B. Gillespie, and C. Caruso, "Chronic effects of workplace noise on blood pressure and heart rate," Archives of Environmental Health, pp. 273-281, 2002.
    [100] M. Nobuo, "Study on the effects of low frequency sound on human body," Proceedings of the international ergonomics symposium, pp. 329-332, 2000.
    [101] 劉建志,調控室內音響環境對人體反應影響之研究,博士論文,國立成功大學建築學研究所,2012。
    [102] F. Chevillotte and R. Panneton, "Elastic characterization of closed cell foams from impedance tube absorption tests," J Acoust Soc Am, vol. 122, pp. 2653-60, 2007.
    [103] F. Han, G. Seiffert, Y. Zhao, and B. Gibbs, "Acoustic absorption behaviour of an open-celled aluminium foam," Journal of Physics D: Applied Physics, vol. 36, p. 294, 2003.
    [104] C. M. Lee and Y. S. Wang, "A prediction method of the acoustical properties of multilayered noise control materials in standing wave-duct systems," Journal of Sound and Vibration, vol. 298, pp. 350-365, 2006.
    [105] H.-j. Yu, G.-c. Yao, X.-l. Wang, B. Li, Y. Yin, and K. Liu, "Sound insulation property of Al-Si closed-cell aluminum foam bare board material," Transactions of Nonferrous Metals Society of China, vol. 17, pp. 93-98, 2007.
    [106] H. Yu, G. Yao, X. Wang, Y. Liu, and H. Li, "Sound insulation property of Al–Si closed-cell aluminum foam sandwich panels," Applied Acoustics, vol. 68, pp. 1502-1510, 2007.
    [107] I. PERNÁ, T. HANZLÍČEK, P. STRAKA, and M. STEINEROVÁ, "Acoustic absorption of geopolymer / sand mixture," Ceramics-Silikaty, vol. 53, pp. 48-51, 2009.
    [108] J. P. Holman, 熱傳遞學(第六版),科技圖書股份有限公司,1988。
    [109] Z. Hashin and S. Shtrikman, "A variational approach to the theory of the effective magnetic permeability of multiphase materials," J. Appl. Phys., vol. 33, pp. 3125-3131, 1962.
    [110] L. J. Gibson and M. F. Ashby, Cellular solids structure & properties. Oxford: pergamon press, 1988.
    [111] S. R. E., "The thermal conductivity of foamed plastics," chemical engineering progress, vol. 57, pp. 55-59, 1961.
    [112] 許引絃,含泡沫材層板之熱傳導行為研究,碩士論文,國立成功大學土木工程學研究所,1994。
    [113] Q. J., Principles of fire behavior Delmar publisher, 1998.
    [114] 蕭震銘,建築材料熱傳導性質對燃燒行為之影響研究,碩士論文,國立高雄第一科技大學環境與安全衛生工程研究所,2010。
    [115] L. J. Gibson and M. F. Ashby, "The mechanics of three dimensional cellular materials," Proceedings Royal Society London, pp. 43-59, 1982.
    [116] R. W. Rice, "Microstructural dependence of mechanical properties of ceramics," Materials Science and technology, 1977.
    [117] T. Tonyan and L. Gibson, "Structure and mechanics of cement foams," Journal of Materials Science, vol. 27, pp. 6371-6378, 1992.
    [118] 黃忠信、陳志賢、蔡宗和,鹼激發爐石-轉爐石混凝土產製技術與物理性質之研究,財團法人成大研究發展基金會,2010。
    [119] L. J. Gibson and M. F. Ashby, Cellular Solids: Structures & Properties. 2nd ed. Cambridge UK: Cambridge University Press, 1997.
    [120] D. M. Roy and G. R. Gouda, "Porosity‐Strength Relation in Cementitious Materials with Very High Strengths," Journal of the American Ceramic Society, vol. 56, pp. 549-550, 1973.
    [121] T. Lin, D. Jia, P. He, M. Wang, and D. Liang, "Effects of fiber length on mechanical properties and fracture behavior of short carbon fiber reinforced geopolymer matrix composites," Materials Science and Engineering: A, vol. 497, pp. 181-185, 2008.
    [122] S. B. Park, E. S. Yoon, and B. I. Lee, "Effects of processing and materials variations on mechanical properties of lightweight cement composites," Cement and Concrete Research, vol. 29, pp. 193-200, 1999.
    [123] A. Laukaitis and B. Fiks, "Acoustical properties of aerated autoclaved concrete," Applied Acoustics, vol. 67, pp. 284-296, 2006.
    [124] C. Duran Atiş, C. Bilim, Ö. Çelik, and O. Karahan, "Influence of activator on the strength and drying shrinkage of alkali-activated slag mortar," Construction and Building Materials, vol. 23, pp. 548-555, 2009.
    [125] M. Palacios and F. Puertas, "Effect of shrinkage-reducing admixtures on the properties of alkali-activated slag mortars and pastes," Cement and Concrete Research, vol. 37, pp. 691-702, 2007.
    [126] F. Collins and J. G. Sanjayan, "Effect of pore size distribution on drying shrinking of alkali-activated slag concrete," Cement and Concrete Research, vol. 30, pp. 1401-1406, 2000.
    [127] T. Bakharev, J. G. Sanjayan, and Y.-B. Cheng, "Alkali activation of Australian slag cements," Cement and Concrete Research, vol. 29, pp. 113-120, 1999.
    [128] A. A. Melo Neto, M. A. Cincotto, and W. Repette, "Drying and autogenous shrinkage of pastes and mortars with activated slag cement," Cement and Concrete Research, vol. 38, pp. 565-574, 2008.
    [129] M. Palacios and F. Puertas, "Effect of superplasticizer and shrinkage-reducing admixtures on alkali-activated slag pastes and mortars," Cement and Concrete Research, vol. 35, pp. 1358-1367, 2005.
    [130] P. C. Fonseca and H. M. Jennings, "The effect of drying on early-age morphology of C–S–H as observed in environmental SEM," Cement and Concrete Research, vol. 40, pp. 1673-1680, 2010.
    [131] S. D. Wang, X. C. Pu, K. Scrivener, and P. Pratt, "Alkali-activated slag cement and concrete: a review of properties and problems," Advances in Cement Research, vol. 7, pp. 93-102, 1995.
    [132] F. Puertas and A. Fernandez-Jimenez, "Mineralogical and microstructural characterisation of alkali-activated fly ash/slag pastes," Cement & Concrete Composites, vol. 25, pp. 287-292, 2003.
    [133] K.-S. Wang, K.-L. Lin, and Z.-Q. Huang, "Hydraulic activity of municipal solid waste incinerator fly-ash-slag-blended eco-cement," Cement and Concrete Research, vol. 31, pp. 97-103, 2001.
    [134] M. Alzeer and K. MacKenzie, "Synthesis and mechanical properties of novel composites of inorganic polymers (geopolymers) with unidirectional natural flax fibres (phormium tenax)," Applied Clay Science, vol. 75-76, pp. 148-152, 2013.
    [135] Q. Zhao, B. Nair, T. Rahimian, and P. Balaguru, "Novel geopolymer based composites with enhanced ductility," Journal of Materials Science, vol. 42, pp. 3131-3137, 2007.
    [136] A. Bonakdar, F. Babbitt, and B. Mobasher, "Physical and mechanical characterization of Fiber-Reinforced Aerated Concrete (FRAC)," Cement and Concrete Composites, vol. 38, pp. 82-91, 2013.
    [137] 曾一航,吸、隔音材料性能之理論探討,碩士論文,國立臺灣大學工程科學及海洋工程學研究所,2004。
    [138] 范雅茱,微結構及厚度對發泡無機聚合物工程性質之影響,碩士論文,國立成功大學土木工程學研究所,2010。
    [139] R. Landauer, "The electrical resistance of binary metallic mixtures," J. Appl. Phys., vol. 23, pp. 779-784, 1952.
    [140] J. K. Carson, S. J. Lovatt, D. J. Tanner, and A. C. Cleland, "Thermal conductivity bounds for isotropic, porous materials," International Journal of Heat and Mass Transfer, vol. 48, pp. 2150-2158, 2005.
    [141] T.-C. Hung, J.-S. Huang, Y.-W. Wang, and Y.-C. Fan, "Microstructure and properties of metakaolin-based inorganic polymer foams," Journal of Materials Science, vol. 50, pp. 328-334, 2013.

    無法下載圖示 校內:2020-06-12公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE