| 研究生: |
魏小乙 Wei, Hsiao-Yi |
|---|---|
| 論文名稱: |
以演化式運算法學習貝式網路 Learning Bayesian Network with Evolutionary Computing |
| 指導教授: |
李昇暾
Li, Sheng-Tun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 資訊管理研究所 Institute of Information Management |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 英文 |
| 論文頁數: | 38 |
| 中文關鍵詞: | 貝式網路 、粒子群最佳化 、最小描述長度 |
| 外文關鍵詞: | Bayesian networks, particle swarm optimization, minimum description length |
| 相關次數: | 點閱:110 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
從資料學習貝式網路是一件困難的問題。本研究提出一個新穎的方法,是結合粒子群最佳化及最小描述長度去學習貝式網路的結構。粒子群最佳化適合處理最佳化的問題,而最小描述長度是例子群最佳化的適用性函數。它可用來評估架構的優異程度並能夠在簡單化和正確率中取得平衡,在合理的時間內從複雜的模型中找出最佳的解決方法。此外,本研究也提出一個驗證的演算法,可去偵查出那些違反貝式網路標準的網路架構並加以修復。學習完架構後,各節點的條件機率可以從資料中計算出來。最後,實驗採用三種不同的資料去測試網路的效能及效率。
Learning Bayesian networks from data is a difficult problem. This study presented a novel approach which combines particle swarm optimization, a competitive algorithm suitable for optimization problem, and minimum description length to learn the structure of Bayesian network. MDL was the fitness function in this learning algorithm to evaluate the goodness of the network. By adopting MDL, the balance between simplicity and accuracy was assured, which enabled the optimal solution for complex models to be found in reasonable time. A validation algorithm was proposed to inspect and repair networks which violated the standards of the Bayesian network. Conditional probabilities were then statistically derived from data to complete the quantitative part of Bayesian network. In the end, three realistic data sets were used to test the efficiency and effectiveness of this learned network.
Akaike, H. A New Look at the Statistical Model Identification. IEEE Transactions on Automatic Control, 19, 716-723, 1974.
Campos, L. M. d., Fernandez-Luna, J. M., Gamez, J. A., & Puerta, J. M. Ant colony optimization for learning Bayesian networks. International Journal of Approximate Reasoning, 31, 291-311, 2002
Cooper, G. F., The computational complexity of probabilistic inference using Bayesian belief networks, Artificial Intelligence, 42, 393-405, 1992.
Cooper, G. F., & Herskovits, E. A Bayesian Method for the Induction of Probabilistic Networks from Data. Machine Learning, 9, 309-347, 1992.
Chickering, D. M., Geiger, D., & Heckerman, D. Learning Bayesian networks is NP-hard. Tech. Rep. MSR-TR-94-17, Microsoft Research, Redmond,Wash, 1994.
Cheng, J., Bell, D., & Liu, W. Learning Bayesian Networks from Data: An Efficient Approach Based on Information Theory. Proceedings of the sixth ACM International Conference on Information and Knowledge Management, 1997.
Cheng, J., Greiner, R., Kelly, J., Bell, D., & Liu, W. Learning Bayesian networks from data: An information-theory based approach. Artificial Intelligence, 137, 43–90, 2002.
Clarke, E.J., & Barton, B.A. Entropy and MDL Discretization of Continuous Variables for Bayesian Belief Networks, International Journal of Intelligent Systems, 15, 61-92, 2000.
C.Eberhart, R., & Shi, Y. Particle Swarm Optimization: Developments, Applications and Resources. Proceedings of the IEEE Congress on Evolutionary Computation,1,81-86, 2001.
Clerc, M., & Kennedy, J. The particle swarm—explosion, stability, and convergence in a multidimensional complex space. IEEE Transaction on Evolutionary Computation, 6(1), 58-73, 2000.
Cui, G., Wong, M. L., & Lui, H.-K. Machine Learning for Direct Marketing Response Models: Bayesian Networks with Evolutionary Programming. Management Science, 52(4), 2006.
Druzdzel, M. J., & van der Gaag, L. C. Building Probabilistic Networks: "Where Do the Numbers Come From?" IEEE Transactions on Knowledge and Data Engineering, 12(4), 481-486, 2000.
Du, T., Zhang, S. S., & Wang, Z. Efficient Learning Bayesian Networks Using PSO. International conference on Computational intelligence and security, 2005.
Eberhart, R., & Shi, Y. Comparing inertia weights and constriction factors in particle swarm optimization, Proceedings of the 2000 congress on Evolutionary Computation, 84-88, 2000.
Graunwald, P. A tutorial introduction to the minimum description length principle. In P. Graunwald, I. J. Myung, and M. Pitt, editors, Advances in Minimum Description Length: Theory and Applications. MIT press, 2005.
Garbe, H., Janssen, C., Mobus, C., Seebold, H., & Vries, H. d. (2006). KARaCAs: Knowledge Acquisition with Repertory Grids and Formal Concept Analysis for Dialog System Construction. Proceedings of 15th International Conference on Knowledge Engineering and Knowledge Management, 3-18.
Hanley, J.A., McNeil, B.J. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Diagnostic Radiology, 143, 29–36, 1982.
Heng,X-C., Zheng, Q., Lei, T., & Shao, L-P. Learning Bayesian Network Structures with Discrete Particle Swarm Optimization Algorithm. Foundations of Computational Intelligence Foundations of Computational Intelligence (FOCI 2007), 47–52, 2007.
Kennedy, J., & Eberhart, R. Particle swarm optimization. Proceedings
of the IEEE International Conference on Neural Networks,1942-1948, 1995.
Lam, W., & Bacchus, F. Learning Bayesian Belief Networks: An Approach Based On The MDL Principle. Compurafional Intelligenc, 10, 1994.
Lam, W. Bayesian Network Refinement Via Machine Learning Approach. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(3), 1998.
Li, X., Yuan, S., & He, X. Learning Bayesian Networks Structures Based on Extending Evolutionary Programming. Proceedings of the Third International Conference on Machine Learning and Cybernetics, 1594-1598, 2004.
Morales, D. A., Bengoetxea, E., Larranaga, P., Garcıa, M., Franco, Y., Fresnada, M., Merino,M. Bayesian classification for the selection of in vitro human embryos using morphological and clinical data. Computer methods and programs in biomedicine, 2008.
Pearl, J. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference, San Francisco: Morgan Kaufmann, 1988.
PJ, L., LC, G. v. d., & Abu-Hanna. Bayesian networks in biomedicine and health-care. Artificial Intelligence in Medicine, 30, 2004.
Poli, R., Kennedy, J., & Blackwell, T. Particle swarm optimization. An overview. Swarm Intelligence, 1, 2007.
Rissanen, J. Modelling by the shortest data description. Automatica, 14, 465-471, 1978.
Renooij, S. Probability elicitation for belief networks: issues to consider. The Knowledge Engineering Review, 16(3), 2001.
Schwarz, G. Estimating the Dimension of a Model. Annals of Statistics, 6, 461-464, 1978.
Suzuki, J. Learning Bayesian Belief Networks Based on the MDL Principle: An Efficient Algorithm Using the Branch and Bound Technique. Proceedings of the international conference on machine learning, 1996.
Shi, Y., & Eberhart, R. A Modified Particle Swarm Optimizer. Proceedings of IEEE International Conference on Evolutionary Computation, 69-73, 1998.
Salman, A., Ahmad, I., & Al-Madani, S. Particle swarm optimization for task assignment problem. Microprocessors and Microsystems, 26, 2002.
Tversky, A., & Kahneman, D. Judgment under Uncertainty: Heuristics and Biases. Science, 185(4157), 1974.
van der Gaag, L. C., & Helsper, E. M. Experiences with Modelling Issues in Building Probabilistic Networks. In A. Gmez-Prez & V.R. Benjamins (Eds.), Knowledge Engineering and Knowledge Management: Ontologies and the Semantic Web, Proceedings of EKAW 2002, 2473, 2002.
van Dijk, S., Thierens, D., & van der Gaag, L. C. Building a GA from Design Principles for Learning Bayesian Networks. Proceedings of the Genetic and Evolutionary Computation Conference, 886–897, 2003.
Witten, I. H., & Frank, E. Data Mining: Practical Machine Learning Tools and Techniques. San Francisco: Morgan Kaufmann, 2000.
Wong, M. L., Lam, W., & Leung, K. S. Using evolutionay computation and minimum description length principle for data mining of probabilistic knowledge. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21, 174–178, 1999
Wong, M. L., & Leung, K. S. An Efficient Data Mining method for learning Bayesian networks using an evolutionary algorithm-based hybrid approach. IEEE Transactions on Evolutionary Computation, 8, 378-404, 2004.
Zhang, N. L., & Poole, D. Exploiting causal independence in bayesian network inference. Artificial Intelligence, 5, 301-328, 1996.