| 研究生: |
黃釋賢 Huang, Shih-hsien |
|---|---|
| 論文名稱: |
適應模糊滑模速度控制器於永磁同步馬達之研究 Study of Adaptive Fuzzy Sliding-Mode Speed Controller for Permanent Magnet Synchronous Motor |
| 指導教授: |
陳添智
Chen, Tien-Chi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 英文 |
| 論文頁數: | 79 |
| 中文關鍵詞: | 適應模糊滑模控制 、永磁同步馬達 |
| 外文關鍵詞: | Adaptive Fuzzy Sliding-Mode Control, Permanent Magnet Synchronous Motor |
| 相關次數: | 點閱:168 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出一種適應模糊滑模速度控制器並利用直接轉矩控制法來控制永磁同步馬達。直接轉矩控制法允許相當迅速及準確地控制馬達的磁通鏈及轉矩,然而在低轉速時,磁通鏈會因為磁飽和導致磁通估算產生誤差。為了改善傳統的直接轉矩控制法的缺點,在內迴路使用了兩組PI控制器來調節轉矩誤差和定子磁通鏈的誤差,利用這兩個控制器的輸出來產生一組電壓命令 來決定空間電壓向量脈寬調變度及控制磁通鏈圓追蹤軌跡的大小。除此之外在外迴路的速度控制器上,本論文別於傳統的PI 控制器採用適應模糊滑模控制器來增進其追蹤轉矩的能力並增進其外迴路轉矩控制效能與內迴路磁通的追蹤能力。本論文利用TMS320F2812數位訊號處理器實驗版完全實驗架構。藉由數位訊號處理器精確及不易受溫度變化和雜訊的干擾,實現全數位化的永磁同步馬達控制系統。
最後由模擬及實驗的結果來比較傳統PI控制器與適應模糊滑模控制器的效能,可以明顯的看出其追蹤力矩的能力優於使用傳統的PI控制器且改善了內迴路磁通鏈追蹤能力,因此可以證明本論文所提出的適應模糊滑模速度控制器優於傳統的PI控制器。
This thesis presents a new adaptive fuzzy sliding-mode speed controller to control the permanent magnet synchronous motor (PMSM) based on the direct torque control (DTC) scheme. The DTC scheme allows a very quick and precise control of the flux and torque. However, the traditional DTC scheme can’t estimate flux linkage correctly at low speed. To improve the drawback of the conventional DTC scheme, this thesis proposed the space vector voltage PWM scheme, controlled by the torque controller and the flux controller, to eliminate the errors of torque and flux. By dint of it, the flux linkage can be estimated correctly. Besides, the traditional PI speed controller can’t provide perfect tracking performance of the torque in the external loop and the stability of the control system can’t be guaranteed. Thus, this thesis presents a new adaptive fuzzy sliding-mode controller to improve the tracking control. The proposed control scheme was implemented by a high-precision and reliability TMS320F2812 digital signal processor (DSP) for a PMSM speed control system.
The simulation and experiment results, compared the adaptive fuzzy sliding-mode control scheme with traditional PI control scheme, show that the performances of the proposed control scheme are better than those of the traditional PI control.
[1] T. M. Jahns, “Motion control with permanent-magnet AC machines,” Proceedings of the IEEE, Vol. 82, Issue 8, pp. 1241-1252, Aug. 1994.
[2] A. K. Adnanes, “Torque analysis of permanent magnet synchronous motors,” IEEE 22nd Power Electronics Specialists Conference, pp. 695-701, 1991.
[3] T. Senjyu, Y. Kuwae, N. Urasaki and K. Uezato, “Accurate parameter measurement for high speed permanent magnet synchronous motors,” IEEE 32nd Power Electronics Specialists Conference, Vol. 2, pp. 772-777, 2001.
[4] Z. Changjiang, A. Arularnpalam, V. K. Ramachandaramurthy, C. Fitzer, A. Barnes, and N. Jenkins, “Dynamic voltage restorer based on 3-dimensional voltage space vector PWM algorithm,” IEEE 32nd Power Electronics Specialists Conference, Vol. 2, pp. 533-538, 2001.
[5] J. Holtz, “Pulsewidth modulation for electronics power conversion,” Proceeding of the IEEE, Vol. 82, No. 8, pp. 1194-1214, Aug. 1994.
[6] C. C. Lee, “Fuzzy logic in control system: Fuzzy logic controller-part Ⅰ/Ⅱ,” IEEE Trans. on Systems, Man, and Cybern. , Vol. 20, pp. 404-435, Mar. /Apr. 1990.
[7] S. Kim, Y. Cho, and M. Park, ”A multirule-base controller using the robust property of a fuzzy controller and its design method,” IEEE Trans. on Fuzzy Systems, Vol. 4, Issue 3, pp. 315-327, Aug. 1996.
[8] J. C. Lo and Y. H. Kuo, “Decoupled fuzzy sliding-mode control,” IEEE Trans. on Fuzzy Systems, Vol. 6, Issue 3, pp.426-435, Aug. 1998.
[9] B. J. Choi, S. W. Kwak, and B. K. Kim, “Design of a single-input fuzzy logic controller and its properties,” Fuzzy Sets System, Vol. 106, pp. 299-308, 1999.
[10] R. J. Wai, “Adaptive sliding-mode control for induction servomotor drive,” IEE Proceedings, Electric Power Applications, Vol. 147, Issue 6, pp. 553-562, Nov. 2000.
[11] C. M. Lin and C. F. Hsu, “Adaptive fuzzy sliding-mode control for induction servomotor systems,” IEEE Trans. on Energy Conversion, Vol. 19, Issue 2, pp. 362-368, June 2004.
[12] C. Y. Lee, P. C. Tung, and W. H. Chu, “Adaptive fuzzy sliding-mode controller for an automatic arc welding system,” International Journal of Advanced Manufacturing Technology, Vol. 29, pp. 481-489, Jan. 2006.
[13] L. Zhong, M. F. Rahman, W. Y. Hu, and K. W. Lim, “Analysis of DTC in permanent magnet synchronous motor drives,” IEEE Trans. on Power Electronics, Vol. 12, pp. 528-536, May 1997.
[14] M. F. Rahman, L. Zhong, and W. L. Khiang, “A direct torque-controlled interior permanent magnet synchronous motor drive incorporating field weakening,” IEEE Trans. on Industry Applications Vol. 34, No. 6, pp. 1246-1253, Nov.-Dec. 1998.
[15] S. M. A. Cruz, and A. J. M. Cardoso, “Diagnosis of stator inter-turn short circuits in DTC induction motor drives,” IEEE Trans. on Industry Applications, Vol. 40, No. 5, pp. 1349-1360, Sept./Oct. 2004.
[16] M. Depenbrock, “Direct self-controlled (DSC) of inverter fed induction machine,” IEEE Trans. on Power Electronics, Vol. 3, pp. 420-429, Oct. 1998.
[17] M. F. Rahman, Md. E. Haque, T. Lixin, and Z. Limin, “Problems associated with the DTC of an interior permanent-magnet synchronous motor drive and their remedies,” IEEE Trans. on Industrial Electronics, Vol. 51, No. 4, pp. 799-809, Aug. 2004.
[18] Y. A. Chapuis, D. Roye, and J. Davoine, “Principles and implementation of DTC by stator flux orientation of an induction motor,” in Conference Record, IEEE-IAS Annual Meeting, Vol. 1, pp. 185-191, 1995.
[19] B. K. Bose and N. R. Patel, “A programmable cascaded low-pass filter-based flux synthesis for a stator flux-oriented vector-controlled induction motor drive,” IEEE Trans. on Industrial Electronics, Vol. 44, No. 1, pp. 140-143, Feb. 1997.
[20] M. R. Zolghadri and D. S. Zinger, “A fully digital sensorless DTC system for synchronous machine,” Electric Machines and Power Systems, Vol. 26, pp. 709-721, 1998.
[21] T. C. Chen, “Control of voltage-source inverter using single-chip microprocessors,” International Journal of Electronics, Vol.88, No.4. pp. 473-483, 2001
[22] BIMAL K. BOSE, Modern Power Electronics and AC Drivers, pp. 439-533, 2002
[23] Texas Instruments. TMS320F2810, TMS320F2812 Digital Signal Processors Data Manual, 2003.