簡易檢索 / 詳目顯示

研究生: 蔡忠哲
Tsai, Chung-Che
論文名稱: 矩形散射柱聲子晶體之拓樸能谷邊緣態分析
Topological valley edge states of the phononic crystal with rectangular scatters
指導教授: 陳聯文
Chen, Lien-Wen
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 108
中文關鍵詞: 拓樸絕緣體雙狄拉克錐量子能谷霍爾效應邊緣模態
外文關鍵詞: topological insulator, double Dirac cone, quantum valley Hall effect, edge mode
相關次數: 點閱:81下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 拓樸絕緣體為一種特殊材料,內部不導電,但在結構表面或界面處可允許能量通過,並且透過量子霍爾效應可類比至聲子晶體。藉由改變結構對稱性或施加外部場、打破空間或時間反演對稱,使能帶結構圖中的雙狄拉克點被拉開並產生拓樸相變,創造出兩種拓樸不等價的材料,便可利用其界面處產生的邊緣模態控制波的傳遞方向。本文設計一基材中間嵌入空氣散射柱組成單位晶胞,接著改變其結構的對稱性,同時引入量子能谷霍爾效應,研究聲波的波傳現象。首先,建立結構模型,利用有限元素法軟體COMSOL Multiphysics® 計算出其能帶結構,並設計材料性質與結構參數找出雙狄拉克點,並討論改變結構參數對於雙狄拉克錐的影響。接著改變散射柱旋轉的角度拉開雙狄拉克點並討論能帶反轉現象。利用超晶胞法分析兩種拓樸不等價聲子晶體所組成的界面,並於邊體關係圖尋找能量集中於界面處之邊緣模態。最後,於結構中激發於邊緣模態頻率範圍之聲波,並使用直線與Z字型的彎角路徑搭配缺陷、亂序,藉由比較幾種波傳路徑,驗證邊緣模態對於抑制後向散射及缺陷免疫的穩健性,並使用穿透頻譜圖確認其高傳輸效率之性質。同時也結合量子自旋霍爾效應,使用不同的偽自旋波源搭配四通道之結構,透過控制波源的偽自旋方向來決定波傳方向。

    In the present study, we design a topological insulator with quantum valley Hall effect, which is proposed to exhibit the topologically protected edge mode in acoustic wave. The unit cell of the topologically phononic crystal is composed of six rectangular scattering pillars. We verify that the topological phase transition occurs around the double Dirac cone and present the topological phase diagram as a function of the rotation angle of the meta-atoms. Once the coupling between adjacent metamolecules is sufficiently strong, the mode inversion of topological states emerges. We design straight and Z-shaped paths and add two kinds of defects and disorders to prove its strong wave propagation property. All simulation results in this thesis are obtained by the finite element analysis software COMSOL Multiphysics®. It is also shown that robust pseudospin-dependent one-way transmission is immune to defects in the topological phononic crystals, which can be applied to acoustic wave transmissions and communications. Our approach in acoustic systems provides a strategy to explore topological states in two-dimensional systems. The robustness of the edge mode for limiting the backscattering and defect immunity is verified.

    摘要 I 致謝 IX 目錄 X 圖目錄 XIII 符號 XXI 第一章 緒論 1 1.1. 前言 1 1.2. 文獻回顧 2 1.2.1. 聲子晶體 2 1.2.2. 聲子晶體之能隙現象 3 1.2.3. 拓樸學簡介 4 1.2.4. 拓樸絕緣體 5 1.2.5. 量子霍爾效應 5 1.2.6. 量子自旋霍爾效應與量子能谷霍爾效應 6 1.3. 本文架構 8 第二章 理論與數值方法 12 2.1. 前言 12 2.2. 固態物理學之基本定義 13 2.2.1. 實晶與倒晶格(Reciprocal Lattice) 13 2.2.2. 布里淵區(Brillouin Zones)與布洛赫定理(Bloch theorem) 14 2.3. 有限元素法 15 2.4. 拓樸學(Topology) 18 2.4.1. 能帶理論(Band Theory)與拓樸 19 2.4.2. 貝里相位與陳數 19 2.5. 量子霍爾效應簡介 20 2.5.1. 整數量子霍爾效應 21 2.5.2. 量子自旋霍爾效應 21 2.5.3. 量子能谷霍爾效應 22 第三章 模型參數討論及拓樸相變 28 3.1. 前言 28 3.2. 幾何模型建立與能帶分析 28 3.2.1. 晶格結構 28 3.2.2. 二維拓樸聲子晶體模型能帶結構分析 29 3.3. 改變幾何參數之能帶分析 30 3.3.1. 同時改變矩形兩邊長度之能帶分析 30 3.3.2. 改變矩形短邊長度之能帶分析 30 3.3.3. 改變矩形長邊長度之能帶分析 31 3.3.4 改變矩形旋轉角度之能帶分析 31 3.4 量子能谷霍爾效應之拓樸相變 32 3.4.1 模型討論與參數選定 32 3.4.2. 模型參數 γ=1.5之拓樸相變 32 3.4.3. 模型參數 γ=1.7之拓樸相變 33 3.4.4. 模型參數 γ=1.9之拓樸相變 34 3.4.5. 綜合討論 34 第四章 拓樸邊緣模態之波傳分析 55 4.1. 前言 55 4.2. 拓樸聲子晶體之邊體關係(Edge-Bulk Correspondence)分析 55 4.2.1. 界面邊體關係圖簡介 55 4.2.2. γ=1.5之邊體關係分析 56 4.2.3. γ=1.7之邊體關係分析 57 4.2.4. γ=1.9之邊體關係分析 58 4.3. 直線全波模擬(Full wave simulation)分析 58 4.3.1. 全波模擬簡介 58 4.3.2. γ=1.5之直線全波模擬分析 59 4.3.3. γ=1.7之直線全波模擬分析 60 4.3.4. γ=1.9之直線全波模擬分析 61 4.4. Z字型路徑之全波模擬(Full wave simulation)分析 61 4.4.1. γ=1.5之Z字型全波模擬分析 61 4.4.2. γ=1.7之Z字型全波模擬分析 63 4.4.3. γ=1.9之Z字型全波模擬分析 63 4.5. 量子自旋霍爾效應與波傳方向之分析 64 第五章 綜合討論與未來展望 101 5.1. 綜合結論 101 5.2. 未來展望 102 參考文獻 103

    參考文獻
    [1] E. Yablonovitch, "INHIBITED SPONTANEOUS EMISSION IN SOLID-STATE PHYSICS AND ELECTRONICS," (in English), Phys. Rev. Lett., Article vol. 58, no. 20, pp. 2059-2062, May 1987
    [2] D. J. Thouless, F. D. M. Haldane, and J. M. Kosterlitz, "Scientific background: Topological phase transitions and topological phases of matter," The Nobel Prize in Physics 2016, NobelPrize.org. , 2016.
    [3] S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett., vol. 58, no. 23, pp. 2486-2489, 06/08/ 1987
    [4] L. Brillouin, “Wave propagation in periodic structures: electric filters and crystal lattices” 2nd ed. Dover, New York. (1953).
    [5] L. Cremer and H. O. Leilich, “Zur theorie der Biegekettenleiter (On theory of flexural periodic systms),” Archiv der Elektrischen Ubertragung, Vol. 7, 261. (1953)
    [6] M. A. Heckl, “Investigations on the vibrations of grillage and other simple beam structure,” Journal of the Acoustical Society of America, Vol. 36, 1335. (1964)
    [7] M. S. Kushwaha, P. Halevi, L. Dobrzynski and B. Djafari-Rouhani,"Acoustic band structure of periodic elastic composites", Physical Review Letter, Vol. 71, No. 13, pp. 2022-2025. (1993)
    [8] M. S. Kushwaha, P. Halevi, G. Martínez, L. Dobrzynski, and B.Djafari-Rouhani, “Theory of acoustic band structure of periodic elastic composites”, Physical Review B, Vol. 49, No. 4, pp. 2313-2322. (1994)
    [9] M. S. Kushwaha, and P. Halevi, “Band-gap engineering in periodic elastic composites”, Applied Physics Letters, Vol. 64, No.9, pp. 1085-1087. (1994)
    [10] M. S. Kushwaha, “Classical band structure of periodic elastic composites”, International Journal of Modern Physics B, Vol. 10, No. 9, pp.977-1094. (1996)
    [11] R. Martinezsala, J. Sancho, J. V. Sanchez, V. Gomez, J. Llinares and F. Meseguer, “SOUND-ATTENUATION BY SCULPTURE” Nature, Vol. 378, No. 6554, pp. 241-241. (1995)
    [12] Yang, Wen-Pei, and Lien-Wen Chen. "The tunable acoustic band gaps of two-dimensional phononic crystals with a dielectric elastomer cylindrical actuator." Smart materials and structures 17.1 (2007): 015011.
    [13] Bousfia, A., et al. "Omnidirectional phononic reflection and selective transmission in one-dimensional acoustic layered structures." Surface science 482 (2001): 1175-1180.
    [14] B. Manzanares-Martínez, J. Sánchez-Dehesa, A. Håkansson, F. Cervera, and F. Ramos-Mendieta, "Experimental evidence of omnidirectional elastic bandgap in finite one-dimensional phononic systems," Applied Physics Letters, vol. 85, no. 1, pp. 154-156, 2004/07/05 2004, doi: 10.1063/1.1766074.
    [15] M. S. Kushwaha, "Stop-bands for periodic metallic rods: Sculptures that can filter the noise," Applied Physics Letters, vol. 70, no. 24, pp. 3218-3220, 1997/06/16 1997, doi: 10.1063/1.119130.
    [16] Z. Liu, C. T. Chan, and P. Sheng, "Three-component elastic wave band-gap material," Phys. Rev. B, vol. 65, no. 16, p. 165116, 04/11/ 2002, doi:10.1103/PhysRevB.65.165116.
    [17] Z. Liu et al., "Locally Resonant Sonic Materials," Science, vol. 289, no. 5485, p. 1734, 2000, doi: 10.1126/science.289.5485.1734.
    [18] Zhang, Xin, Zhengyou Liu, and Youyan Liu. "The optimum elastic wave band gaps in three dimensional phononic crystals with local resonance." The European Physical Journal B-Condensed Matter and Complex Systems 42.4 (2004): 477-482.
    [19] J.-Y. Yeh, "Control analysis of the tunable phononic crystal with electrorheological material," Physica B: Condensed Matter, vol. 400, no. 1, pp. 137-144, 2007/11/15/ 2007, doi: https://doi.org/10.1016/j.physb.2007.06.030.
    [20] M. Ruzzene and A. Baz, "Control of Wave Propagation in Periodic Composite Rods Using Shape Memory Inserts," Journal of Vibration and Acoustics, vol. 122, no. 2, pp. 151-159, 1999
    [21] Chen, T., M. Ruzzene, and A. Baz. "Control of wave propagation in composite rods using shape memory inserts: theory and experiments." Journal of Vibration and control 6.7 (2000): 1065-1081.
    [22] K. Bertoldi and M. C. Boyce, "Mechanically triggered transformations of phononic band gaps in periodic elastomeric structures," Phys. Rev. B, vol. 77, no. 5, p. 052105, 02/27/ 2008
    [23] E. Thomas, T. Groishnyy, and M. Maldovan, Phononics: Colloidal crystals go hypersonic. 2006, pp. 773-4.
    [24] J. Wen, G. Wang, D. Yu, H. Zhao, and Y. Liu, "Theoretical and experimental investigation of flexural wave propagation in straight beams with periodic structures: Application to a vibration isolation structure," Journal of Applied Physics, vol. 97, no. 11, p. 114907, 2005/06/01 2005, doi: 10.1063/1.1922068.
    [25] M. M. Sigalas, "Elastic wave band gaps and defect states in two-dimensional composites," The Journal of the Acoustical Society of America, vol. 101, no. 3, pp. 1256-1261,1997
    [26] F. Wu, Z. Hou, Z. Liu, and Y. Liu, "Point defect states in two-dimensional phononic crystals," Physics Letters A, vol. 292, no. 3, pp. 198-202, 2001
    [27] T. Miyashita, "Experimentally study of a sharp bending wave-guide constructed in a sonic-crystal slab of an array of short aluminum rods in air," in IEEE Ultrasonics Symposium, 2004, 23-27 Aug. 2004 2004, vol. 2, pp. 946-949 Vol.2
    [28] X. Zhang, Z. Liu, Y. Liu, and F. Wu, Defect states in 2D acoustic band-gap materials with bend-shaped linear defects. 2004, pp. 67-71.
    [29] J. V. Jos, “40 years of Berezinskii-Kosterlitz-Thouless theory”, 1st ed. World Scientific, Singapore (2013)
    [30] Zhang, Yuanbo, et al. "Experimental observation of the quantum Hall effect and Berry's phase in graphene." nature 438.7065 (2005): 201-204.
    [31] X. Yin, Z. Ye, J. Rho, Y. Wang and X. Zhang, “Photonic spin Hall effect at metasurfaces”, Science, Vol. 339, No.6126, pp. 1405-1407. (2013)
    [32] S. Raghu and F. Haldane, “Analogs of quantum-Hall-effect edge states in photonic crystals”, Physical Review A, Vol. 78, No.3, p. 033834. (2008)
    [33] P. Wang, L. Lu and K. Bertoldi, “Topological phononic crystals with one-way elastic edge waves”, Physical review letters, Vol. 115, No.10, p. 104302. (2015)
    [34] R. K. Pal, M. Schaeffer and M. Ruzzene, “Helical edge states and topological phase transitions in phononic systems using bi-layered lattices”, Journal of Applied Physics, Vol. 119, No.8, p. 084305. (2016)
    [35] Y. Liu, Y. Xu, S. C. Zhang and W. Duan, “Model for topological phononics and phonon diode”, Physical Review B, Vol. 96, No.6, p. 064106. (2017)
    [36] J. Lu, C. Qiu, L. Ye, X. Fan, M. Ke, F. Zhang and Z. Liu, “Observation of topological valley transport of sound in sonic crystals”, Nature Physics, Vol. 13, No.4, pp. 369-374. (2017)
    [37] J. Lu, C. Qiu, M. Ke and Z. Liu, “Valley vortex states in sonic crystals”, Physical review letters, Vol. 116, No.9, p. 093901. (2016)
    [38] B. Z. Xia, T. T. Liu, G. L. Huang, H. Q. Dai, J. R. Jiao, X. G. Zang, D. J. Yu, S. J. Zheng and J. Liu, “Topological phononic insulator with robust pseudospin-dependent transport”, Physical Review B, Vol. 96, No.9, p. 094106. (2017)
    [39] Y. Yang, Z. Yang and B. Zhang, “Acoustic valley edge states in a graphene-like resonator system”, Journal of Applied Physics, Vol. 123, No.9, p. 091713. (2018)
    [40] X. Ni, M. A. Gorlach, A. Alu and A. B. Khanikaev, “Topological edge states in acoustic Kagome lattices”, New Journal of Physics, Vol. 19, No.5, p. 055002. (2017)
    [41] F.-F. Li et al., "Topological light-trapping on a dislocation," Nature Communications, vol. 9, no. 1, p. 2462, 2018/06/25 2018, doi: 10.1038/s41467-018-04861-x.
    [42] F. Gao et al., "Topologically protected refraction of robust kink states in valley photonic crystals," Nature Physics, vol. 14, p. 140, 11/13/online 2017, doi: 10.1038/nphys4304
    [43] Z. Zhang et al., "Directional Acoustic Antennas Based on Valley-Hall Topological Insulators," Advanced Materials, vol. 30, no. 36, p. 1803229, 2018/09/01 2018, doi: 10.1002/adma.201803229.
    [44] M. Yan et al., "On-chip valley topological materials for elastic wave manipulation," Nature Materials, vol. 17, no. 11, pp. 993-998, 2018/11/01 2018, doi: 10.1038/s41563-018-0191-5.
    [45] S.-Y. Yu et al., "Elastic pseudospin transport for integratable topological phononic circuits," Nature Communications, vol. 9, no. 1, p. 3072, 2018/08/06 2018, doi: 10.1038/s41467-018-05461-5.
    [46] J. Lu et al., "Valley Topological Phases in Bilayer Sonic Crystals," Phys. Rev. Lett., vol. 120, no. 11, p. 116802, 03/15/ 2018, doi: 10.1103/PhysRevLett.120.116802.
    [47] X. Zhang et al., "Second-order topology and multidimensional topological transitions in sonic crystals," Nature Physics, vol. 15, no. 6, pp. 582-588, 2019/06/01 2019, doi: 10.1038/s41567-019-0472-1.
    [48] H. Zheng and S. Ravaine, "Bottom-Up Assembly and Applications of Photonic Materials," Crystals, vol. 6, no. 5, 2016, doi: 10.3390/cryst6050054.
    [49] Nobelprize.org(2016)。The Nobel Prize in Physics 2016- Press Release。民107年6月20日,取自:https://www.nobelprize.org/nobel_prizes/physics/laureates
    /2016/press.html
    [50] E. Yablonovitch and T. J. Gmitter, “Photonic Band Structure: The face-centered-cubic case,” Physical Review Letter, Vol. 63, No.18, pp. 1950-1953. (1989)
    [51] 知乎(2014-06-07)。什麼是分數量子霍爾效應?-每日頭條。民107年6月20日,取自:https://kknews.cc/zh-mo/science/yn6r2k.html
    [52] 維基百科編者. "維格納-賽茲原胞." 維基百科,自由的百科全書. (accessed 2013-05-19UTC13:56:36+00:00 (UTC)
    [53] H. Weng, R. Yu, X. Hu, X. Dai, and Z. Fang, "Quantum anomalous Hall effect and related topological electronic states," Advances in Physics, vol. 64, no. 3, pp. 227-282, 2015.
    [54] E. McCann and V. I. Fal’ko, "Landau-Level Degeneracy and Quantum Hall Effect in a Graphite Bilayer," Phys. Rev. Lett., vol. 96, no. 8, p. 086805, 03/03/ 2006, doi: 10.1103/PhysRevLett.96.086805.
    [55] C. L. Kane, "Chapter 1 - Topological Band Theory and the 2 Invariant," in Contemporary Concepts of Condensed Matter Science, vol. 6, M. Franz and L. Molenkamp Eds.: Elsevier, 2013, pp. 3-34.

    無法下載圖示 校內:2025-07-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE