簡易檢索 / 詳目顯示

研究生: 王大鈞
Wang, Da-Jiun
論文名稱: 銅薄膜合成石墨烯暨石墨烯包覆奈米銅導線之電性與阻障特性研究
Graphene Synthesis by Copper Thin Film and the Study on Electrical and Diffusion Barrier Properties in Graphene-Coated Copper Nanowires for Interconnects
指導教授: 吳俊煌
Wu, Gien-Huang
共同指導教授: 林仁輝
Lin, Jen-Fin
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 150
中文關鍵詞: 石墨烯奈米銅導線擴散阻障層電阻率相關係數等效介電係數銅離子擴散
外文關鍵詞: graphene, copper nanowire, diffusion barrier
相關次數: 點閱:86下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 高導電率的奈米銅導線具有高效率的訊號傳遞能力,可以應用在高性能半導體晶片上。半導體工業依循莫爾定律的演進,不斷地縮小各元件的特徵尺寸。對銅導線而言,微縮特徵尺寸會增加比表面積,電子傳輸過程與擴散阻障層的異質界面之非彈性散射現象變得明顯,導致銅導線的導電性質下降。另外,傳統的擴散阻障層材料也面臨電阻過大、厚度難以減小等困境。
    本研究以石墨烯取代傳統的擴散阻障層,在奈米銅導線表面合成石墨烯,形成一被石墨烯包覆的銅導線結構,以拉曼光譜檢測石墨烯的品質,透過直流量測計算電阻率,利用計算相關係數("ρ" )與等效介電係數(k)分析漏電流,判斷石墨烯包覆效果與銅離子擴散程度,以及剖面銅元素成分分析觀察銅離子擴散的情形。
    在真空環境下,高溫"900℃" 持溫3分鐘成長石墨烯,在"750℃" 以前控制降溫速率"-10℃/s" ,以表面析出的方式繼續成長,延長成長時間同時避免銅導線發生反濕潤現象,並利用拉曼光譜觀察到石墨烯的G、2D特徵峰值,其中"I" _"2D" ⁄"I" _"G" 在0.5~1間,表示合成出多層石墨烯,"I" _"D" ⁄"I" _"G" "在2~3" 間,帶有結構缺陷。由直流量測電壓-電流曲線,計算出包覆石墨烯後電阻率減少了21.5%,顯示石墨烯有效地減少電子在表面的非彈性散射。在銅離子擴散檢測方面,分別將樣品在"200℃、350℃、500℃" 退火兩小時,提供銅離子擴散進入氧化層所需能量與時間。不論是漏電流分析或剖面銅元素成分分析,結果皆顯示石墨烯有良好的阻擋銅離子擴散能力,但在"350-500℃" 間失效。本研究發現,石墨烯可以有效降低奈米銅導線的電阻率,並在低於"350℃" 的環境下有效阻絕銅離子擴散進入氧化層中,製備出一個具有高傳導性能與阻障銅離子擴散的奈米銅導線結構,針對半導體工業在特徵尺寸微縮上遭遇的瓶頸,提供了一個解決方案。

    Copper nanowires are made by bi-layer liftoff process using e-beam lithography and e-beam evaporation. Graphene-coated copper nanowires are synthesized by the rapid thermal process with "900℃" growth temperature for 3 minute and control cooling rate until "750℃" . The raman spectrum show the G and 2D band, and the "I" _"D" "/" "I" _"G" is near 2. It represent that there is graphene with defects on the copper nanowires. The XPS spectrum show the sp2 bonded which represent the carbon-carbon bonded of graphene at binding energy 284.6 eV.
    With the direct current-voltage measurent, we find that graphene reduce the resistivity of copper nanowires about 21.5%, compared to the no graphene-coated sample. It represent graphene reduce the surface scattering of electrons at the copper nanowires surface. For the purpose of analyzing the barrier property, we deposite 350nm silicon oxide layer on the sample by HDPCVD, and anneal at 200, 350, "500℃" for two hours. Using leakage current and EDS line scan measurement to analyze the barrier property. We find that the graphene will fail to diffusion barrier until 350 to "500℃" .

    目錄 摘要 I 目錄 III 表目錄 XI 圖目錄 XIII 1 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 1.3 文獻回顧 3 1.4 研究架構 5 2 第二章 基本理論 7 2.1 石墨烯簡介 7 2.1.1 電學特性 7 2.1.2 熱學特性 8 2.1.3 力學特性 9 2.2 金屬催化合成石墨烯 9 2.2.1 化學氣相沉積法(Chemical Vapor Deposition) 10 2.2.2 固態碳源金屬表面析出法(Segregation from solid carbon source) 14 2.3 銅內導線簡介 15 2.3.1 銅內導線技術 15 2.3.2 RC Delay 17 2.4 剝離法(Liftoff) 18 2.5 漏電流機制 20 2.6 儀器理論 21 2.6.1 電漿原理 21 2.6.2 高密度電漿化學氣相沉積原理 23 2.6.3 磁控濺鍍原理 24 2.6.4 電子束蒸鍍原理 25 2.6.5 電子束微影術[30] 26 2.6.6 掃描式電子顯微鏡原理[31] 28 2.6.7 拉曼光譜顯微術 29 3 第三章 實驗設計與設備 41 3.1 實驗目的與流程 41 3.2 實驗設備與實驗參數 44 3.2.1 化學濕式操作台(Chemical Wet Bench) 44 3.2.2 旋轉塗佈儀(Spin Coater) 45 3.2.3 晶圓切割機(Wafer Cut) 46 3.2.4 多靶磁控濺鍍機(Multi-Target Magnetron Sputter) 47 3.2.5 雙槍電子束蒸鍍機(Dual E-Beam Evaporator) 47 3.2.6 高密度化學氣相沉積系統(HDPCVD) 48 3.2.7 電子束微影系統(Electron Beam Lithography System) 49 3.2.8 高真空紅外線高溫快速退火系統 50 3.2.9 表面粗度儀(Surface Profilometer ) 51 3.2.10 光學顯微鏡 52 3.2.11 高解析場發射掃描式電子顯微鏡(High-Resolution Thermal Field Emission Scanning Electron Microscopy) 52 3.2.12 拉曼光譜儀(Raman Spectrometer) 52 3.2.13 雙束型聚焦離子束儀(Dual Beam-Focused Ion Beam) 53 3.2.14 直流量測系統 53 4 第四章 實驗過程與結果 75 4.1 晶圓切割與試片清潔 75 4.1.1 晶圓切割 75 4.1.2 試片清潔 75 4.2 銅導線圖案化製作 76 4.2.1 導電層蒸鍍 76 4.2.2 光阻塗佈 77 4.2.3 圖案設計 77 4.2.4 電子束微影曝光與顯影 78 4.2.5 銅膜蒸鍍 82 4.2.6 剝離法 83 4.3 銅薄膜合成石墨烯 84 4.3.1 樣品製備 84 4.3.2 高溫快速退火合成石墨烯 85 4.4 銅導線合成石墨烯 88 4.4.1 碳膜濺鍍 88 4.4.2 石墨烯包覆銅導線製作 88 4.5 銅導線直流IV量測 90 4.6 銅導線漏電流量測 92 4.7 剖面觀察與成分分析 97 4.8 綜合討論 100 5 第五章 結論與未來展望 142 5.1 結論 142 5.2 未來展望 144 6 參考文獻 145

    參考文獻
    [1]T. N. Theis, “The future of interconnection technology,” IBM J. Res. Dev., vol. 44, no. 3, pp. 379–390, 2000.
    [2]R. L. Graham, G. B. Alers, T. Mountsier, N. Shamma, S. Dhuey, S. Cabrini, R. H. Geiss, D. T. Read, and S. Peddeti, “Resistivity dominated by surface scattering in sub-50 nm Cu wires,” Appl. Phys. Lett., vol. 96, no. 4, pp. 6–9, 2010.
    [3]Q. H. Q. Huang, C. M. Lilley, M. Bode, and R. S. Divan, “Electrical Properties of Cu Nanowires,” 2008 8th IEEE Conf. Nanotechnol., pp. 8–12, 2008.
    [4] A. E. Kaloyeros and E. Eisenbraun, “Ultrathin diffusion barriers/liners for gigascale copper metallization,” 2000.
    [5]K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature, vol. 490, no. 7419, pp. 192–200, 2012.
    [6]B. Nguyen, J. Lin, D. Perng, B. Nguyen, J. Lin, and D. Perng, “1-nm-thick graphene tri-layer as the ultimate copper diffusion barrier,” Appl. Phys. Lett., vol. 082105, no. 2014, 2016.
    [7]H. Y. Nan, Z. H. Ni, J. Wang, Z. Zafar, Z. X. Shi, and Y. Y. Wang, “The thermal stability of graphene in air investigated by Raman spectroscopy,” J. Raman Spectrosc., vol. 44, no. 7, pp. 1018–1021, 2013.
    [8]M. R. Baklanov, C. Adelmann, L. Zhao, and S. De Gendt, “Advanced Interconnects: Materials, Processing, and Reliability,” ECS J. Solid State Sci. Technol., vol. 4, no. 1, pp. Y1–Y4, 2014.
    [9]J. S. Chawla and D. Gall, “Specular electron scattering at single-crystal Cu(001) surfaces,” Appl. Phys. Lett., vol. 94, no. 25, pp. 23–25, 2009.
    [10]S. M. Rossnagel and T. S. Kuan, “Alteration of Cu conductivity in the size effect regime,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct., vol. 22, no. 2004, pp. 240–247, 2004.
    [11]V. Timoshevskii, Y. Ke, H. Guo, and D. Gall, “The influence of surface roughness on electrical conductance of thin Cu films: An ab initio study,” J. Appl. Phys., vol. 103, no. 11, pp. 9–12, 2008.
    [12]S. Yokogawa, Y. Kakuhara, and H. Tsuchiya, “Joule heating effects on electromigration in Cu/low-k interconnects,” IEEE Int. Reliab. Phys. Symp., pp. 837–843, 2009.
    [13] K. Kim, J.-Y. Choi, T. Kim, S.-H. Cho, and H.-J. Chung, “A role for graphene in silicon-based semiconductor devices.,” Nature, vol. 479, no. 7373, pp. 338–44, 2011.
    [14]a. S. Mayorov, R. V Gorbachev, S. V Morozov, L. Britnell, R. Jalil, L. a Ponomarenko, K. S. Novoselov, K. Watanabe, T. Taniguchi, and a. K. Geim, “Direct evidence for micron-scale ballistic transport in encapsulated graphene at room temperature,” 1103.4510, pp. 2396–2399, 2011.
    [15]C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science (80-. )., vol. 321, no. July, pp. 385–388, 2008.
    [16]A. A. Balandin, “Thermal properties of graphene and nanostructured carbon materials.,” Nat. Mater., vol. 10, no. 8, p. 569, 2011.
    [17]P. Avouris and C. Dimitrakopoulos, “Graphene: Synthesis and applications,” Mater. Today, vol. 15, no. 3, pp. 86–97, 2012.
    [18]Z. Juang, Y. Zhong, F. Chen, and L. Li, “Direct formation of wafer scale graphene thin layers on insulating substrates by chemical vapor deposition,” pp. 3612–3616, 2011.
    [19]I. Vlassiouk, S. Smirnov, M. Regmi, S. P. Surwade, N. Srivastava, R. Feenstra, G. Eres, C. Parish, N. Lavrik, P. Datskos, S. Dai, and P. Fulvio, “Graphene nucleation density on copper: Fundamental role of background pressure,” J. Phys. Chem. C, vol. 117, no. 37, pp. 18919–18926, 2013.
    [20]Q. Yu, J. Lian, S. Siriponglert, H. Li, Y. P. Chen, and S. S. Pei, “Graphene segregated on Ni surfaces and transferred to insulators,” Appl. Phys. Lett., vol. 93, no. 11, pp. 11–14, 2008.
    [21]Z. Sun, Z. Yan, J. Yao, E. Beitler, Y. Zhu, and J. M. Tour, “Growth of graphene from solid carbon sources,” Nature, vol. 468, no. 7323, pp. 549–552, 2010.
    [22]S. Amini, J. Garay, G. Liu, A. A. Balandin, and R. Abbaschian, “Growth of large-area graphene films from metal-carbon melts,” J. Appl. Phys., vol. 108, no. 9, pp. 1–21, 2010.
    [23]G. Pan, M. Heath, D. Horsell, and M. L. Wears, “Growth of large area graphene from sputtered films,” arXiv:1209.0489 [cond-mat.mtrl-sci]. 2013.
    [24]J.-H. Chen, C. Jang, S. Adam, M. S. Fuhrer, E. D. Williams, and M. Ishigami, “Charged-impurity scattering in graphene,” Nat. Phys., vol. 4, no. 5, pp. 377–381, 2008.
    [25]M. I. Katsnelson, “Graphene: carbon in two dimensions,” Mater. Today, vol. 10, no. 1–2, pp. 20–27, 2007.
    [26]P. R. Somani, S. P. Somani, and M. Umeno, “Planer nano-graphenes from camphor by CVD,” Chem. Phys. Lett., vol. 430, no. 1–3, pp. 56–59, 2006.
    [27]J. O. Sullivan, S. Burgess, and N. Rimmer, “Metal lift-off using physical vapour deposition,” vol. 64, pp. 473–478, 2002.
    [28]H. Zhang, E. J. Miller, and E. T. Yu, “Analysis of leakage current mechanisms in Schottky contacts to GaN and Al[sub 0.25]Ga[sub 0.75]N∕GaN grown by molecular-beam epitaxy,” J. Appl. Phys., vol. 99, no. 2, p. 023703, 2006.
    [29]T. K. S. Wong, “Time dependent dielectric breakdown in copper low-k interconnects: Mechanisms and reliability models,” Materials (Basel)., vol. 5, no. 9, pp. 1602–1625, 2012.
    [30]CMNST, “Electron Beam Lithography System SOP”, 2011.
    [31]CMNST, “FE-SEM 7001 SOP”, 2011
    [32]J. Hodkiewicz, “Characterizing Graphene with Raman Spectroscopy,” Whitepaper, p. Application note: 51946, 2010.
    [33]R. Muñoz and C. Gómez-Aleixandre, “Review of CVD synthesis of graphene,” Chem. Vap. Depos., vol. 19, no. 10–12, pp. 297–322, 2013.
    [34]H. Xiao, “Introduction to Semiconductor Manufacturing Technology, 3/E,” CHWA, 2014.
    [35]A. M. Kropinski, A. Mazzocco, T. E. Waddell, and R. P. Johnson, “Chapter 7 Plasma,” vol. 501, pp. 69–76, 2009.
    [36]H. Zhang, “Evaporation,” DonHua.
    [37]“Raman Spectroscopy Basics - Application Note,” Princet. Instruments, 2012.
    [38]陳信文, 石墨烯之拉曼光譜. 中國材料科學學會, 2009.
    [39]M. S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, and R. Saito, “Perspectives on carbon nanotubes and graphene Raman spectroscopy,” Nano Lett., vol. 10, no. 3, pp. 751–758, 2010.
    [40]MicroChem, “NANO PMMA and Copolymer TM,” Nano, p. 8, 2001.
    [41]N. Nano and D. Laboratories, “化學清洗蝕刻區標準操作程序 Class 10 WET BENCH SOP,” 2007.
    [42]E. Eisgruber, Spin Coater. Macmillan Company, 2008.
    [43]J. Liu, Q. Li, M. Ren, L. Zhang, M. Chen, and S. Fan, “Graphene as discharge layer for electron beam lithography on insulating substrate,” Appl. Phys. Lett., vol. 103, no. 11, 2013.

    下載圖示 校內:2018-08-31公開
    校外:2018-08-31公開
    QR CODE