簡易檢索 / 詳目顯示

研究生: 麥智鈞
Mai, Jhih-Jyun
論文名稱: 以電漿誘導接枝法製備兩性膜應用於電解水產氫
Preparation of bipolar membranes by plasma-induced polymerization for the application of hydrogen production from water electrolysis
指導教授: 許梅娟
Syu, Mei-Jywan
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 101
中文關鍵詞: 兩性膜離子交換膜電解水產氫
外文關鍵詞: bipolar membrane, ion exchange membrane, water electrolysis, hydrogen production
相關次數: 點閱:76下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用兩性膜(Bipolar membrane)獨特的電場加強水解離特性,以本實驗室核心技術-電漿誘導接枝法,將不同陰陽離子型單體N,N-Dimethyl amino ethyl acrylate (DMAEA)、4-Styrene sulfonic acid sodium salt hydrate (SSS)及2-methylacrylic acid 3-(bis-carboxymethylamino)-2-hydroxy-propyl ester (G-I)分別誘導接枝在PVDF膜或PES兩側形成DMAEA-PVDF-SSS、DMAEA-PES-SSS及GI-PVDF-GI三種兩性膜。另外,也使用Poly-ethersulfone (PES)膜作為背景基材,進行比較實驗。經電子顯微鏡及FTIR分析的結果顯示,於PVDF或PES兩側接枝的陰陽離子層均勻地覆蓋在膜表面。以DMAEA-PVDF-SSS兩性膜作為水電解槽的隔膜之水電解性能最佳,經電化學分析儀偵測的結果顯示,利用DMAEA-PVDF-SSS兩性膜的強化電場作用可將水解離成H+ 與OH- 的電位降低至0.90 V。當改變KCl濃度或者電解質種類時,其臨界電位不會隨之改變,但極限電流密度會隨著KCl濃度或電解質的擴散係數增加而增加。三種兩性膜的工作電位都明顯低於PES膜系統,也說明了兩性膜有降低工作電位的效果。其中,使用DMAEA-PVDF-SSS兩性膜為隔膜時,工作電位可比PES系統減少約510 mV左右;在產氫氣效率方面,可以增加10-20 %左右;同時,可以減少產氫氣所需的能量消耗達25-40 %。DMAEA-PVDF-SSS兩性膜在長時間操作下,效率值皆能維持在80 %以上,其電解水的能耗比Astom公司的商用兩性膜低20 %能量左右,為一具有高商業化價值的兩性膜。

    A monomer, N,N-Dimethyl amino ethyl acrylate (DMAEA), 4-Styrene sulfonic acid sodium salt hydrate (SSS), 2-methylacrylic acid 3-(bis-carboxymethylamino)-2-hydroxy-propyl ester (G-I) and the porous poly(vinylidene fluoride) (PVDF) membrane, poly(ethersulfone) (PES) membrane were used to prepare three types of bipolar membranes(BMs) by plasma-induced polymerization. After the monomer was grafted onto the surface of the membranes, results of the contact angle of the bipolar membranes were significantly reduced. Fourier transform infrared spectroscopy and scanning electron microscopy were also used to identify the grafting polymerization of the monomer on the membrane surface. From the I-V curve, the critical voltage is shown to be independent of the concentration and type of electrolyte. Moreover, the critical voltage of the DMAEA-PVDF-SSS bipolar membrane was around 0.9 V. The performance is demonstrated by measuring the cell voltage and rate of hydrogen production for cells operated with or without the BMs. Cell voltage reductions of up to 510 mV by using the DMAEA-PVDF-SSS bipolar membrane is observed at 250 mA/cm2 in 0.1 M K3PO4, compared to the water system. The efficiency of H2 production, by using the BMs as diaphragms is enhanced about 10-20% compared with the water system. In addition, the energy saved by using the DMAEA-PVDF-SSS BMs is decreased by around 25-40% at certain values of current densities. Under long-term operation, self-made bipolar membranes have better hydrogen production efficiency and energy saving effect than commercial membranes. It is a bipolar membrane with high commercial value.

    摘要 i 目錄 XV 表目錄 XVIII 圖目錄 XIX 第一章 緒論 1 第二章 文獻回顧 4 2-1 製氫技術 4 2-1-1 石化燃料製氫 5 2-1-2 太陽能製氫 9 2-1-3 生物質能製氫 12 2-1-4 水電解製氫 16 2-2 兩性膜簡介 25 2-3 兩性膜之製備方法 29 1. 熱壓成型法 29 2. 黏合成型法 30 3. 澆鑄成型法 30 4. 電沉積成型法 31 5. 靜電紡絲法 31 6. 噴塗層層自組裝法 33 7. 陰、陽離子交換基團引入法 34 2-4 兩性膜之應用 35 2-4-1 在化學工程的應用 35 2-4-2 污染防治和資源回收的應用 36 2-4-3 食品及醫藥工業中的應用 36 2-4-4 在其他方面的應用 37 第三章 材料與實驗方法 38 3-1 實驗藥品及材料 38 3-2 儀器設備 39 3-3實驗步驟 40 3-3-1 螯合性單體 G-I 的合成 40 3-3-2 電漿表面改質接枝高分子聚合物之製備 40 3-3-3 兩性膜之製備 42 3-4 分析方法 42 3-4-1 單體接枝於PVDF膜或PES膜上之分析 42 3-4-2 兩性膜之電化學特性分析 43 第四章 結果與討論 45 4-1 DMAEA-PVDF-SSS兩性膜之製備與電化學特性 45 4-1-1 DMAEA-PVDF-SSS兩性膜之鑑定分析 45 4-1-2 DMAEA-PVDF-SSS 兩性膜電化學特性 50 4-2 DMAEA-PVDF-SSS 兩性膜電解產氫 54 4-2-1 DMAEA-PVDF-SSS 兩性膜之電化學性質 54 4-2-2 DMAEA-PVDF-SSS兩性膜之產氫效率及能量消耗 56 4-3 兩性膜支撐層對電解產氫系統之影響 60 4-3-1 DMAEA-PES-SSS兩性膜之鑑定 60 4-3-2 不同支撐層兩性膜的穩定狀態電流-電位曲線圖 67 4-3-3 不同支撐層之兩性膜產氫效率與能量消耗 69 4-4 電解液對電解產氫系統之影響 72 4-4-1 不同電解液之穩定狀態電流-電位曲線 72 4-4-2 不同電解液之產氫效率與能量消耗之影響 74 4-5陰陽離子交換層對電解產氫系統之影響 75 4-5-1 GI-PVDF-GI兩性膜之鑑定 76 4-5-2 GI-PVDF-GI 兩性膜電流-電位曲線圖 81 4-5-3 GI-PVDF-GI 兩性膜產氫效率與能量消耗 82 4-6 DMAEA-PVDF-SSS兩性膜與商業兩性膜長時間測試 84 4-6-1 DMAEA-PVDF-SSS 兩性膜與商業兩性膜電流-電位曲線 84 4-6-2 DMAEA-PVDF-SSS兩性膜與商業兩性膜之產氫效率與能量消耗 85 4-7 改變溫度對產氫系統的影響 87 4-7-1 溫度改變之電流-電位曲線 87 4-7-2 溫度改變之產氫效率與能量消耗 89 第五章 結論 91 參考文獻 92

    1.Jacobson, M.Z., Review of solutions to global warming, air pollution, and energy security. Energy & Environmental Science, 2009. 2(2): p. 148-173.
    2.Balat, M., Possible Methods for Hydrogen Production. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2008. 31(1): p. 39-50.
    3.李聖德, 利用電漿誘導接枝法製備兩性膜於電解產氫之研究. 2010, 成大化工所博士論文.
    4.毛宗強,毛志明,余皓, 製氫工藝與技術. 2018: 化學工業出版社.
    5.McKendry, P., Energy production from biomass (part 1): overview of biomass. Bioresource Technology, 2002. 83(1): p. 37-46.
    6.谢继东, 李文华, and 陈.J. 潔淨煤技術, 煤制氢发展现状. 2007. 13(2): p. 77-81.
    7.Li, Y., et al., Simultaneous Production of Hydrogen and Nanocarbon from Decomposition of Methane on a Nickel-Based Catalyst. Energy & Fuels, 2000. 14(6): p. 1188-1194.
    8.Fujishima, A. and K. Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature, 1972. 238(5358): p. 37-38.
    9.Maeda, K. and K. Domen, New Non-Oxide Photocatalysts Designed for Overall Water Splitting under Visible Light. The Journal of Physical Chemistry C, 2007. 111(22): p. 7851-7861.
    10.Kalinci, Y., A. Hepbasli, and I. Dincer, Biomass-based hydrogen production: A review and analysis. International Journal of Hydrogen Energy, 2009. 34(21): p. 8799-8817.
    11.胡啟章, 電化學原理與方法. 2002: 五南出版社.
    12.LeRoy, R.L., et al., Analysis of Time‐Variation Effects in Water Electrolyzers. Journal of The Electrochemical Society, 1979. 126(10): p. 1674-1682.
    13.Morris, D.R.P., et al., Effect of Water Sorption on the Electronic Conductivity of Porous Polymer Electrolyte Membrane Fuel Cell Catalyst Layers. ACS Applied Materials & Interfaces, 2014. 6(21): p. 18609-18618.
    14.Boyer, C., et al., Measurements of proton conductivity in the active layer of PEM fuel cell gas diffusion electrodes. Electrochimica Acta, 1998. 43(24): p. 3703-3709.
    15.Makharia, R., M.F. Mathias, and D.R. Baker, Measurement of Catalyst Layer Electrolyte Resistance in PEFCs Using Electrochemical Impedance Spectroscopy. Journal of The Electrochemical Society, 2005. 152(5): p. A970-A977.
    16.Schalenbach, M., A Perspective on Low-Temperature Water Electrolysis – Challenges in Alkaline and Acidic Technology. International Journal of Electrochemical Science, 2018: p. 1173-1226.
    17.Vermeiren, P., J.P. Moreels, and R. Leysen, Porosity in composite zirfon® membranes. Journal of Porous Materials, 1996. 3(1): p. 33-40.
    18.Schalenbach, M., W. Lueke, and D. Stolten, Hydrogen Diffusivity and Electrolyte Permeability of the Zirfon PERL Separator for Alkaline Water Electrolysis. Journal of The Electrochemical Society, 2016. 163(14): p. F1480-F1488.
    19.Divisek, J., Influence of current distribution on electrode potentials in bipolar water electrolysis cells of the ‘sandwich’ type. Journal of Applied Electrochemistry, 1984. 14(5): p. 663-674.
    20.Divisek, J. and P. Malinowski, Ceramic Diaphragms on NiO ‐ Basis for Advanced Alkaline Water Electrolysis. Journal of The Electrochemical Society, 1986. 133(5): p. 915-920.
    21.Schalenbach, M., et al., Acidic or Alkaline? Towards a New Perspective on the Efficiency of Water Electrolysis. Journal of The Electrochemical Society, 2016. 163(11): p. F3197-F3208.
    22.Wu, J.C.-S. and L.-C. Cheng, An improved synthesis of ultrafiltration zirconia membranes via the sol–gel route using alkoxide precursor. Journal of Membrane Science, 2000. 167(2): p. 253-261.
    23.Boaro, M., J.M. Vohs, and R.J. Gorte, Synthesis of Highly Porous Yttria-Stabilized Zirconia by Tape-Casting Methods. Journal of the American Ceramic Society, 2003. 86(3): p. 395-400.
    24.Etienne, J., et al., A microporous zirconia membrane prepared by the sol—gel process from zirconyl oxalate. Journal of Membrane Science, 1994. 86(1): p. 95-102.
    25.Bonderer, L.J., et al., Free-Standing Ultrathin Ceramic Foils. Journal of the American Ceramic Society, 2010. 93(11): p. 3624-3631.
    26.Yasuda, T., T. Okuno, and H. Yasuda, Contact Angle of Water on Polymer Surfaces. Langmuir, 1994. 10(7): p. 2435-2439.
    27.Gancarz, I., G. Poźniak, and M. Bryjak, Modification of polysulfone membranes 1. CO2 plasma treatment. European Polymer Journal, 1999. 35(8): p. 1419-1428.
    28.Nabe, A., E. Staude, and G. Belfort, Surface modification of polysulfone ultrafiltration membranes and fouling by BSA solutions. Journal of Membrane Science, 1997. 133(1): p. 57-72.
    29.Zoller, P., A study of the pressure-volume-temperature relationships of four related amorphous polymers: Polycarbonate, polyarylate, phenoxy, and polysulfone. Journal of Polymer Science: Polymer Physics Edition, 1982. 20(8): p. 1453-1464.
    30.Zoller, P., Specific volume of polysulfone as a function of temperature and pressure. Journal of Polymer Science: Polymer Physics Edition, 1978. 16(7): p. 1261-1275.
    31.Vermeiren, P., et al., Evaluation of the Zirfon® separator for use in alkaline water electrolysis and Ni-H2 batteries. International Journal of Hydrogen Energy, 1998. 23(5): p. 321-324.
    32.Vermeiren, P., W. Adriansens, and R. Leysen, Zirfon®: A new separator for Ni-H2 batteries and alkaline fuel cells. International Journal of Hydrogen Energy, 1996. 21(8): p. 679-684.
    33.Kopitzke, R.W., et al., Conductivity and Water Uptake of Aromatic‐Based Proton Exchange Membrane Electrolytes. Journal of The Electrochemical Society, 2000. 147(5): p. 1677-1681.
    34.Zawodzinski, T.A., et al., A Comparative Study of Water Uptake By and Transport Through Ionomeric Fuel Cell Membranes. Journal of The Electrochemical Society, 1993. 140(7): p. 1981-1985.
    35.Zawodzinski, T.A., et al., Water Uptake by and Transport Through Nafion® 117 Membranes. Journal of The Electrochemical Society, 1993. 140(4): p. 1041-1047.
    36.Marino, M.G., et al., Hydroxide, halide and water transport in a model anion exchange membrane. Journal of Membrane Science, 2014. 464: p. 61-71.
    37.Roche, E.J., M. Pineri, and R. Duplessix, Phase separation in perfluorosulfonate ionomer membranes. Journal of Polymer Science: Polymer Physics Edition, 1982. 20(1): p. 107-116.
    38.Peighambardoust, S.J., S. Rowshanzamir, and M. Amjadi, Review of the proton exchange membranes for fuel cell applications. International Journal of Hydrogen Energy, 2010. 35(17): p. 9349-9384.
    39.Smitha, B., S. Sridhar, and A.A. Khan, Solid polymer electrolyte membranes for fuel cell applications—a review. Journal of Membrane Science, 2005. 259(1): p. 10-26.
    40.Chandesris, M., et al., Membrane degradation in PEM water electrolyzer: Numerical modeling and experimental evidence of the influence of temperature and current density. International Journal of Hydrogen Energy, 2015. 40(3): p. 1353-1366.
    41.Stucki, S., et al., PEM water electrolysers: evidence for membrane failure in 100kW demonstration plants. Journal of Applied Electrochemistry, 1998. 28(10): p. 1041-1049.
    42.Laguna-Bercero, M.A., Recent advances in high temperature electrolysis using solid oxide fuel cells: A review. Journal of Power Sources, 2012. 203: p. 4-16.
    43.Ursua, A., L.M. Gandia, and P. Sanchis, Hydrogen Production From Water Electrolysis: Current Status and Future Trends. Proceedings of the IEEE, 2012. 100(2): p. 410-426.
    44.Sapountzi, F.M., et al., Electrocatalysts for the generation of hydrogen, oxygen and synthesis gas. Progress in Energy and Combustion Science, 2017. 58: p. 1-35.
    45.Donnan, F.G., Theorie der Membrangleichgewichte und Membranpotentiale bei Vorhandensein von nicht dialysierenden Elektrolyten. Ein Beitrag zur physikalisch-chemischen Physiologie. Zeitschrift für Elektrochemie und angewandte physikalische Chemie, 1911. 17(14): p. 572-581.
    46.Strathmann, H., et al., Theoretical and practical aspects of preparing bipolar membranes. Desalination, 1993. 90(1): p. 303-323.
    47.Simons, R., Preparation of a high performance bipolar membrane. Journal of Membrane Science, 1993. 78(1): p. 13-23.
    48.Bauer, B., F.J. Gerner, and H. Strathmann, Development of bipolar membranes. Desalination, 1988. 68(2): p. 279-292.
    49.Mafé, S. and P. Ramírez, Electrochemical characterization of polymer ion-exchange bipolar membranes. Acta Polymerica, 1997. 48(7): p. 234-250.
    50.Shimizu, K. and A. Tanioka, Effect of interface structure and amino groups on water splitting and rectification effects in bipolar membranes. Polymer, 1997. 38(21): p. 5441-5446.
    51.Alcaraz, A., et al., Ion selectivity and water dissociation in polymer bipolar membranes studied by membrane potential and current–voltage measurements. Polymer, 2000. 41(17): p. 6627-6634.
    52.Bassignana, I.C. and H. Reiss, Ion transport and water dissociation in bipolar ion exchange membranes. Journal of Membrane Science, 1983. 15(1): p. 27-41.
    53.Simons, R., Water splitting in ion exchange membranes. Electrochimica Acta, 1985. 30(3): p. 275-282.
    54.Balster, J., et al., Tailoring the interface layer of the bipolar membrane. Journal of Membrane Science, 2010. 365(1): p. 389-398.
    55.汪耀明, 雙極膜電滲析法生產有機酸過程的幾個關鍵科學問題研究. 2011: 中國科學技術大學博士論文.
    56.Tongwen, X., W. Zhiwu, and L. Lin, THE RECENT REVIEW ON THE PRINCIPLE AND APPLICATION OF BIPOLAR MEMBRANE. TECHNOLOGY OF WATER TREATMENT, 1998. 24(1): p. 20-25.
    57.Kemperman, A.J.B., 雙極膜技術手冊. 2004: 化學工業出版社.
    58.Onsager, L., Deviations from Ohm's Law in Weak Electrolytes. The Journal of Chemical Physics, 1934. 2(9): p. 599-615.
    59.Simons, R., A novel method for preparing bipolar membranes. Electrochimica Acta, 1986. 31(9): p. 1175-1177.
    60.Krol, J.J., et al., Behaviour of bipolar membranes at high current density: Water diffusion limitation. Separation and Purification Technology, 1998. 14(1): p. 41-52.
    61.Balster, J., D.F. Stamatialis, and M. Wessling, Electro-catalytic membrane reactors and the development of bipolar membrane technology. Chemical Engineering and Processing: Process Intensification, 2004. 43(9): p. 1115-1127.
    62.Timashev, S.F. and E.V. Kirganova, MECHANISM OF THE ELECTROLYTIC DECOMPOSITION OF WATER-MOLECULES IN BIPOLAR ION-EXCHANGE MEMBRANES. Soviet Electrochemistry, 1981. 17(3): p. 366-369.
    63.Dege, G.J., et al., Method of making novel two component bipolar ion exchange membranes. 1981, Google Patents.
    64.Venugopal, K. and S. Dharmalingam, Desalination efficiency of a novel bipolar membrane based on functionalized polysulfone. Desalination, 2012. 296: p. 37-45.
    65.Zabolotskii, V., N. Sheldeshov, and S. Melnikov, Heterogeneous bipolar membranes and their application in electrodialysis. Desalination, 2014. 342: p. 183-203.
    66.Jeevananda, T., K.-H. Yeon, and S.-H. Moon, Synthesis and characterization of bipolar membrane using pyridine functionalized anion exchange layer. Journal of Membrane Science, 2006. 283(1): p. 201-208.
    67.Mueller, H. and H. Puetter, Production of bipolar membranes. 1987, Google Patents.
    68.Zhou, T.-j., et al., Preparation and characterization of bipolar membranes modified by photocatalyst nano-ZnO and nano-CeO2. Applied Surface Science, 2012. 258(8): p. 4023-4027.
    69.Kumar, M. and V.K. Shahi, Heterogeneous–homogeneous composite bipolar membrane for the conversion of salt of homologous carboxylates into their corresponding acids and bases. Journal of Membrane Science, 2010. 349(1): p. 130-137.
    70.Chen, R.-Y., et al., Preparation and characterization of mSA/mCS bipolar membranes modified by CuTsPc and CuTAPc. Journal of Membrane Science, 2010. 355(1): p. 1-6.
    71.Pan, J., et al., Preparation of bipolar membranes by electrospinning. Materials Chemistry and Physics, 2017. 186: p. 484-491.
    72.Zhu, W., et al., Rapid spray-crosslinked assembly of a stable high-performance polyelectrolyte bipolar membrane. RSC Advances, 2017. 7(58): p. 36313-36318.
    73.Lee, L.T. and K.-J. Liu, Stable high performance bipolar membrane with cross-linked functional groups. 1982, Google Patents.
    74.彭郁仁, 接枝型兩性膜的製備與性質之研究. 2000, 成大化工所碩士論文.
    75.Hegazy, E.-S.A., et al., Membranes prepared by radiation grafting of binary monomers for adsorption of heavy metals from industrial wastes. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 1999. 151(1): p. 386-392.
    76.Tang, B.Z., et al., Structure−Property Relationships for Photoconduction in Substituted Polyacetylenes. Chemistry of Materials, 2000. 12(1): p. 213-221.
    77.Fu, R., et al., Preparation of a mono-sheet bipolar membrane by simultaneous irradiation grafting polymerization of acrylic acid and chloromethylstyrene. Journal of Applied Polymer Science, 2003. 90(2): p. 572-576.
    78.Yokoyama, Y., A. Tanioka, and K. Miyasaka, Preparation of a single bipolar membrane by plasma-induced graft polymerization. Journal of Membrane Science, 1989. 43(2): p. 165-175.
    79.Hsueh, C.-L., et al., Bipolar membrane prepared by grafting and plasma polymerization. Journal of Membrane Science, 2003. 219(1): p. 1-13.
    80.Elleuch, M., et al., "Brackish water desalination by electrodialysis : opposing scaling". 2006. 200(1-3): p. 752-753.
    81.Jaime-Ferrer, J.S., et al., Two-compartment bipolar membrane electrodialysis for splitting of sodium formate into formic acid and sodium hydroxide: Modelling. Journal of Membrane Science, 2009. 328(1): p. 75-80.
    82.Ferrer, J.S.J., et al., Formic acid regeneration by electromembrane processes. Journal of Membrane Science, 2006. 280(1): p. 509-516.
    83.Li, H., et al., An electrokinetic bioreactor: using direct electric current for enhanced lactic acid fermentation and product recovery. Tetrahedron, 2004. 60(3): p. 655-661.
    84.Zhang, K., M. Wang, and C. Gao, Ion conductive spacers for the energy-saving production of the tartaric acid in bipolar membrane electrodialysis. Journal of Membrane Science, 2012. 387-388: p. 48-53.
    85.Wang, Q., P. Yang, and W. Cong, Cation-exchange membrane fouling and cleaning in bipolar membrane electrodialysis of industrial glutamate production wastewater. Separation and Purification Technology, 2011. 79(1): p. 103-113.
    86.Wei, Y., et al., Regenerating sodium hydroxide from the spent caustic by bipolar membrane electrodialysis (BMED). Separation and Purification Technology, 2012. 86: p. 49-54.
    87.Wei, Y., et al., Treatment of simulated brominated butyl rubber wastewater by bipolar membrane electrodialysis. Separation and Purification Technology, 2011. 80(2): p. 196-201.
    88.Wang, X., et al., In situ combination of fermentation and electrodialysis with bipolar membranes for the production of lactic acid: Operational compatibility and uniformity. Bioresource Technology, 2012. 125: p. 165-171.
    89.Zhang, X., et al., Recovery of acetic acid from simulated acetaldehyde wastewaters: Bipolar membrane electrodialysis processes and membrane selection. Journal of Membrane Science, 2011. 379(1): p. 184-190.
    90.Zemel, G.P., et al., Low pH Inactivation of Polyphenoloxidase in Apple Juice. Journal of Food Science, 1990. 55(2): p. 562-563.
    91.Tronc, J.-S., F. Lamarche, and J. Makhlouf, Enzymatic Browning Inhibition in Cloudy Apple Juice by Electrodialysis. Journal of Food Science, 1997. 62(1): p. 75-78.
    92.Lobyntseva, E., T. Kallio, and K. Kontturi, Bipolar membranes in forward bias region for fuel cell reactors. Electrochimica Acta, 2006. 51(7): p. 1165-1171.
    93.Lobo, V.M. and J. Quaresma, Handbook of electrolyte solutions. Vol. 41. 1989: Elsevier.

    下載圖示 校內:2024-07-19公開
    校外:2024-07-19公開
    QR CODE