簡易檢索 / 詳目顯示

研究生: 褚明灃
Chu, Ming-Feng
論文名稱: 線型馬達工具機垂直軸之高性能伺服控制器之設計與實現
High Performance Servo Control on Vertical Axis of Linear Motor Machine Tool
指導教授: 陳響亮
Chen, Shang-Liang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 製造工程研究所
Institute of Manufacturing Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 54
中文關鍵詞: 干擾觀測器線性馬達垂直軸零相位誤差追蹤控制器
外文關鍵詞: Vertical axes, Linear motor, ZPETC, Disturbance observer
相關次數: 點閱:165下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •  現今的工具機發展隨著航太工業、汽車工業及電子產業的蓬勃發展,其產業特色為產品精密度的品質要求甚高,而產品生命週期短暫,需要有快速開發新產品的能力,傳統工具機已經漸漸的不符合產業需求,因此未來工具機的發展需具備高速、高精度的加工特性,以符合高科技產業的潮流。線性馬達工具機有著高加速度,高精密的定位技術及無背隙等特點,別於一般的旋轉式馬達驅動器,線性馬達為直接驅動器,無須齒輪、滾珠導螺桿、聯軸器、齒條等傳動機構,由於沒有滾珠導螺桿所以不會產生背隙、撓曲等造成定位精度產生不良的問題,如此可大幅提升定位精度、速度及加速度。

    傳統的工具機中垂直軸伺服馬達搭配的滾珠導螺桿,垂直軸向下運動時,導螺桿本身的摩擦力提供馬達部份向上的支持力,來抵抗重力對伺服軸的影響;但是線性馬達工具機的垂直軸並無此機構,易受重力加速度影響其定位精度。本論文主要探討線性馬達工具之垂直軸受重力加速度的影響與提出改善定位精度之方法,垂直軸機構以氣壓配重系統補償重力加速度,輔以控制策略,來解決垂直軸定位精度不良及響應過慢等問題,實現高速高精度伺服控制。

    高性能伺服控制器的控制策略為於速度迴路中以干擾觀測器抑制外在干擾對於系統的影響,干擾觀測器中調整低通濾波器的參數,可增加系統對於外在干擾及雜訊的抑制能力。位置迴路中以PD控制器,降低系統的超越量,增加系統的暫態響應及穩定度,由於迴授控制器會有相位落後的問題,以零相位誤差追蹤控制器作為前饋控制器,預先補償輸入命令降低伺服落後現象。本論文以氣壓系統補償重力加速度和高性能伺服控制器實現高速高精度的線性馬達垂直軸定位控制。

     Today the technology of machine tools is highly developed, and the features of products are high precision, high quality and short lifecycle. Hence advanced machine tools must achieve goals of high speed and high precision. The characteristics of linear machine tools are high acceleration, accurate positioning, because they do not have ball screw, gear and transmission mechanism. Therefore linear machine tools do not have problems like backlash and deflection, but have better positioning and acceleration.

     In the case of vertical axes, traditional machine tools are usually composed of servo motors and ball screws. The screws can provide friction against gravity force while vertical axes move down. However, linear machine tools do no have ball screws to support themselves; they are easy to be influenced by gravity force. Hence, this thesis is going to propose a method about how to improve positioning precision on vertical axes in linear machine tools.

     The control strategy of high performance servo controllers adopts disturbance observer and a proportional controller to constrain disturbance and to obtain faster response in velocity loop. Disturbance observers can constrain disturbance and noise by tuning low-pass filters. Position loop controllers can improve transient response; however they have a problem of phase lag. Hence, this thesis utilizes a ZPETC to compensate this lag. In addition, this thesis also adopts an atmospheric pressure system to compensate gravity force and implements a high performance controller for linear motors on vertical axes.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VI 第一章 序論 1 1-1 研究動機 1 1-2 研究目的 2 1-3 文獻回顧 2 1-4 章節瀏覽 11 第二章 建立垂直軸系統動態模型 12 2-1 建立線性馬達垂直軸系統 12 2-2 系統動態模型鑑別 15 第三章 控制系統設計 20 3-1 干擾觀測器 21 3-2 位置迴路控制器 25 3-3 零相位誤差追蹤控制器 26 3-4 摩擦力補償器 32 第四章 模擬與分析 33 4-1 運動軌跡設計 33 4-2 控制器參數選用與模擬 35 第五章 實驗結果 45 5-1 實驗系統架構 45 5-2 實驗結果 48 第六章 結論 55 參考文獻 57 附錄A 61 自述 64

    [1] P.K.Budig, “The application of linear motors”, Power Electronics and Motor Control Conference, Vol. 3, pp.1336-1341, 2000.
    [2] M. S. W. Tam and N. C. Cheung, “A high speed high precision linear drive system for manufacturing automation,” Applied Power Electronics Conference and Exposition, Vol. 1, pp. 440-444, 2001.
    [3] A. Suzuki and M. Tomizuka, “Design And Implementation of Digital Servo Controller For High Speed Machine Tools,” Proceedings of American Control Conference, pp. 1246-1251, 1991.
    [4] H. Yajima, H.Wakiwaka, S. Senoh, “Consideration on High-Response of a Linear DC Motor,” IEEE, Transactions on Industrial Electronics, Vol. 33, No. 5, pp. 3880-3882, 1997.
    [5] T. Egami and T. Tsuchiya,” Disturbance Suppression Control with Preview Action of Linear DC Brushless Motor,” IEEE, Transactions on Industrial Electronics, Vol. 42, No. 5, pp. 494-500, 1995.
    [6] P. K. Budig, “The application of linear motors,” Power Electronics and Motion Control Conference, Vol. 3, pp. 1336-1341, 2000.
    [7] E. D. Tung, M. Tomizuka and Y. Urushihaki, “High-Speed End Milling UsingaFeedforward Control Architecture,” Journal of Manufacturing Science and Engineering, Vol.118, No.2, pp.178-187, 1996.
    [8] M. Tomizuka, “Zero Phase Error Tracking Algorithm for Digital Control,” ASME, Journal of Dynamic System, Measurement and Control, Vol. 109, pp. 65-68, 1987.
    [9] Y. Funahashi and M. Yamada, “Zero Phase Error Tracking Controllers with optimal gain Characteristics,” ASME, Journal of Dynamic System, Measurement and Control, Vol. 115, pp. 311-318, 1993.
    [10] Masory, O, “Improving Contouring Accuracy of NC/CNC Systems With Additional Velocity Feed Forward Loop,” ASME, Journal of Engineering for Industry, Vol.108,pp. 227-230,1986.
    [11] T.C. Tsao and M. Tomizuka, “Adaptive Zero Phase Error Tracking Algorithm for Digital Control,” ASMS, Journal of Dynamic Systems, Measurement and Control, Vol.109, No.4, pp. 349-354, 1987.
    [12] H. S. Lee and M. Tomizuka, “Robust Tracking Controller Design for High-Speed Machining,” American Control Conference, Vol. 1, pp. 215-219, 1995.
    [13] H. S. Lee and M. Tomizuka, “Robust Motor Controller Design for High-Accuracy Positioning Systems,”IEEE, Transactions on Industrial Electronics, Vol. 43, No. 1, pp. 48-55, 1996.
    [14]T. Umeno and Y. Hori, “Robust Speed Control of DC Servomotors Using Modern Two Degrees-of-Freedom Controller Design,” IEEE Transactions On Industrial Electronics, Vol.38, No.5, pp. 363-368, 1991.
    [15] D. G. Lee, “Design and manufacture of composite high speed machine tool structures,” Composites Science and Technology, pp 1523–1530,2004.
    [16] M. Tomizuka, “On the Compensation of Friction Forces in Precision Motion Control,” Asia-Pacific Workshop on Advances, pp.69-74,1993
    [17] MITSUBISH, Linear Motor Manual and Servo Amplifier Instruction Manual, MITSUBISH, 2003.
    [18] B. Armstrong-Helouvry, P. Dupont, and Canudas de Wit, C., “A Survey of Models, Analysis Tools and Compensation Methods for the Control of Machines with Friction,” Automatica, Vol.30, No.7, pp.1083-1138,.1994
    [19] H. S. Lee, Robust Digital Tracking Controllers for High-Speed/High-Accuracy Position Systems, Ph.D. Dissertation, Department of Mechanical Engineering, University of California at Berkeley, 1994.
    [20] 陳國禎,線型馬達氣壓配重,機械工業雜誌,第241期,pp. 156-161,1999。
    [21] 蕭錫鴻,王仁傑,臥式Box-in-Box線型工具機之發展及技術發展現況,機械工業雜誌,第252期,pp. 114-122,1999。
    [22] 蔡明祺,李榮顯,線性馬達驅動之工具機系統簡介, 機械月刊,第296期,pp. 367-381,2000。
    [23] 蕭錫鴻,線性馬達綜合加工機之構造設計,碩士論文,逢甲大學材料與製造工程所,民國九十三年。
    [24] 施慶隆,機電整合控制多軸運動設計與應用,全華科技圖書,民國九十一年。
    [25] 李宜達,控制系統設計與模擬,全華科技圖書,民國九十三年。
    [26] 施慶隆,控制系統分析與設計,全華科技圖書,民國九十二年。
    [27] 趙清風,使用MATLAB控制之系統鑑別,全華圖書,民國九十年。
    [28] 楊憲東,精密機械運動控制原理及模擬,全華科技圖書,民國八十七年。
    [29] 張道弘,PID控制理論與實務,全華科技圖書,民國八十四年。
    [30] 榮欽科技,精通C++入門與實作,文魁資訊,民國九十二年。
    [31] 工業技術研究院機械工業研究所,EPCIO ASIC 設計及應用使用手冊,工業技術研究院,民國九十二年。
    [32] 工業技術研究院機械工業研究所,EPCIO-6000/6005 硬體使用手冊,工業技術研究院,民國九十一年。
    [33] 洪榮哲,機構設計之精密定位法,全華科技圖書,民國八十七年。
    [34] 陳志監、曾偉誠,龍門銑床Z軸油壓配重測試分析,機械月刊,第28卷第6期,2002。

    下載圖示 校內:2008-09-08公開
    校外:2015-09-08公開
    QR CODE