簡易檢索 / 詳目顯示

研究生: 徐辰
Hsu, Chen
論文名稱: 探討二甲雙胍對睡眠剝奪誘發的高血糖之作用
Effect of metformin on sleep deprivation-induced hyperglycemia in mice
指導教授: 劉明毅
Liu, Ming-Yie
學位類別: 碩士
Master
系所名稱: 醫學院 - 環境醫學研究所
Department of Environmental and Occupational Health
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 68
中文關鍵詞: 睡眠剝奪二甲雙胍高血糖發炎反應胰臟功能受損肝臟功能受損
外文關鍵詞: Sleep deprivation, metformin, hyperglycemia inflammation, pancreatic dysfunction, liver dysfunction
相關次數: 點閱:196下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著人口、工業發展與生產的需求增加,加上配合全球化趨勢,夜間輪班工作、熬夜加班等工作型態日益普及,人們夜間睡眠時間不足,造成睡眠剝奪的機會增加。研究指出,長期的睡眠剝奪會透過發炎反應造成多重器官損傷與血糖代謝問題,進而增加糖尿病風險,二甲雙胍是常用於高血糖與糖尿病的第一線藥物,可通過活化AMPK路徑達到降血糖與抗發炎的效果,由於目前睡眠剝奪後服用二甲雙胍藥物的影響仍未知,因此,本研究目的為探討二甲雙胍對睡眠剝奪造成之高血糖作用。睡眠剝奪採用改良式多平台法,實驗動物隨機分成五組,每組八隻,睡眠剝奪採一天剝奪一天休息方式為期30天,剝奪時間為早上7點至晚上7點。第一組為控制組;第二組為睡眠剝奪組;第三、四組為睡眠剝奪15天造成傷害後,再給予100和300 mg/kg/day p.o. 的二甲雙胍,至第30天;第五組為單獨給予300 mg/kg/day p.o.的二甲雙胍,從第15天開始餵食至第30天。全部測試小鼠在第31天犧牲,並採集血液、胰臟與肝臟進行後續分析。結果顯示,二甲雙胍可以減少胰臟與肝臟組織中介白質-1β和介白質-6的產生,並提升介白質-10的表現,且抑制發炎相關蛋白iNOS與NF-кB表現,降低血清中葡萄糖及GPT含量,增加胰臟與肝臟中葡萄糖運輸蛋白-2的表現,透過增加肝臟p-AMPK蛋白表現增加PPARγ、GCK、PFK-1及FBP-1表現;在組織切片中發現二甲雙胍無法恢復因睡眠剝奪造成的胰臟β細胞損失,且在單獨給予高劑量的情況下會增加血清中AMYL含量,並使胰臟組織變形且產生空洞。綜合上述,二甲雙胍可以經由增加糖解作用,來減緩因睡眠剝奪造成之高血糖現象及胰臟與肝臟組織的發炎情形,但服用高劑量二甲雙胍則可能會對胰臟與肝臟造成不良影響。

    Sleep deprivation (SD) is increasing in the industrialized world. SD induces multiple organ injury and hyperglycemia via inflammatory response. SD also as a risk factor for type 2 diabetes. Metformin is used as a first-line drug for hyperglycemia and diabetes. However, the effect of metformin on SD-induced hyperglycemia, pancreatic and hepatic dysfunction have not been studied. The aim of the study was to investigate the effect of metformin on anti-hyperglycemia in SD mice. Mice were subjected to one day SD (7.00 am-7.00 pm) and sleep one day cycle for 15 cycles. Metformin (100 or 300 mg/kg/day p.o.) was administered from the 15th to the 30th day. Animals were killed on the 31st day. Metformin decreased liver and pancreatic IL-6, IL-1β, iNOS, NF-кB, serum GLU and GPT levels. It increased liver and pancreatic IL-10, GLUT2, liver p-AMPK, PPARγ, GCK, PFK-1 and FBP-1 levels, however it did not recovered the pancreatic cells histologically. In high dose metformin group, it increased the serum AMYL level and revealed islet atrophy, edge irregularities. In conclusion, metformin attenuated SD-induced hyperglycemia via PPARγ-GLUT2 glycolysis pathway and reduced inflammation, however high dose metformin may induce adverse effects in pancreas and liver.

    中文摘要Ⅰ 英文摘要Ⅱ 致謝Ⅴ 目錄Ⅵ 圖片列表Ⅶ 名詞縮寫Ⅸ 研究背景1 研究目的7 材料與方法8 結果19 討論25 結論30 參考文獻31 圖表39 附錄65

    Algire CO, Moiseeva X, Deschenes-Simard L, Amrein L, Petruccelli E, Birman B, Viollet G, Ferbeyre, and Pollak MN. Metformin reduces endogenous reactive oxygen species and associated DNA damage. Cancer Prevention Research (Phila). 5: 536-43. 2012.
    Baltrusch S. Mitochondrial network regulation and its potential interference with inflammatory signals in pancreatic beta cells. Diabetologia. 59: 683-7. 2016.
    Bao BZ, Wang S, Ali A, Ahmad AS, Azmi SH, Sarkar S, Banerjee D, Kong YL, Thakur S, and Sarkar FH. Metformin inhibits cell proliferation, migration and invasion by attenuating CSC function mediated by deregulating miRNAs in pancreatic cancer cells. Cancer Prevention Research (Phila). 5: 355-64. 2012.
    Bryant PA, Trinder J and Curtis N. Sick and tired: does sleep have a vital role in the immune system?. Nature Reviews Immunology. 4: 457-67. 2004.
    Campbell R, Soenens B, Weinstein N and Vansteenkiste M. Impact of Partial Sleep Deprivation on Psychological Functioning: Effects on Mindfulness and Basic Psychological Need Satisfaction. Mindfulness. 1-11. 2017.
    Cheng G and Lanza-Jacoby S. Metformin decreases growth of pancreatic cancer cells by decreasing reactive oxygen species: Role of NOX4. Biochemical and Biophysical Research Communications. 465: 41-6. 2015.
    Choi SE, Choi KM, Yoon IH, Shin JY, Shin JY, Park WY, Han DJ, Kim SC, CurieAhn, Kim JY, Hwang ES, Cha CY, Gregory LS, Yoon KH and Park CG. IL-6 protects pancreatic islet beta cells from pro-inflammatory cytokines-induced cell death and functional impairment in vitro and in vivo. Transplant Immunology. 13: 43-53. 2004.
    Diamanti-Kandarakis E, Christakou CD, Kandaraki E and Economou FN. Metformin: an old medication of new fashion: evolving new molecular mechanisms and clinical implications in polycystic ovary syndrome. European Journal of Endocrinology. 162: 193-212. 2010.
    Donath MY, Boni-Schnetzler M, Ellingsgaard H and Ehses JA. Islet inflammation impairs the pancreatic beta-cell in type 2 diabetes. Physiology (Bethesda). 24: 325-31. 2009.
    Duca FA, Cote CD, Rasmussen BA, Zadeh-Tahmasebi M, Rutter GA, Filippi BM, and Lam TK. Metformin activates a duodenal Ampk-dependent pathway to lower hepatic glucose production in rats. Nature Medicine. 21: 506-11. 2015.
    Esser N, Legrand-Poels S, Piette J, Scheen A J and Paquot N. Inflammation as a link between obesity, metabolic syndrome and type 2 diabetes. Diabetes Research and Clinical Practice. 105: 141-50. 2014.
    Gangwisch JE, Heymsfield SB, Boden-Albala B, Buijs RM, Kreier F, Pickering T G, Rundle AG, Zammit GK and Malaspina D. Sleep duration as a risk factor for diabetes incidence in a large US sample. Sleep. 30: 1667-73. 2007.
    Haus EL and Smolensky MH. Shift work and cancer risk: potential mechanistic roles of circadian disruption, light at night, and sleep deprivation. Sleep Medicine Reviews 17: 273-84. 2013.
    Hirst J A, Farmer AJ, Ali R, Roberts NW and Stevens RJ. Quantifying the effect of metformin treatment and dose on glycemic control. Diabetes Care. 35: 446-54. 2012.
    Hou X, Song J, Li XN, Zhang L, Wang XL, Chen L and Shen YH. Metformin reduces intracellular reactive oxygen species levels by upregulating expression of the antioxidant thioredoxin via the AMPK-FOXO3 pathway. Biochemical and Biophysical Research Communications. 396: 199-205. 2010.
    Hu FB, Meigs JB, Li TY, Rifai N and Manson JE. Inflammatory markers and risk of developing type 2 diabetes in women. Diabetes. 53: 693-700. 2004.
    Im SS, Kim W, Kim TH, Song XL, Kim SY, Kim HI and Ahn YH. Identification and characterization of peroxisome proliferator response element in the mouse GLUT2 promoter. Experimental and Molecular Medicine. 37: 101-10. 2005.
    Khodabandehloo H. Gorgani-Firuzjaee S, Panahi G and Meshkani R. Molecular and cellular mechanisms linking inflammation to insulin resistance and beta-cell dysfunction. Translational Research. 167: 228-56. 2016.
    Kim HI and Ahn YH. Role of peroxisome proliferator-activated receptor-γ in the glucose-sensing apparatus of liver and β-cells. Diabetes. 53: S60-S65. 2004.
    Kim YD, Park KG, Lee YS, Park YY, Kim DK, Nedumaran B, Jang WG, Cho WJ, Ha J, Lee IK Lee CH and Choi HS. Metformin inhibits hepatic gluconeogenesis through AMP-activated protein kinase-dependent regulation of the orphan nuclear receptor SHP. Diabetes. 57: 306-14. 2008.
    Knutson KL, Spiegel K, Penev P and Van Cauter E. The metabolic consequences of sleep deprivation. Sleep Medicine Reviews. 11: 163-78. 2007
    Kripke DF, Garfinkel L, Wingard DL, Klauber MR, Marler MR. Mortality Associated With Sleep Duration and Insomnia. Archives of General Psychiatry. 59: 131. 2002.
    Lalau JD, Lacroix C, Compagnon P, de Cagny B, Rigaud JP, Bleichner G, Chauveau P, Dulbecco P, Guérin C, Haegy JM, et al. Role of metformin accumulation in metformin-associated lactic acidosis. Diabetes Care. 18: 779-84. 1995.
    Leproult R, Copinschi G, Buxton O, Van Cauter E. Sleep loss results in an elevation of cortisol levels the next evening. Sleep. 20: 865-70. 1997.
    Li J, Gui Y, Ren J, Liu X, Feng Y, Zeng Z, He W, Yang J and Dai C. Metformin protects against cisplatin-induced tubular cell apoptosis and acute kidney injury via AMPKα-regulated autophagy induction. Scientific Reports. 6. 2016.
    Ma N, Dinges DF, Basner M and Rao H. How acute total sleep loss affects the attending brain: a meta-analysis of neuroimaging studies. Sleep 38: 233-40. 2015.
    Ma R, Zhang W, Tang K, Zhang H, Zhang Y, Li D, Li Y, Xu P, Luo S, Cai W, Ji T, Katirai F, Ye D, Huang B. Switch of glycolysis to gluconeogenesis by dexamethasone for treatment of hepatocarcinoma. Nature Communications. 4: 2508. 2013.
    Malin SK, Kashyap SR. Effects of metformin on weight loss: potential mechanisms. Current Opinion in Endocrinology, Diabetes and Obesity. 21: 323-29. 2014.
    Martin GM, Chen PC, Devaraneni P and Shyng SL. Pharmacological rescue of trafficking-impaired ATP-sensitive potassium channels. Frontiers in Endocrinology. 4: 386. 2013.
    Massa ML, Gagliardino JJ and Francini F. Liver glucokinase: an overview on the regulatorymechanisms of its activity. International Union of Biochemistry and Molecular Biology. 63: 1-6. 2011.
    McArdle MA, Finucane OM, Connaughton RM, McMorrow AM and Roche HM. Mechanisms of obesity-induced inflammation and insulin resistance: insights into the emerging role of nutritional strategies. Frontiers in Endocrinology. 4: 52. 2013.
    McHill AW and Wright KP Jr. Role of sleep and circadian disruption on energy expenditure and in metabolic predisposition to human obesity and metabolic disease. Obesity Reviews. 18:15-24. 2017.
    Meier-Ewert HK, Ridker PM, Rifai N. Regan MM, Price NJ, Dinges DF and Mullington JM. Effect of sleep loss on C-reactive protein, an inflammatory marker of cardiovascular risk. Journal of the American College of Cardiology. 43: 678-83. 2004.
    Moller DE. New drug targets for type 2 diabetes and the metabolic syndrome. Nature. 414: 821-27. 2001.
    Monteiro R and Azevedo I. Chronic inflammation in obesity and the metabolic syndrome. Mediators Inflammation. 2010.
    Mullington JM, Haack M, Toth M, Serrador JM, Meier-Ewert HK. Cardiovascular, inflammatory, and metabolic consequences of sleep deprivation. Progress in Cardiovascular Diseases. 51: 294-302. 2009.
    Musi N, Hirshman MF, Nygren J, Svanfeldt M, Bavenholm P, Rooyackers O, Zhou G, Williamson JM, Ljunqvist O, Efendic S, Moller DE, Thorell A, Goodyear LJ. Metformin increases AMP-activated protein kinase activity in skeletal muscle of subjects with type 2 diabetes. Diabetes. 51: 2074-81. 2002.
    Nair AB and Jacob S. A simple practice guide for dose conversion between animals and human. Journal of Basic and Clinical Pharmacy. 7: 27. 2016.
    Noguchi R, Kubota H, Yugi K, Toyoshima Y, Komori Y, Soga T, Kuroda S. The selective control of glycolysis, gluconeogenesis and glycogenesis by temporal insulin patterns. Molecular Systems Biology. 9: 664. 2013.
    O'Neill LA, and Hardie DG. Metabolism of inflammation limited by AMPK and pseudo-starvation. Nature. 493: 346-55. 2013.
    O'Reilly MF. Functional analysis and treatment of escape‐maintained aggression correlated with sleep deprivation. Journal of Applied Behavior Analysis. 28: 225-26. 1995.
    Opp MR. Cytokines and sleep. Sleep medicine reviews. 9: 355-64. 2005.
    Palsamy P and Subramanian S. Ameliorative potential of resveratrol on proinflammatory cytokines, hyperglycemia mediated oxidative stress, and pancreatic beta-cell dysfunction in streptozotocin-nicotinamide-induced diabetic rats. Journal of Cellular Physiology. 224: 423-32. 2010.
    Patti CL, Zanin KA, Sanday L, Kameda SR, Fernandes-Santos L, Fernandes HA, Andersen ML, Tufik S, Frussa-Filho R. Effects of Sleep Deprivation on Memory in Mice: Role of State-Dependent Learning. Sleep. 33: 1669–79. 2010.
    Periasamy SD, Hsu Z, Fu YH and Liu MY. Sleep deprivation-induced multi-organ injury: role of oxidative stress and inflammation. Experimental and Clinical Sciences. 14: 672-83. 2015.
    Philip P, Sagaspe P, Prague M, Tassi P, Capelli A, Bioulac B, Commenges D, Taillard J.Acute versus chronic partial sleep deprivation in middle-aged people: differential effect on performance and sleepiness. Sleep. 35: 997-1002. 2012.
    Pickup JC, Chusney GD, Thomas SM, Burt D. Plasma interleukin-6, tumour necrosis factor α and blood cytokine production in type 2 diabetes. Life Sciences. 67: 291-300. 2000.
    Pradhan AD, Manson JE, Rifai N, Buring JE, Ridker PM. C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. The Journal of the American Medical Association. 286: 327-34. 2001.
    Rena G, Pearson ER, Sakamoto K. Molecular mechanism of action of metformin: old or new insights?. Diabetologia. 56: 1898-906. 2013.
    Rena G, Hardie DG, Pearson ER. The mechanisms of action of metformin. Diabetologia. 60: 1577-85. 2017.
    Robertson RP. Chronic oxidative stress as a central mechanism for glucose toxicity in pancreatic islet beta cells in diabetes. The Journal of Biological Chemistry. 279: 42351-4. 2004.
    Rui L. Energy metabolism in the liver. Comprehensive Physiology. 2014.
    Salminen A, Hyttinen JM, Kaarniranta K. AMP-activated protein kinase inhibits NF-kappaB signaling and inflammation: impact on healthspan and lifespan. Journal of Molecular Medicine (Berl). 89: 667-76. 2011.
    Saltiel AR, Kahn CR. Insulin signalling and the regulation of glucose and lipid metabolism. Nature. 414: 799-806. 2001.
    Shestopalov VI, Panchin Y, Tarasova OS, Gaynullina D, Kovalzon VM. Pannexins Are Potential New Players in the Regulation of Cerebral Homeostasis during Sleep-Wake Cycle. Frontiers in Cellular Neuroscience. 11: 210. 2017.
    Shulman GI. Ectopic fat in insulin resistance, dyslipidemia, and cardiometabolic disease. New England Journal of Medicine. 371: 1131-41. 2014.
    Sozio MS, Lu C, Zeng Y, Liangpunsakul S and Crabb DW. Activated AMPK inhibits PPAR-{alpha} and PPAR-{gamma} transcriptional activity in hepatoma cells. American Journal of Physiology-Gastrointestinal and Liver Physiology. 301: G739-47. 2011.
    Spiegel K, Knutson K, Leproult R, Tasali E, Van Cauter E. Sleep loss: a novel risk factor for insulin resistance and Type 2 diabetes. Journal of Applied Physiology (1985), 99: 2008-19. 2005.
    Spranger J, Kroke A, Möhlig M, Hoffmann K, Bergmann MM, Ristow M, Boeing H, Pfeiffer AF. Inflammatory cytokines and the risk to develop type 2 diabetes : results of the prospective population-based European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study. Diabetes, 52: 812-17. 2003.
    Stokholm MG, Iranzo A, Østergaard K, Serradell M, Otto M, Svendsen KB, Garrido A, Vilas D, Borghammer P, Santamaria J, Møller A, Gaig C, Brooks DJ, Tolosa E, Pavese N. Assessment of neuroinflammation in patients with idiopathic rapid-eye-movement sleep behaviour disorder: a case-control study. The Lancet Neurology. 16: 789-96. 2017.
    Stratton IM, Adler AI, Neil HA, Matthews DR, Manley SE, Cull CA, Hadden D, Turner RC, Holman RR. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. British Medical Journal. 321: 405-12. 2000.
    Tak PP and Firestein GS. NF-kappaB: a key role in inflammatory diseases. The Journal of Clinical Investigation. 107: 7-11. 2001.
    Uygun A, Kadayifci A, Isik AT, Ozgurtas T, Deveci S, Tuzun A, Yesilova Z, Gulsen M and Dagalp K. Metformin in the treatment of patients with non‐alcoholic steatohepatitis. Alimentary Pharmacology & Therapeutics. 19: 537-44. 2004.
    Vgontzas AN, Papanicolaou DA, Bixler EO, Lotsikas A, Zachman K, Kales A, Prolo P, Wong ML, Licinio J, Gold PW, Hermida RC, Mastorakos G, Chrousos GP. Circadian interleukin-6 secretion and quantity and depth of sleep. The Journal of Clinical Endocrinology & Metabolism. 84: 2603-07. 1999.
    Watkins LR, Maier SF, Goehler LE. Immune activation: the role of pro-inflammatory cytokines in inflammation, illness responses and pathological pain states. Pain. 63: 289-302. 1995.
    Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, Sole J, Nichols A, Ross JS, Tartaglia LA and Chen H. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. The Journal of Clinical Investigation. 112: 1821-30. 2003.
    Yaggi H Klar, Araujo AB, McKinlay JB. Sleep duration as a risk factor for the development of type 2 diabetes. Diabetes Care. 29: 657-61. 2006.
    Yamamoto Y and Gaynor RB. Therapeutic potential of inhibition of the NF-kappaB pathway in the treatment of inflammation and cancer. The Journal of Clinical Investigation. 107: 135-42. 2001
    Youngstedt SD, Goff EE, Reynolds AM, Kripke DF, Irwin MR, Bootzin RR, Khan N, Jean-Louis G. Has adult sleep duration declined over the last 50+ years?. Sleep Medicine Reviews. 28: 69-85. 2016.
    Zhang SX, Khalyfa A, Wang Y, Carreras A, Hakim F, Neel BA, Brady MJ, Qiao Z, Hirotsu C and Gozal D. Sleep fragmentation promotes NADPH oxidase 2-mediated adipose tissue inflammation leading to insulin resistance in mice. International Journal of Obesity (Lond). 38: 619-24. 2014.

    無法下載圖示 校內:2020-07-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE